# **Contents**

| Chapter I Technical Characteristics of Engine                                   | 11  |
|---------------------------------------------------------------------------------|-----|
| Section I Technical Requirements for Fuel, Oils, and Auxiliary Materials        | 11  |
| Section II Main Technical Specification of Engine                               | 14  |
| Section III Performance Curve of Engine                                         | 15  |
| Section IV Main Checking and Adjustment Parameters                              | 16  |
| Section V Tightening Torque for Critical Bolts of Engine                        | 17  |
| Section VI Main Fitting Clearances and Allowable Wear Limits of Engine          | 21  |
| Section VII Specification of Main Attachments and Accessories                   | 24  |
| Chapter II Maintenance for Main Structures of Engine                            | 25  |
| Section I Disassembly of Engine Assembly                                        | 25  |
| Section II Assembly of Engine                                                   | 43  |
| Section III Crankshaft and Flywheel System                                      | 68  |
| Section IV Piston and Connecting Rod Group                                      | 69  |
| Section V Valve Distribution Mechanism                                          | 70  |
| Section VI Lubrication System                                                   | 71  |
| Section VII Cooling System                                                      | 72  |
| Section VIII Turbocharger and Inter-Cooler System                               | 73  |
| Section IX EGR System                                                           | 75  |
| Section X Exhaust System                                                        | 76  |
| Chapter III Working Principle of Engine Control and Actuator Units              | 77  |
| Section I Overview of Diesel Common Rail System                                 | 77  |
| Section II Working Principle of Low Pressure Fuel Line System                   | 79  |
| Section III Working Theory of High Pressure Fuel Line                           | 82  |
| Section IV Electronic Control Unit of High Pressure Common Rail System          | 84  |
| Chapter IV Engine Diagnosis                                                     | 109 |
| Section I. Precautions                                                          | 109 |
| Section II. Maintenance Procedures                                              | 111 |
| Section III. Fault Diagnosis                                                    | 113 |
| Section IV. DTC List                                                            | 115 |
| Section V. Fault Diagnosis for Floetronic-Controlled Common Rail Diesel Engines | 133 |

### **Chapter I Technical Characteristics of Engine**

### Section I Technical Requirements for Fuel, Oils, and Auxiliary Materials

#### I. Diesel

HFC4DA1-2C diesel engine adopts electronically controlled, high pressure common rail, fuel injection system and conforms to Euro-IV emission regulation and thus extends higher requirements over the fuel. To guarantee the reliability of the fuel supply system, make sure to use the qualified clean diesel produced by national well-established fuel company, in order to prevent the blockage or early wear of fuel injector due to poor fuel.

Add the fuel only at the well-established gas station. The use of poor diesel or other diesel intended for other than vehicle engine application is strictly prohibited.

Make sure to use the fuel conforming to national standard GB 19147. The grade number of the diesel chosen is related to the temperature of working environment. When the environment temperature is reduced, the paraffins within the diesel will precipitate to block the fuel pipeline, leading to difficult fuel supply and start failure of the engine. Therefore, choose different grade number of diesel depending on the environment temperature in different seasons and regions, in accordance with the table shown below.

| Environment temperature            | Above 5℃        | Above -5℃         | Above -10°C       | Above -25℃        |
|------------------------------------|-----------------|-------------------|-------------------|-------------------|
| Recommended grade number of diesel | 0# light diesel | -10# light diesel | -20# light diesel | -35# light diesel |

#### Notice!

The cam of the high pressure fuel pump is being lubricated by the fuel. Never cause engine flameout due to depletion of fuel in the fuel tank, or it will lead to serious wear of the high pressure fuel pump. After adding new fuel, make sure to firstly use manual fuel pump to bleed the air from the fuel pipe and high pressure fuel pump and thoroughly fill the fuel pipe and high pressure fuel pump with fuel before starting the engine, in order to prevent the wear of high pressure fuel pump due to fuel shortage.

#### Procedure for air bleeding and refueling:

- 1. Loosen the air bleeding screw;
- 2. Push down the manual fuel pump with hand and then release. Repeat above operation, till there is no air bleeding out from the air bleeding screw;
- 3. Tighten the air bleeding screw and pump the fuel with manual fuel pump, till the fuel injection pump is thoroughly filled with fuel.

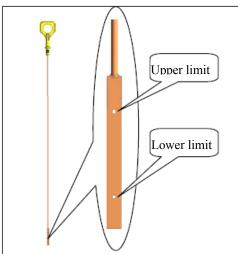
#### The diesel filter embodies the fuel-water separation function:

The water content in the diesel will bring about great harm to the fuel system. Upon the detection that the diesel filter water level warning lamp on the instrument panel lights up, it indicates the presence of waste water in the diesel filter. The waste water shall be drained timely, or it will lead to the rusting and wear of high pressure fuel pump, high pressure fuel rail, and fuel injector and bring about unnecessary losses.

#### Procedure for water drainage:

- 1. Unplug the water level sensor connector;
- 2. Loosen the water level sensor to drain the waste water, till the diesel flows out.

3. Tighten the water level sensor and plug the water level sensor connector.


#### II. Engine Oil

HFC4DA1-2C diesel engine shall use the diesel engine oil with the quality grade at API CH-4 or above, of which the viscosity is related to the environment temperature. When the environment temperature is reduced, the viscosity of the engine oil is increased to increase the start resistance so that the diesel engine can't reach the start speed and cause difficult start. Therefore, in different seasons and regions, choose the correct engine oil with different viscosity grade under different environment temperature, in accordance with the table below.

| Environment temperature | -15°C~40°C          | -20℃~30℃     | -30℃~25℃ | Extreme cold region |
|-------------------------|---------------------|--------------|----------|---------------------|
| Engine oil trademark    | 10W-40/50 or 15W-40 | 10W-30/40/50 | 5W-40/50 | 0W-40/50            |

#### Check engine oil level:

- Stop the engine and wait for several minutes;
- Pull out the engine oil dipstick;
- Wipe the oil dipstick with clean cloth and re-insert the oil dipstick to the end;
- Pull out the oil dipstick again and observe the engine oil level. Check whether the oil level is between the upper and lower limits of the oil dipstick. If insufficient, add the engine oil.



Notice: Make sure to horizontally park the vehicle while measuring the engine oil level. Stop the engine and wait for several minutes, till the engine oil can return to the oil sump

#### Notice!

- Make sure to periodically check the engine oil level.
- The apparatus used for refueling shall be clean.
- In event of sudden rise or drop of engine oil level, check for cause immediately.

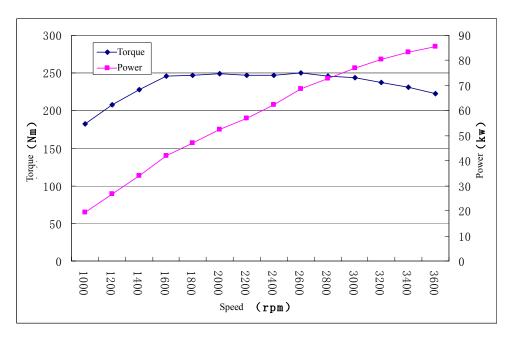
- Never mix different trademarks of engine oils.
- Periodically replace the engine oil as per the maintenance regulations.

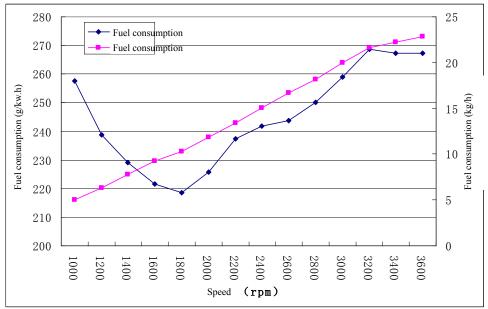
#### III. Coolant

Make sure to use clean automotive antifreeze coolant featuring antifreeze in winter, anti-boiling in summer, and anti-corrosion, anti-rusting, and anti-scaling.

#### Take cautions during the operation:

- a. Always use coolant throughout the year and pay attention to the use continuity of the coolant.
- b. Depending on the temperature of the region in which the vehicle is used, choose the coolant with different freezing point. The freezing point of the coolant shall be at least 10°C below the lowest temperature of the region, in order to maintain the antifreeze function.
- c. Purchase the qualified coolant product, in order to prevent damaging the engine and causing unnecessary economic losses due to use of disqualified product.
- d. Never mix different trademarks of coolants nor use such mixed coolant, in order to prevent the chemical reaction from impairing the respective comprehensive anti-corrosion performance.
- e. Never add the hard water such as well water or running water. Upon the detection of suspended material, sediment, or smelliness phenomenon in the coolant, it indicates that the coolant is deteriorated and becomes ineffective due to chemical reaction. In such case, timely clean the cooling system and thoroughly replace the coolant.
- f. The glycol coolant is one toxic substance and is harmful to the liver. Never swallow the coolant. In event of skin exposure to the coolant, thoroughly clean with water immediately. In addition, the nitrite anti-corrosion additive in the coolant is one carcinogenic substance. Do not dispose the used coolant randomly, in order to prevent contaminating the environment.


#### Notice!


- Upon the detection of sudden drop in coolant level, check for cause immediately.
- The cooling system is under pressurized state! Never open the cap of the coolant compensation tank or radiator while the engine is still hot, or it will lead to scalding danger!

# Section II Main Technical Specification of Engine

| Model                                               |                 | HFC4DA1-2C                                                                                                                                        |            |                                               |                                |                                  |            |
|-----------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|--------------------------------|----------------------------------|------------|
| Туре                                                |                 | Inline 4-cylinder, longitudinal layout, water-cooled, 4-stroke, turbocharged inter-cooler, high pressure common rail, and direct injection engine |            |                                               |                                | -                                |            |
| Nominal power/speed                                 |                 |                                                                                                                                                   | 8          | 35/3600 (                                     | kw/rpm)                        |                                  |            |
| Top torque/speed                                    |                 |                                                                                                                                                   | 250        | /1800~28                                      | 300(Nm/rpm)                    |                                  |            |
| Minimum fuel consumption of external characteristic |                 | ≤ 218g/kw·                                                                                                                                        | h          | Top i                                         | dling speed                    |                                  | 4000rpm    |
| Exhaust temperature (before turbine)                | ore             | ≤700°C                                                                                                                                            |            | Idli                                          | ing speed                      | 8                                | 800±50 rpm |
| Number of cylinders × bo × stroke:                  | ore             | 4×93 mm×102                                                                                                                                       | mm         |                                               | tal piston<br>placement        |                                  | 2.771 L    |
| Compression ratio                                   |                 | 17 : 1                                                                                                                                            |            | Fu                                            | iel grade                      |                                  | -10#       |
| Working sequence                                    |                 | 1-3-4-2                                                                                                                                           |            | Fuel supply advance angle                     |                                | supply advance angle Electronica |            |
| Flameout mode                                       |                 | Fuel cut-of                                                                                                                                       | f          | Eng                                           | gine mass                      | 270kg                            |            |
| Emission limit (test value                          | e)              | hina-IV emission<br>ompliant                                                                                                                      | standard   | Noise limit                                   |                                | ≤ 95                             | 5dB(A)     |
| Engine oil trademark                                |                 | Above grade CH-                                                                                                                                   | 4          | Engine                                        | e oil capacity                 |                                  | 7.2L       |
| Engine oil/fuel cons                                | umptio          | n ratio (24h at full s                                                                                                                            | peed)      |                                               | ≤(                             | 0.10%                            |            |
| Temperature of engine oi                            | l in oil condit | * '                                                                                                                                               | al working |                                               | ≤130°C                         |                                  |            |
| Engine oil pressure                                 |                 |                                                                                                                                                   |            | Idling: ≥98                                   | 3 kPa                          |                                  |            |
| Coolant capacity                                    |                 | 30L                                                                                                                                               | Applicab   | ole altitude                                  | ≤3500                          | m                                |            |
| Thermostat type                                     |                 | Wax type                                                                                                                                          |            | Maximum outlet temperature of coolant ≤ 110°C |                                | ≤110°C                           |            |
| Thermostat opening temperature                      |                 | 82℃                                                                                                                                               |            | Thermostat full open temperature 95℃          |                                | 95℃                              |            |
| Applicable temperature of diesel engine             |                 | With heated cold starter and with heater plug in engine                                                                                           |            |                                               |                                | -                                |            |
| Overall dimensions (L×W×H)                          |                 | 728.9mm×715.6mm×753.3mm                                                                                                                           |            | 3mm                                           | Length of cylinder block 479mm |                                  | 479mm      |

# **Section III Performance Curve of Engine**





# **Section IV Main Checking and Adjustment Parameters**

| 1. At rated power:                                    |         |
|-------------------------------------------------------|---------|
| (1) Exhaust temperature (master pipe) (°C)            | ≤700    |
| (2) Thermostat opening temperature (°C)               | 82      |
| (3) Thermostat full open temperature (°C)             | 95      |
| (4) Temperature of engine oil in main oil way (°C)    | ≤130    |
| (5) Engine oil pressure (kPa)                         | 400~600 |
| 2. Engine oil pressure at minimum stable speed (kPa)  | ≥98     |
| 3. Timing phase (in rotation angle of crankshaft)     |         |
| (1) Open of intake valve (before top dead center)     | 24.5°   |
| (2) Close of intake valve (after bottom dead center)  | 55.5°   |
| (3) Open of exhaust valve (before bottom dead center) | 54°     |
| (4) Close of exhaust valve (after top dead center)    | 26°     |
| 4. Valve clearance (mm)                               | 0.3~0.4 |

# **Section V Tightening Torque for Critical Bolts of Engine**

## ☆ Comparison Table of Tightening Torque for Critical Bolts

| No. | Description                                           | N. m                |
|-----|-------------------------------------------------------|---------------------|
| 1   | Fixing bolt of rockshaft                              | 55                  |
| 2   | Heater plug                                           | 25                  |
| 3   | Nut and washer for fuel injector body                 | 40                  |
| 4   | Fuel injector                                         | 34                  |
| 5   | Fixing bolt of thermostat housing assembly            | 25                  |
| 6   | Installation torque of rocker arm assembly            | 55                  |
| 7   | Camshaft thrust plate bolt                            | 25                  |
| 8   | Camshaft timing gear bolt                             | 110                 |
| 9   | Fixing bolt of rockshaft                              | 50                  |
| 10  | Fixing bolt of engine oil pump filter screen assembly | 20                  |
| 11  | Engine oil pump fixing bolt                           | 20                  |
| 12  | Oil sump bolt                                         | 23.5                |
| 13  | Flywheel baffle bolt                                  | 85                  |
| 14  | Flywheel bolt                                         | 25 for first step   |
|     |                                                       | 70 for second step  |
|     |                                                       | 120 for third step  |
| 15  | Crankshaft bearing cap bolt                           | 20 for first step   |
|     |                                                       | 110 for second step |
|     |                                                       | 170 for third step  |
| 16  | Tightening bolt of engine oil pump                    | 25                  |
| 17  | Socket nut of engine oil pump                         | 30                  |
| 18  | Torque for cylinder head bolt:                        | 65 for first step   |
|     |                                                       | 85 for second step  |
|     |                                                       | 105 for third step  |
| 19  | Rockshaft support bolt                                | 55                  |
| 20  | Main bearing cap bolt                                 | 170                 |
| 21  | Torque for drive shaft nut                            | 66                  |
| 22  | Transmission bracket nut                              | 69                  |
| 23  | Clutch cover – flywheel housing bolt                  | M10: 46             |
| -   |                                                       | M12: 91             |
| 24  | Engine rear bracket nut and bolt                      | M10: 40             |
|     |                                                       | M12: 69             |
| 25  | Front exhaust pipe bolt                               | 37                  |
| 26  | Clutch working cylinder bolt                          | 19                  |

| No. | Description                                         | N. m                 |
|-----|-----------------------------------------------------|----------------------|
| 27  | Belt pulley bolt                                    | 210                  |
| 28  | Fan pulley                                          | 12.5                 |
| 29  | Crankshaft bearing cap bolt                         | 170                  |
| 30  | Connecting rod bearing cap bolt                     | 25 for first step    |
|     |                                                     | 85 for second step   |
| 31  | Camshaft timing gear                                | 110                  |
| 32  | Fuel injection pump nut                             | 30                   |
| 33  | Idler gear bolt                                     | 20                   |
| 34  | Engine oil pipe perforated bolt                     | 20                   |
| 35  | Crankshaft belt pulley bolt                         | 210                  |
| 36  | Fan silicone oil clutch                             | 12.5                 |
| 37  | Connecting rod bearing cap                          | 20 for first step    |
|     |                                                     | 85 for second step   |
| 38  | Piston cooling oil pipe bolt                        | M8×1.25 25           |
|     |                                                     | M6×1.00 7.5          |
| 39  | Oil pressure regulation valve                       | M6×1.5 30            |
| 40  | Socket nut of engine oil pump                       | 30                   |
| 41  | Engine oil pump assembly bolt                       | 25                   |
| 42  | Oil sump bolt                                       | 23.5                 |
| 43  | Cylinder head bolt                                  | 65 for first step    |
|     |                                                     | 85 for second step   |
|     |                                                     | 105±5 for third step |
| 44  | Rockshaft support bolt                              | 55                   |
| 45  | Tightening bolt of water outlet pipe                | 19                   |
| 46  | Protrusion size of water pump impeller              | 24.6mm               |
| 47  | Fan center distance                                 | 79.2~79.8 m          |
| 48  | Open temperature of thermostat valve                | 82 ℃                 |
| 49  | Full open temperature of thermostat valve           | 95℃                  |
| 50  | Open pressure of vacuum valve at center of radiator | 88. 2∼117. 6 kPa     |
|     | cap valve seat                                      |                      |
| 51  | Water pump fixing bolt                              | 25 N.m               |
| 52  | Alternator fixing bolt                              | 40 N.m               |
| 53  | Alternator adjustment plate fixing bolt             | 25 N.m               |
| 54  | Lock nut, A/C compressor idler gear                 | 27 N.m               |
| 55  | Nut of engine oil cooler water pipe                 | 25                   |
| 56  | Oil drainage plug                                   | 80                   |
| 57  | Fixing bolt of oil pump assembly                    | 20                   |

Maintenance manual for sunray hfc4da1-2c china-IV diesel engines

| No. | Description                                       | N. m    |
|-----|---------------------------------------------------|---------|
| 58  | Tightening socket nut                             | 30      |
| 59  | Bolt and nut of starter motor                     | 81      |
| 60  | Fixing nut of starter cable                       | 9       |
| 61  | Exhaust branch pipe bolt                          | 30      |
| 62  | Bolt of heat shield                               | 25      |
| 63  | Support bolt                                      | 40      |
| 64  | Front exhaust pipe nut                            | 40      |
| 65  | Crankshaft belt pulley bolt                       | 210     |
| 66  | Exhaust pipe nut                                  | 67      |
| 67  | Torque of engine bracket bolt                     | M10: 40 |
|     |                                                   | M12: 69 |
| 68  | Cylinder head cover nut                           | 13      |
| 69  | Connecting nut between turbocharger and exhaust   | 25      |
|     | manifold                                          |         |
| 70  | Connecting bolt between exhaust manifold and      | 30      |
|     | cylinder head                                     |         |
| 71  | Bolt of exhaust pipe heat shield                  | 25      |
| 72  | Connecting bolt of turbocharger air bleeding pipe | 25      |
| 73  | Perforated bolt of lubricating oil pipe           | M12: 41 |
|     |                                                   | M14: 55 |

# ☆ Comparison Table for Standard Bolt Specification and Tightening Torque

| Bolt Identification Torque (N.m) Specification | Less than grade 8.8 (low carbon steel) | Grade 8.8 (High carbon steel) | Grade 10.9 (Alloy steel) |
|------------------------------------------------|----------------------------------------|-------------------------------|--------------------------|
| M6×1.0                                         | 4~8                                    | 5~10                          |                          |
| M8×1.25                                        | 8~18                                   | 12~23                         | 17~31                    |
| M10×1.25                                       | 21~35                                  | 28~47                         | 38~64                    |
| M10×1.5                                        | 20~34                                  | 28~46                         | 37~61                    |
| M12×1.25                                       | 50~75                                  | 62~93                         | 77~116                   |
| M12×1.75                                       | 46~70                                  | 58~86                         | 73~109                   |
| M14×1.5                                        | 78~117                                 | 95~142                        | 116~174                  |
| M12×2.0                                        | 73~109                                 | 90~134                        | 109~163                  |
| M16×1.5                                        | 106~160                                | 138~208                       | 163~245                  |
| M16×2.0                                        | 102~152                                | 132~198                       | 156~234                  |
| M18×1.5                                        | 154~230                                | 199~299                       | 234~352                  |
| M20×1.5                                        | 210~316                                | 275~413                       | 323~485                  |

| M22×1.5 | 256~422 | 370~555 | 433~649 |
|---------|---------|---------|---------|
| M24×2.0 | 360~550 | 439~725 | 565~847 |

# Section VI Main Fitting Clearances and Allowable Wear Limits of Engine

| No. | Name                                                                 | Standard Size (mm)          | Fitting<br>nature | Assembly<br>Clearance for<br>New Engine<br>(mm) | Wear Limit (mm) |
|-----|----------------------------------------------------------------------|-----------------------------|-------------------|-------------------------------------------------|-----------------|
|     | Contact width between valve and seat ring                            |                             |                   |                                                 |                 |
| 1   | Intake valve                                                         | 1.7                         |                   | 2.2                                             |                 |
|     | Exhaust valve                                                        | 2                           |                   | 2.5                                             |                 |
|     | Valve sinkage                                                        |                             |                   |                                                 |                 |
| 2   | Intake valve                                                         | 0.73                        |                   | 1.28                                            |                 |
|     | Exhaust valve                                                        | 0.71                        |                   | 1.2                                             |                 |
| 3   | Backlash                                                             | 0.05-0.13                   |                   | 0.3                                             |                 |
| 4   | Axial run-out clearance of idler gear A                              | 0.07                        |                   | 0.2                                             |                 |
| 5   | Outside diameter of tappet                                           | $\Phi13^{-0.010}_{-0.028}$  | Clearance         | 0.01~0.046                                      | 0.10            |
| 3   | Tappet bore $\Phi13_0^{+0.018}$                                      | 0.01 0.040                  | 0.10              |                                                 |                 |
| 6   | Radial run-out of push rod                                           |                             |                   | 0.3                                             |                 |
| 7   | Deflection of rockshaft                                              |                             |                   | 0.3                                             |                 |
| 8   | Outside diameter of rockshaft                                        | $\Phi 19^0_{-0.02}$         | Clearance         | 0.01~0.05                                       | 0.20            |
|     | Rocker arm bore                                                      | $\Phi 19^{+0.03}_{+0.01}$   |                   |                                                 |                 |
| 9   | Rod diameter of intake valve                                         | $\Phi8^{-0.039}_{-0.054}$   | Clearance         | 0.039~0.071                                     | 0.20            |
|     | Valve guide bore                                                     | $\Phi 8_0^{+0.017}$         | Cicarance         | 0.037 0.071                                     | 0.20            |
| 10  | Rod diameter of exhaust valve                                        | $\Phi8^{-0.064}_{-0.079}$   | Clearance         | 0.064~0.096                                     | 0.25            |
| 10  | Valve guide bore                                                     | $\Phi 8_0^{+0.017}$         | Clearance         | 0.004 0.090                                     | 0.23            |
| 11  | Free height of valve spring                                          | 48                          |                   |                                                 |                 |
| 11  | Perpendicularity of valve spring                                     | Ф1.4                        |                   |                                                 |                 |
| 12  | Outside diameter of idler gear A shaft Inside diameter of idler gear | $\Phi 55^{-0.025}_{-0.055}$ | Clearance         | 0.025~0.080                                     | 0.2             |
|     | A bearing                                                            | $\Phi 55_0^{+0.03}$         |                   |                                                 |                 |
| 13  | Cylinder sleeve bore                                                 | $\Phi93^{+0.065}_{+0.020}$  |                   |                                                 |                 |

| No. | Name                                                | Standard Size (mm)                      | Fitting<br>nature | Assembly<br>Clearance for<br>New Engine<br>(mm) | Wear Limit<br>(mm) |
|-----|-----------------------------------------------------|-----------------------------------------|-------------------|-------------------------------------------------|--------------------|
|     | Name                                                | Standard Size (mm)                      | Fitting<br>nature | Assembly<br>Clearance for<br>New Engine<br>(mm) | Wear Limit (mm)    |
| 13  | Protrusion height of cylinder sleeve                | $0{\sim}~0~.08$                         |                   |                                                 |                    |
| 14  | Axial run-out clearance of camshaft                 |                                         | Clearance         | 0.05~0.13                                       | 0.20               |
|     | Cam height of camshaft                              | 42.02±0.05                              |                   |                                                 | 0.38               |
| 15  | Inside diameter of camshaft bush                    | $\Phi 50_0^{+0.025}$                    | Clearance         | 0.025~0.080                                     | 0.12               |
| 13  | Diameter of camshaft journal                        | $\Phi 50^{-0.025}_{-0.055}$             | Clearance         | 0.025~0.080                                     | 0.12               |
| 16  | Deflection of cam bush                              |                                         |                   | 0.02                                            | 0.1                |
| 17  | Outside diameter of piston pin                      | Ф34 <sup>0</sup> <sub>-0.005</sub>      | Clearance         | 0.002~0.015                                     | 0.03               |
| 1 / | Piston pin bore                                     | $\Phi 34^{+0.010}_{+0.002}$             | Cicaranec         | 0.002 - 0.013                                   | 0.03               |
| 18  | Thickness of connecting rod large end               | $\Phi 33^0_{-0.07}$                     | Clearance         | 0.175~0.320                                     | 0.35               |
| 16  | Opening of crankshaft connecting rod journal        | Ф33 <sup>+0.250</sup> <sub>+0.175</sub> |                   |                                                 | 0.33               |
| 19  | Clearance of intake and exhaust valves (cold state) |                                         | Clearance         | 0.3~0.4                                         |                    |
| 20  | Main journal                                        | $\Phi 70^{-0.068}_{-0.086}$             | Clearance         | 0.031~0.066                                     | 0.11               |
| 20  | Main bush bore (after assembly)                     | $\Phi 70^{-0.003}_{-0.033}$             | Clearance         | 0.031 0.000                                     | 0.11               |
| 21  | Outside diameter of piston pin                      | $\Phi 34^0_{-0.036}$                    | Clearance         | 0.000 0.000                                     | 0.05               |
| 21  | Inside diameter of connecting rod bush              | $\Phi 34^{+0.020}_{+0.038}$             | Cicaranec         | 0.008~0.026                                     |                    |
| 22  | Crankshaft connecting rod journal                   | $\Phi 53^{-0.070}_{-0.085}$             | Claaranas         | 0.020~.0.060                                    | 0.1                |
| 22  | Connecting rod bush bore (after assembly)           | $\Phi 53^{-0.016}_{-0.041}$             | Clearance         | 0.029~0.069                                     | 0.1                |
|     | Grouping of piston outside diameter                 |                                         |                   |                                                 |                    |
|     | Group A                                             | 92.957~92.968                           | Grouping          | 0.050                                           |                    |
| 23  | Group B                                             | 92.968~92.979                           | clearance         | $0.053 \sim 0.075$                              |                    |
|     | Group C                                             | 92.979~92.990                           |                   |                                                 |                    |
|     | Group D                                             | 92.990~93.001                           |                   |                                                 |                    |

| No. | Name                                                           | Standard Size (mm)   | Fitting<br>nature | Assembly<br>Clearance for<br>New Engine<br>(mm) | Wear Limit (mm) |
|-----|----------------------------------------------------------------|----------------------|-------------------|-------------------------------------------------|-----------------|
|     | Grouping of cylinder sleeve inside diameter (after pressed-in) |                      |                   |                                                 |                 |
|     | Group A                                                        | $93.021 \sim 93.032$ |                   |                                                 |                 |
|     | Group B                                                        | 93.032~93.043        | ]                 |                                                 |                 |
|     | Group C                                                        | 93.043~93.054        |                   |                                                 |                 |
|     | Group D                                                        | 93.054~93.065        |                   |                                                 |                 |
|     | Opening of piston ring                                         |                      |                   |                                                 |                 |
| 2.4 | 1 <sup>st</sup> compression ring                               |                      |                   | 0.2~0.4                                         | 1.5             |
| 24  | 2 <sup>nd</sup> compression ring                               |                      |                   | 0.65~0.85                                       | 1.5             |
|     | Oil control ring                                               |                      |                   | 0.25~0.50                                       | 1.5             |
|     | End clearance of piston ring                                   |                      |                   |                                                 |                 |
| 25  | 1 <sup>st</sup> compression ring                               |                      |                   | 0.078~0.139                                     | 0.15            |
|     | 2 <sup>nd</sup> compression ring                               |                      |                   | 0.045~0.09                                      | 0.15            |
|     | Oil control ring                                               |                      |                   | 0.03~0.07                                       | 0.15            |

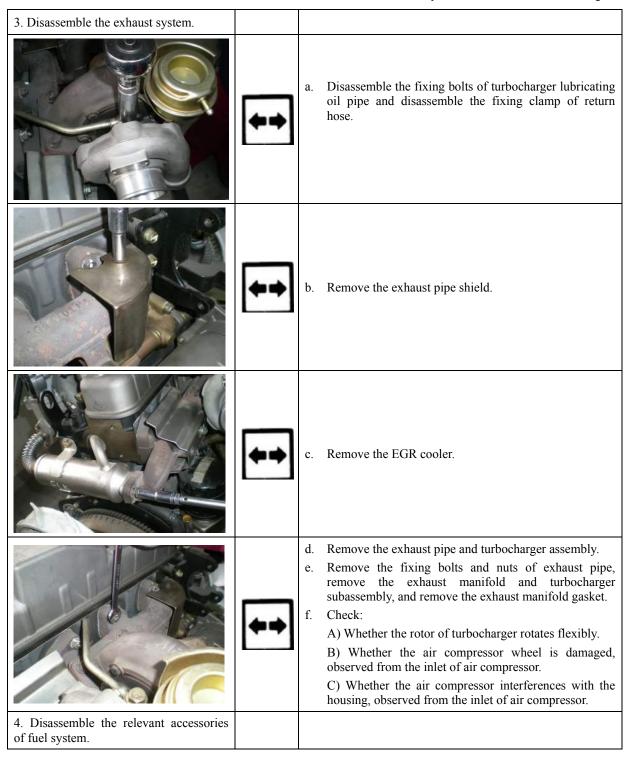
# Section VII Specification of Main Attachments and Accessories

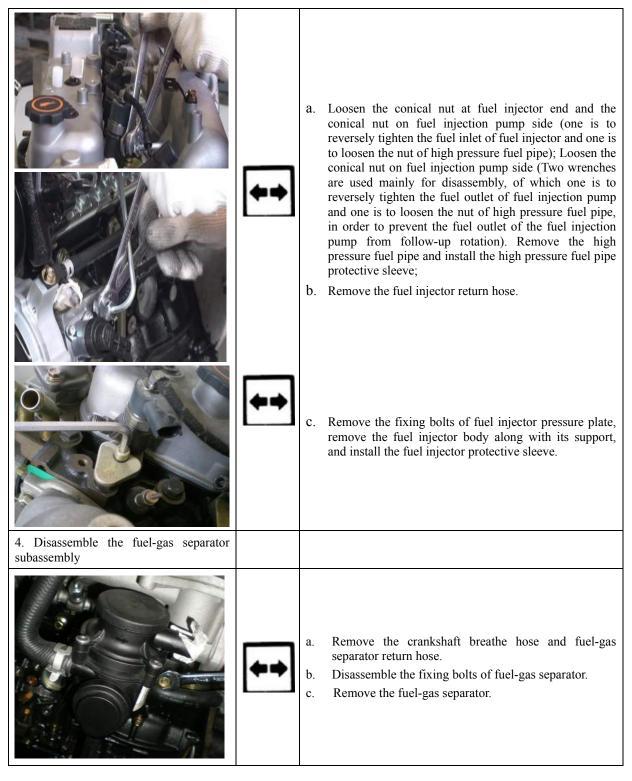
|                | Engine oil pump type              | Externally engaged gear pump                                      |  |  |
|----------------|-----------------------------------|-------------------------------------------------------------------|--|--|
|                | Flow rate of engine oil pump      | $\geq 23 \text{L/m}$ (at 1,000r/m and 0.4MPa)                     |  |  |
| Lubrication    |                                   | $\geq 23 \text{L/m}$ (at 1,800r/m and 0.44MPa)                    |  |  |
| system         | Open pressure of engine oil pump  | 0.7±0.08MPa                                                       |  |  |
|                | relief valve                      |                                                                   |  |  |
|                | Engine oil filter type            | Filter element type                                               |  |  |
|                | Water pump type                   | Centrifugal type                                                  |  |  |
|                | Flow rate and head of water pump  | Head ≥6.5m (at 3,000r/m) at 100L/min flow rate;                   |  |  |
| Cooling        | (water temperature at 80±5°C)     | Head ≥12m (at 4,000r/m) at 120L/min flow rate;                    |  |  |
| system         | Thermostat type                   | Pellet thermostat                                                 |  |  |
|                | Temperature of thermostat         | Initial open: 82°C; full open: 95°C                               |  |  |
|                | Fan type                          | Independent electric fan                                          |  |  |
|                | Preheating plug type              | Ceramic type                                                      |  |  |
| Electric       | Voltage of preheating plug        | 12V                                                               |  |  |
| Electric       | Starter specification             | 12V, 2.8kW                                                        |  |  |
| system         | Alternator specification          | 14V, 90A                                                          |  |  |
|                | Battery voltage                   | 12V                                                               |  |  |
|                |                                   | Radial flow variable section turbocharger                         |  |  |
| Intake system  | Turbocharger                      | The top speed of turbocharger is $\leq 220,000 \text{r/m}$ , with |  |  |
|                |                                   | turbocharger ratio at ≤2.2.                                       |  |  |
|                | Type of EGR valve                 | Position feedback type                                            |  |  |
| EGR            | Voltage of EGR valve position     | 5V                                                                |  |  |
|                | sensor                            |                                                                   |  |  |
|                | Fuel filter type                  | Spin-on type, with fuel-water separator, manual fuel              |  |  |
|                |                                   | delivery pump, and diesel heater                                  |  |  |
|                | High pressure fuel pump           | BOSCH CP1H, radial three-plunger pump, with fuel                  |  |  |
|                |                                   | delivery fuel pump and solenoid valve control                     |  |  |
|                | Fuel injector                     | BOSCH CRI2.2, solenoid valve control                              |  |  |
| Electronically | High pressure common rail         | Maximum rail pressure: 160MPa                                     |  |  |
| controlled     | Electronic control unit (ECU)     | BOSCH EDC17, with working voltage at 12V                          |  |  |
| common rail    | Crankshaft speed sensor           | Working clearance: 0.5~1.2mm                                      |  |  |
| fuel system    | Camshaft position sensor          | Working clearance: $0.5 \sim 1.5$                                 |  |  |
|                | Air flowmeter                     | HFM6, with working voltage at 12V and flow measurement            |  |  |
|                |                                   | range at 40~840kg/h.                                              |  |  |
|                | Water temperature sensor          | NTC type                                                          |  |  |
|                | Rail pressure sensor              | Voltage output: 0.5~4.5V                                          |  |  |
|                | Accelerator pedal position sensor | Voltage: 5V                                                       |  |  |

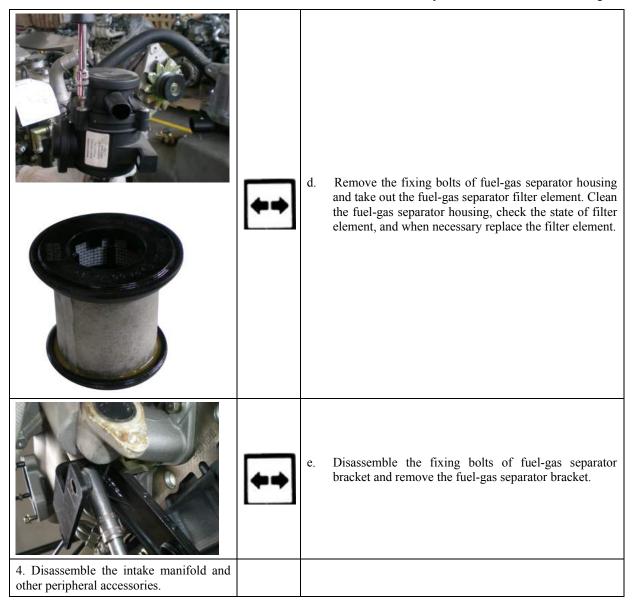
### **Chapter II Maintenance for Main Structures of Engine**

### **Section I Disassembly of Engine Assembly**

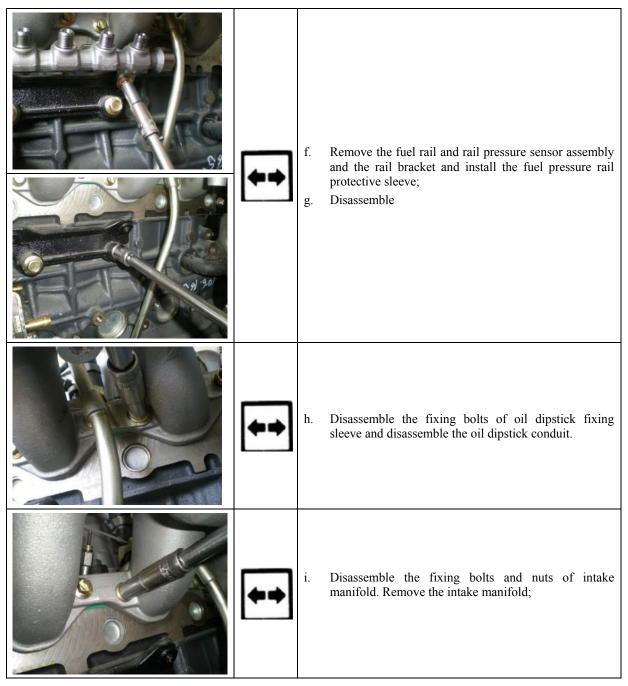
#### I. Special Notices:


- a) Before overhauling the engine, make sure to firstly disconnect the negative cable of the battery, or it will damage the harness and other electric units;
- b) Unless otherwise specified, rotate the ignition switch to LOCK position;
- c) Whenever the air cleaner is disassembled, make sure to plug the intake port, in order to prevent the ingress of foreign material, which may enter into cylinder and cause serious damage.


#### **II. Disassembly Procedure**


- Turn the ignition switch to LOCK position and disconnect the negative cable of the battery.
- Open the oil drainage bolt of the oil sump and fully drain and collect the oil.
- Fully drain the coolant.
- Disassemble the water inlet and outlet hoses of the engine.
- Disassemble the electronic control harness for engine ECU, engine, and complete vehicle.
- Disassemble the power supply wires for alternator, starter, and oil pressure and water temperature sensors.
- Remove the connecting hose between intake connecting pipe and air cleaner.
- Loosen the connecting pipe of inter-cooler.
- Shut off the fuel pipeline and unplug the fuel pipe and return pipe.
- Disconnect the power supply of the radiator fan and when necessary loosen the radiator bracket and take out the whole radiator.
- Loosen the clutch connecting pipe.
- Disassemble relevant connecting pipes of air conditioner and power steering pump.
- Disconnect the exhaust manifold and exhaust muffler pipe.
- Loosen the connecting mechanism between transmission and the complete vehicle.
- Loosen the fixing bolts between engine and transmission suspension bracket.
- Steadily lower the engine with elevator.
- Loosen the connecting bolts between engine and transmission and separate the transmission from the engine.

## III. Illustration for Disassembly of Engine


| 1. Disassemble the flywheel.                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>←-→</b>                                                                                  | a. Block the flywheel with flywheel clamp, loosen the fixing bolts between damping pulley and flywheel, and disassemble the flywheel assembly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Disassemble the belt, air conditioner compressor, and alternator and water pump pulleys. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                             | <ul> <li>a. Use an open-end wrench to remove the fixing nuts of engine fan and remove the cooling fan of the engine.</li> <li>b. Loosen the alternator adjustment bolts and fixing bolts, remove the fan clutch pulley and alternator belt, and check the side face and toothed face of the belt for normal state.</li> <li>c. Remove the oil and vacuum pump oil return pipe connectors.</li> <li>d. Loosen the alternator fixing bolts and adjustment bolts and disassemble the alternator belt. Check the alternator belt for presence of aging, cracking, and abnormal wear. If yes, replace the belt. Arrange the parts disassembled orderly on the part shelf, remove the alternator, use hand to rotate the alternator pulley, and check the inside for presence of noise, stagnation, and unbalance. Check the alternator for presence of ablation and check the shaft for presence of abnormal wear noise.</li> <li>e. Disassemble the water pump pulley.</li> </ul> |





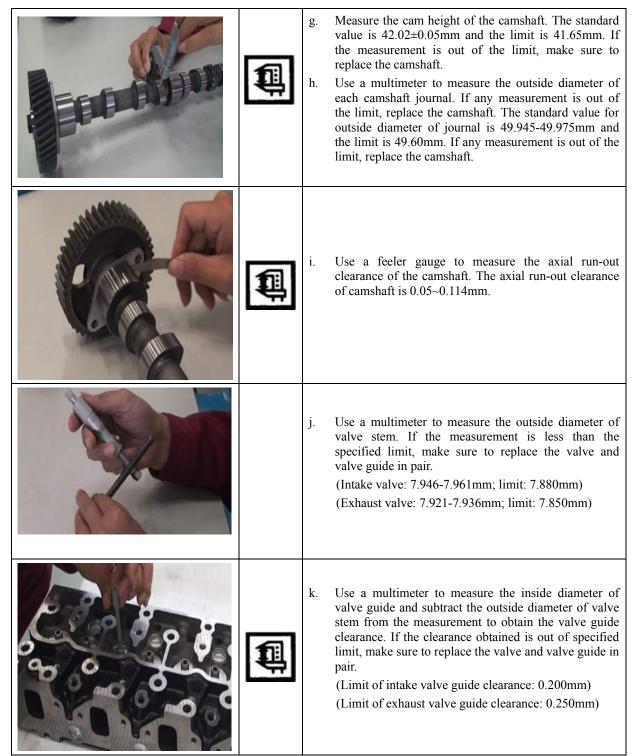


| <b>←→</b> | a.<br>b. | Disassemble the fixing bolts of power steering pump and remove the power steering pump.  Check the power steering pump for presence of oil leakage and check the belt pulley of power steering pump for presence of wear; |
|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | c.       | Remove the EGR valve.                                                                                                                                                                                                     |
| <b>←→</b> | d.       | Remove the fixing bolts of air intake pipe bracket.                                                                                                                                                                       |
|           | e.       | Remove the air intake pipe bracket and fuel-gas separator bracket.                                                                                                                                                        |

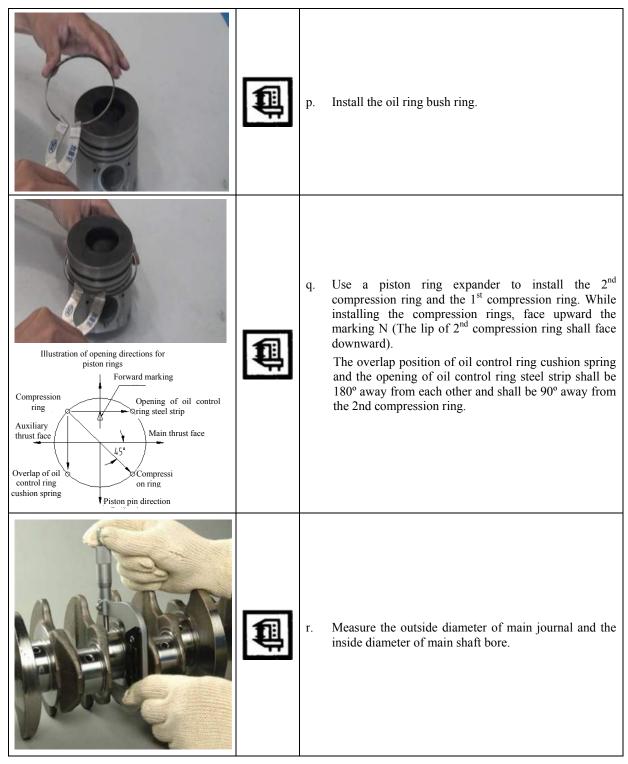


| j. Remove the fixing bolts of compressor bracket and remove the compressor bracket;                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| k. Remove the bypass rubber pipe, remove the thermostat housing and water outlet assembly; Disassemble the fixing bolts of thermostat housing and remove the thermostat housing.                                                                                                                                              |
| Remove the fixing bolts of cylinder head shield and remove the cylinder head shield;                                                                                                                                                                                                                                          |
| <ul> <li>m. Remove the bolts and nuts of rocker arm support as per specified sequence and remove the rocker arm assembly. Sequence: 4-1-3-2</li> <li>n. Notice: The failure to loosen the bolts of rocker arm support as per the specified sequence will damage the rockshaft*.</li> <li>o. Take out the push rod;</li> </ul> |

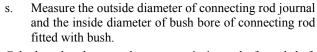
| <ul> <li>p. Remove the cylinder head bolts by several times as per the specified sequence (front circle drawing method).</li> <li>q. The failure to disassemble by several times as per specified sequence will damage the cylinder head and impair the deflection of lower surface of cylinder head*.</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r. Remove the damping pulley.  Remove the fixing bolts of water pump, remove the water pump, and check the water pump blades for presence of cracking and corrosion and check the blade shaft for presence of wear.                                                                                               |
| s. Disassemble the fixing bolts of timing gear chamber cover and remove the timing gear chamber cover and cover gasket.                                                                                                                                                                                           |
| t. Remove the engine left bracket.  u. Loosen the bypass rubber hose clamp, loosen the fixing bolts of water inlet pipe weldment, and remove the water inlet pipe weldment.                                                                                                                                       |


| OIL PAIR | v. Disassemble the fixing bolts of engine oil filter and remove the engine oil filter.                                                                                                                                                                                                                                                                                                                                           |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | w. Use an open-end wrench to disassemble the engine oil pressure connector and remove the connector and lubricating oil pipe.                                                                                                                                                                                                                                                                                                    |
|          | x. Loosen the fixing nuts of fuel injection pump gear, remove the hexagon socket fixing bolts of fuel injection pump and the fixing nuts of fuel injection pump gear, knock lightly the fuel injection pump gear shaft with rubber hammer, remove the fuel injection pump and fuel injection pump gear, and install the fuel injection pump protective sleeve. The fuel injection pump shall be insulated from the air and dust. |

| y. Remove the fixing bolts of idler gear pressure plate and remove the idler gear pressure plate, idler gear, and idler gear shaft. |
|-------------------------------------------------------------------------------------------------------------------------------------|
| z. Remove the fixing bolts and fixing nuts of oil sump by one time as per the specified sequence and remove the oil sump.           |
| aa. Remove the fixing bolts of engine oil pump and pull out the engine oil pump.                                                    |
| bb. Remove the fixing bolts of camshaft.                                                                                            |


| cc. Pull out the camshaft.                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dd. Remove the nuts of connecting rod large end as per specified sequence and use piston installation tool to push out the piston. Position the piston orderly. Visually observe each piston for presence of cracking, scratch, and other excessive wear. |
| ee. Disassemble the fixing bolts of timing gear chamber and the fixing bolts of idler gear lining plate and remove the idler gear lining plate.                                                                                                           |
| ff. Use a rubber hammer to knock lightly the timing gear chamber from both sides to remove the timing gear chamber.                                                                                                                                       |

|                     | gg. Take out the crankshaft timing gear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | <ul> <li>hh. Rotate the bolts of master bearing cap as per specified sequence to pull out the bolts of master bearing cap and remove the main shaft bushes (Position the main shaft bushes orderly).</li> <li>ii. Overturn the crankshaft to take out the crankshaft thrust plate and remove the crankshaft and the crankshaft lower bushes.</li> <li>jj. Check the wear state of the crankshaft thrust plates.</li> </ul>                                                                                                                                                                                                                                     |
|                     | kk. Disassemble the piston cooling fuel injection pipe subassembly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5. Check the parts. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | <ul> <li>a. Check the lower surface of the cylinder head. Strict planeness tolerance is required for the fitting surface of the intake and exhaust branch pipes.</li> <li>b. These surfaces can be repaired by grinding. If the surface planeness is out of the specified tolerance, grind the surface to meet the technical requirements. If the planeness is excessively out of the technical requirements, replace the cylinder head.</li> <li>Deflection of cylinder head lower surface 0.05 or less Limit 0.20</li> <li>Cylinder head height Standard value 92 Limit 91.55</li> <li>c. Use ruler and feeler gauge to measure the deflection of</li> </ul> |
|                     | fitting surface between exhaust branch pipe and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |


|   | cylinder head.  If the measurement is between limit and standard value, re-grind the fitting surface between exhaust branch pipe and cylinder head.  If the measurement is out of the specified limit, make sure to replace the branch pipe.                                                                                                                                                                                                                                                                    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | <ul> <li>d. Use a multimeter to measure the outside diameter of piston at the position 73.9mm reach from the piston crown.</li> <li>Standard value: <ul> <li>A: 92.971~92.980mm</li> <li>B: 92.981~92.990mm</li> <li>C: 92.991~93.000mm</li> <li>D: 93.001~93.010mm</li> </ul> </li> </ul>                                                                                                                                                                                                                      |
|   | e. Use an inside micrometer to measure: Standard value for inside diameter of cylinder bore fitted with cylinder sleeve: A:93.021~93.030mm B:93.031~93.040mm C:93.041~93.050mm D:93.051~93.060mm                                                                                                                                                                                                                                                                                                                |
|   | f. Subtract the inside diameter of cylinder bore from the outside diameter of piston to obtain the piston clearance. The clearance range of piston: 0.041~0.059mm.  If the piston clearance is out of the specified range, check and replace the cylinder sleeve or piston, depending on the cylinder bore grouping and the outside diameter of piston.  (The second line of the stamped code at the rear end of lower surface of new cylinder block indicates the inside diameter group of the cylinder bore). |











Calculate the clearance between main journal of crankshaft and the main bush bore of crankshaft: The difference between the diameter of main journal and the inside diameter of crankshaft main bush bore measured above is the fitting clearance. The wear limit shall not exceed 0.11mm.

Notice: While measuring the inside diameter of crankshaft main bush bore, install the bearing cap and bush onto the bearing block and tighten the bolts to specified torque. Use an inside multimeter to measure the inside diameter.

Calculate the clearance between crankshaft connecting rod journal and connecting rod bush bore: The difference between the diameter of connecting rod journal and the inside diameter of connecting rod bush bore measured above is the fitting clearance. The wear limit shall not exceed 0.10mm.



### **Section II Assembly of Engine**

#### I. Basic Technical Requirements for Assembly

The assembly of the engine is one important step for service of the engine. The service performance of the engine is closely related to the assembly accuracy, assembly technical requirements, and the assembly quality. Make sure to pay attention to following items:

Before the assembly, make sure to thoroughly clean and thoroughly blow dry all parts and components. All friction surfaces of the parts with relative movement are applied with lubricating oil (grade CE diesel engine oil or above). Carefully remove all oil dirt and carbon deposit, till the base metal is exposed. Never use electric wire brush to clean the sealing surfaces of any sealing gasket. Remove the residues from all used sealing gaskets. It's absolutely prohibited to use wire brush to clean the piston.

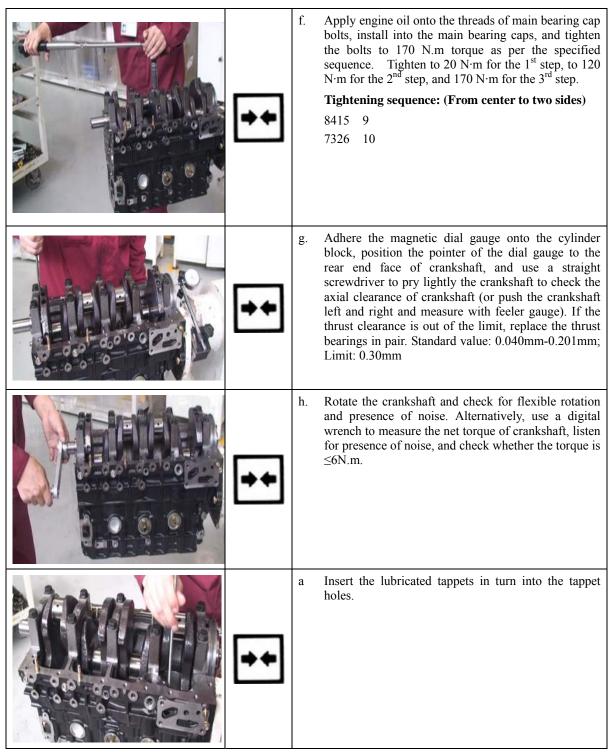
- a. Remove the carbon deposit, oil dirt, and water scale and clean all lubricating oil pipes and pipelines.
- b. Check the wear state of valve, push rod, and rocker arm contact surfaces and when necessary repair or replace.
- c. Check the wear state of piston rings, cylinder sleeves, connecting rod small end bushes, and connecting rod bushes and when necessary replace.
- d. Check the wear state of main bushes and thrust plates.
- e. Check the wear state of engagement surfaces of transmission mechanism and drive gear and measure the engagement clearance and when necessary repair or replace.
- f. Check the wear state of intake and exhaust valves and intake and exhaust valve seats and repair, grind, and test the leakage and when necessary replace.
- g. Check the mist injection state of the fuel injector and when necessary grind or replace the fuel injector coupler. While installing the used fuel injector, clean the carbon deposit with ultrasonic and do not wipe with silk or scrape with knife, in order to prevent damaging the injector nozzle and blocking the injector orifice.
- h. Check the engine oil pump and disassemble for checking or measure the wearing parts and adjust accordingly.
- i. Check the cylinder gasket and intake and exhaust pipe gaskets and replace any damaged or failed gasket.
- j. Check the alternator and starter, clean all parts and bearings, blow dry and apply new lubricating grease, and check the wear state of starter gear and check the transmission mechanism for flexible functioning.
- k. Check and clean the turbocharger.

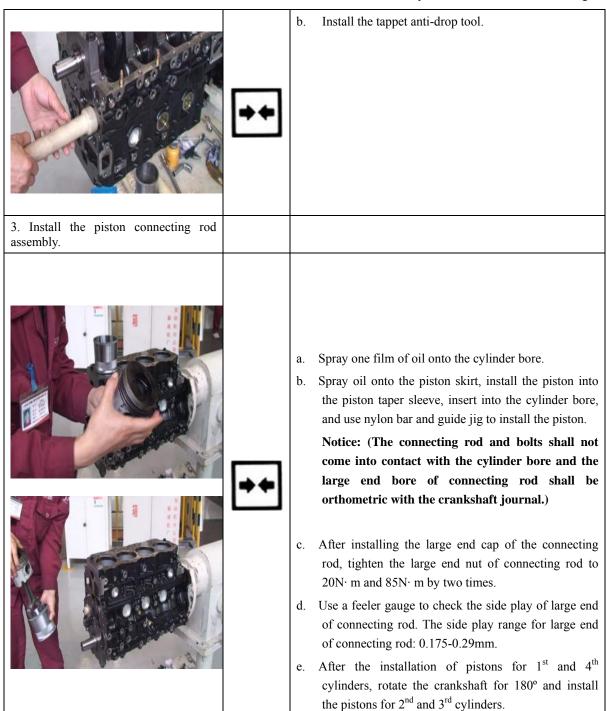
# II. Illustration for Assembly of Engine

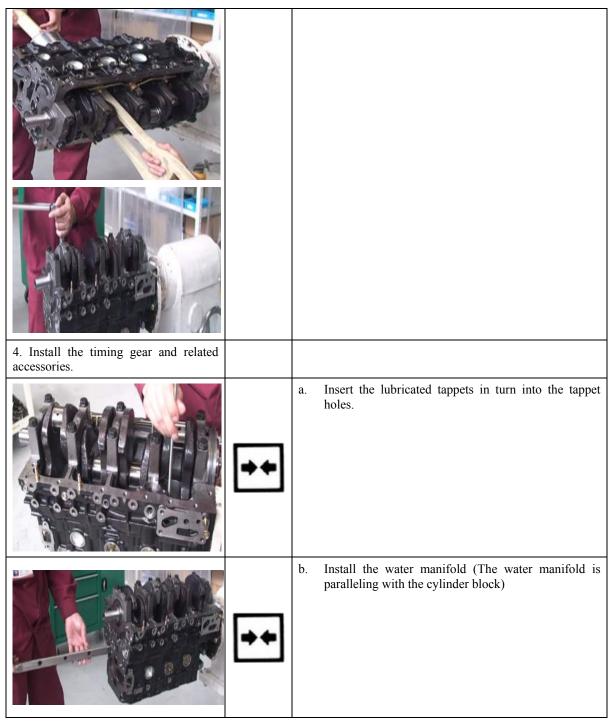
| Install the piston cooling fuel injector subassembly.            |          |                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ++•<br>•                                                         | a.<br>b. | Install the piston cooling fuel injector subassembly: Install the piston cooling fuel injector subassembly onto the engine block; Tighten the hexagon socket screws to 12.5±2.5N.m;                                                                                                                                                                                                                      |
| 2. Install the crankshaft, thrust plates, and main bearing caps. |          |                                                                                                                                                                                                                                                                                                                                                                                                          |
| ++• !!                                                           | a.       | Install the upper and lower main bushes: Align the stop opening of upper main bush with the slip groove of the main bearing block bore of engine block and push 5 upper main bushes to place;  Notice: While installing the main bushes, make sure to differentiate the upper and lower bushes, of which the upper bush has oil grooves and the lower bush has not. Do not install the bushes reversely. |
| ++                                                               | a.<br>b. | Apply an appropriate amount of clean engine oil onto the upper bearing bush;  Lift up and place the crankshaft onto the engine block.                                                                                                                                                                                                                                                                    |

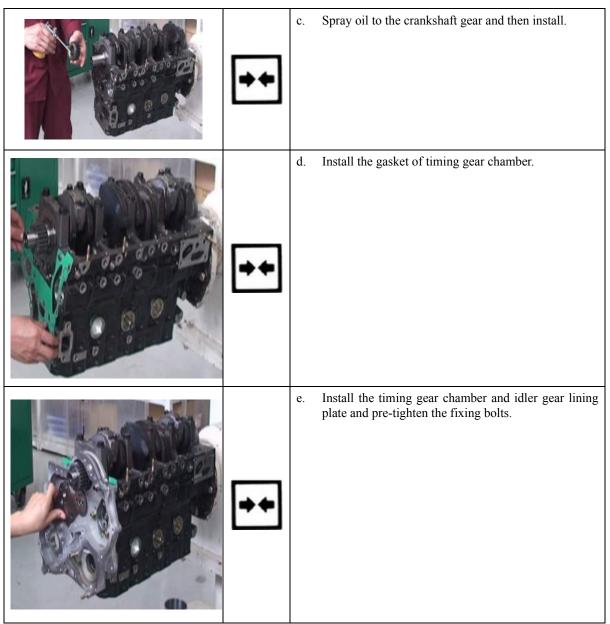


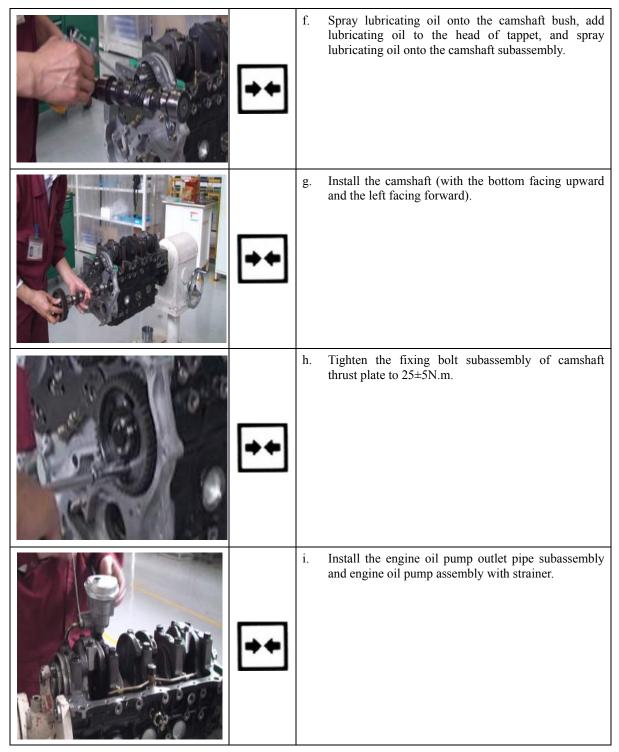


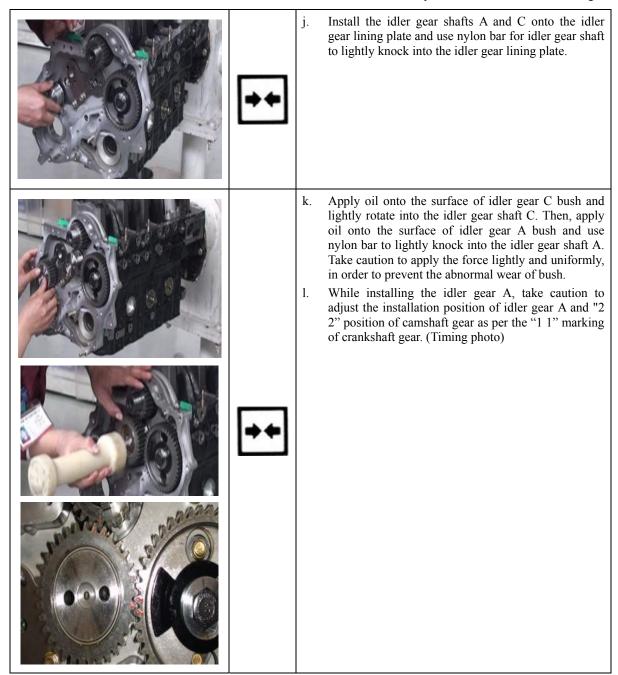

c. Install the crankshaft thrust plates to the 3<sup>rd</sup> main journal portion (The surface with oil groove faces to crankshaft thrust surface and the oil groove shall be sprayed with lubricating oil).

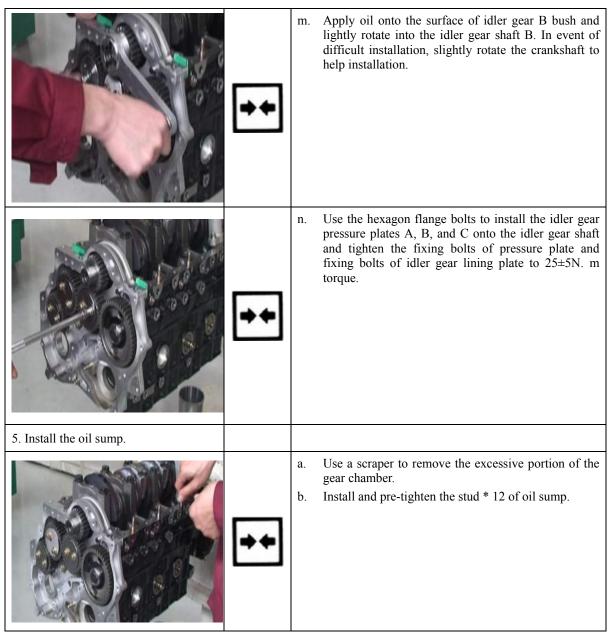


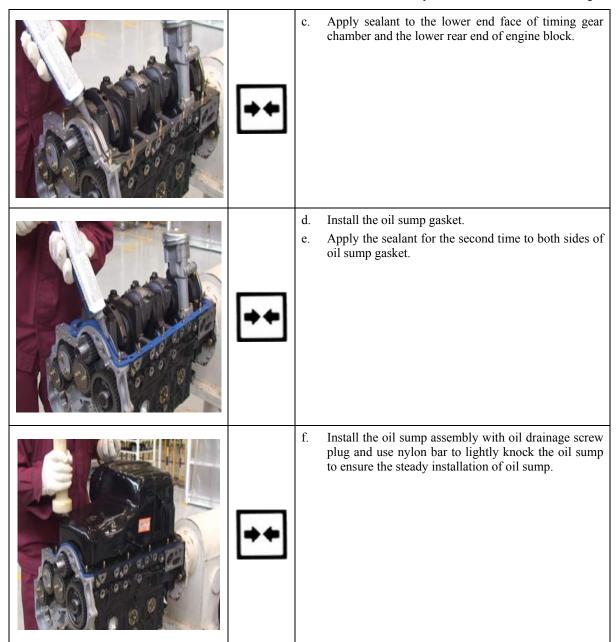



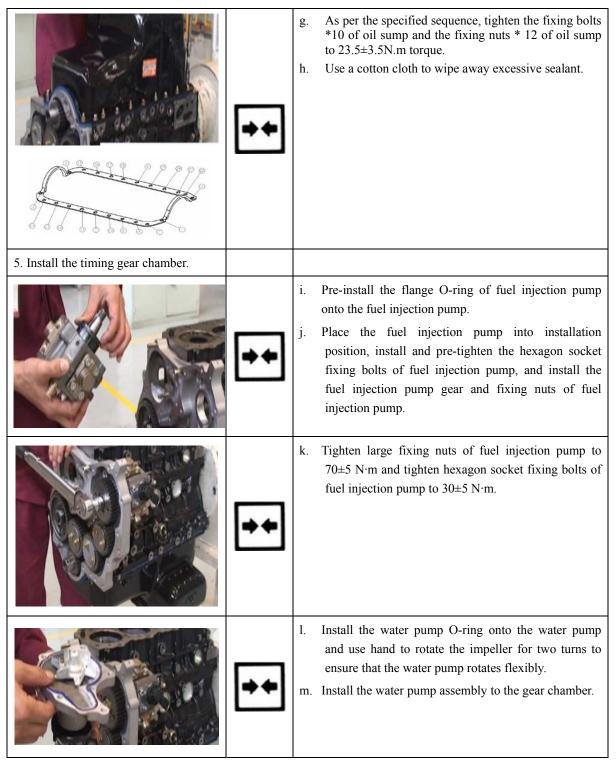


- d. Spray oil to the main journal portion and install the 1~4 main bearing caps of crankshaft as per the marked sequence. The arrow markings on the bearing caps shall face to the front of the engine.
- e. Apply the liquid sealant onto the fitting surface between 5<sup>th</sup> bearing cap and cylinder block and install the 5<sup>th</sup> bearing cap \* text: Notice: 1) Before applying the sealant, the fitting surface of main bearing cap shall be thoroughly free of any engine oil; 2) Never block the cylinder threaded holes and bearings by the sealant.

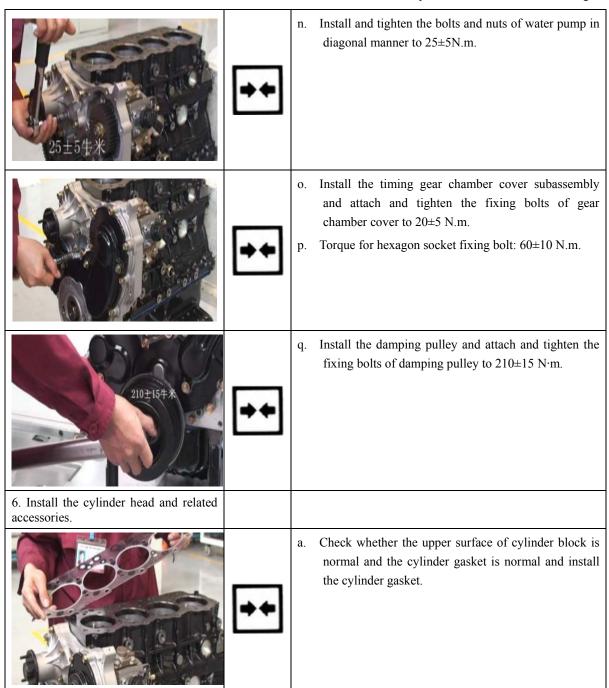

37



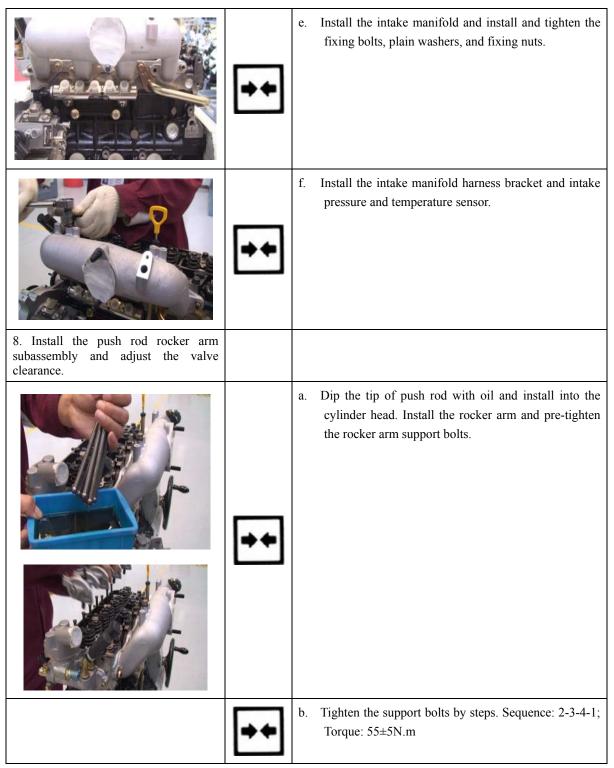









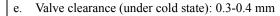




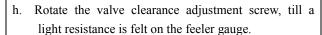

| 7. Install the intake manifold and related accessories. |                                                                                                                                            |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| ++                                                      | a. Use hexagon flange bolts to fix the fuel rail bracket onto the cylinder block and tighten to 37.5±9.5N.m.                               |
| ++                                                      | b. Use hexagon flange bolts to install the fuel rail assembly with rail pressure sensor onto the fuel rail bracket and tighten to 25±5N.m. |
| <b>→</b>                                                | c. Install the intake manifold gasket.                                                                                                     |
| <b>++</b>                                               | d. Insert the oil dipstick into the cylinder block and tighten the fixing bolts and nuts of intake manifold as per the specified sequence. |







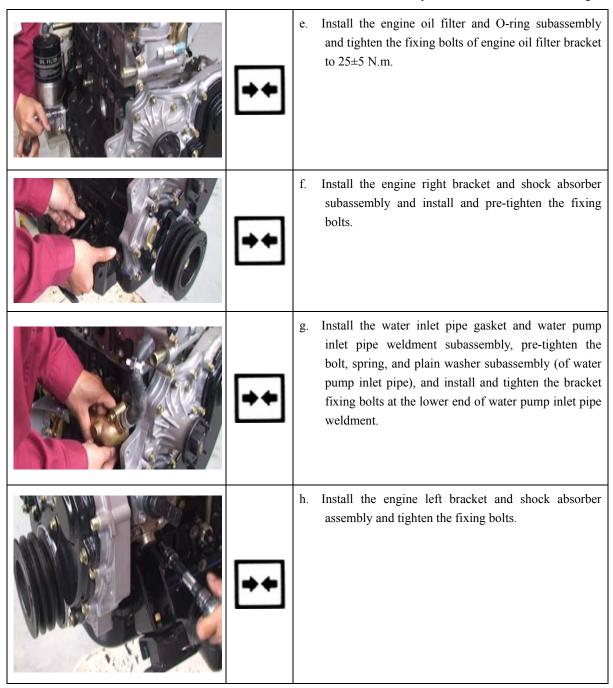


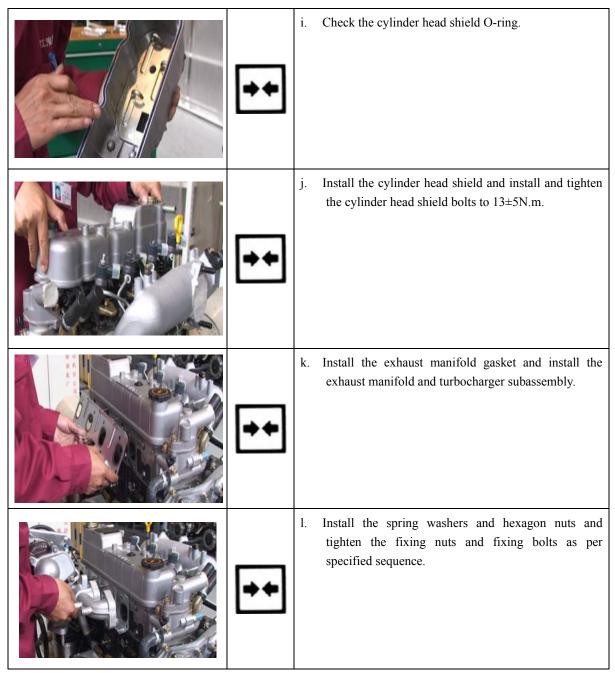



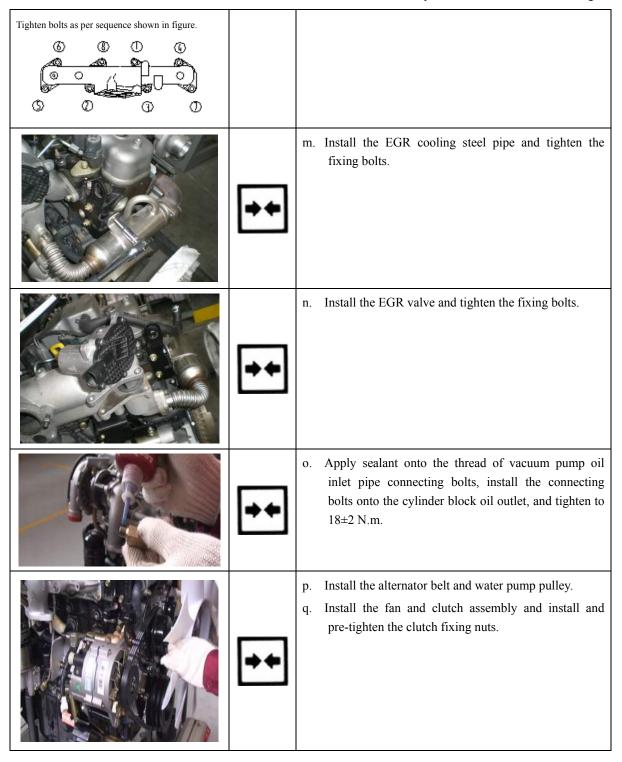


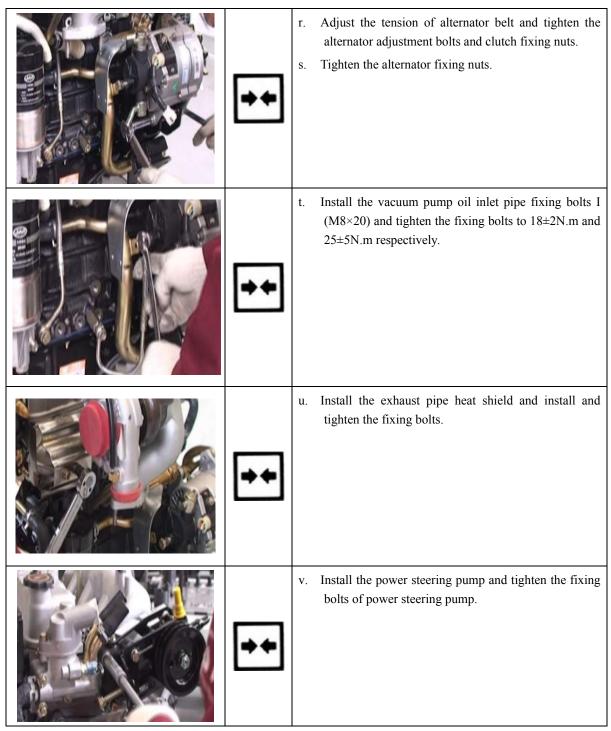

- c. Rotate the crankshaft, till the top dead center (TDC) line of crankshaft damping pulley is aligned with the timing pointer. In such case, either 1<sup>st</sup> cylinder piston or 4<sup>th</sup> cylinder piston is at top dead center (TDC) of compression stroke.
- d. Check the clearance of push rod for the intake valve and exhaust valve of 1<sup>st</sup> cylinder. If there is a clearance between 1<sup>st</sup> cylinder intake valve and valve push rod, the 1<sup>st</sup> cylinder piston is at top dead center of compression stroke (1236). If the 1<sup>st</sup> cylinder intake valve is pressed tightly by exhaust valve push rod, the 4<sup>th</sup> cylinder piston is at top dead center of compression stroke (4578).

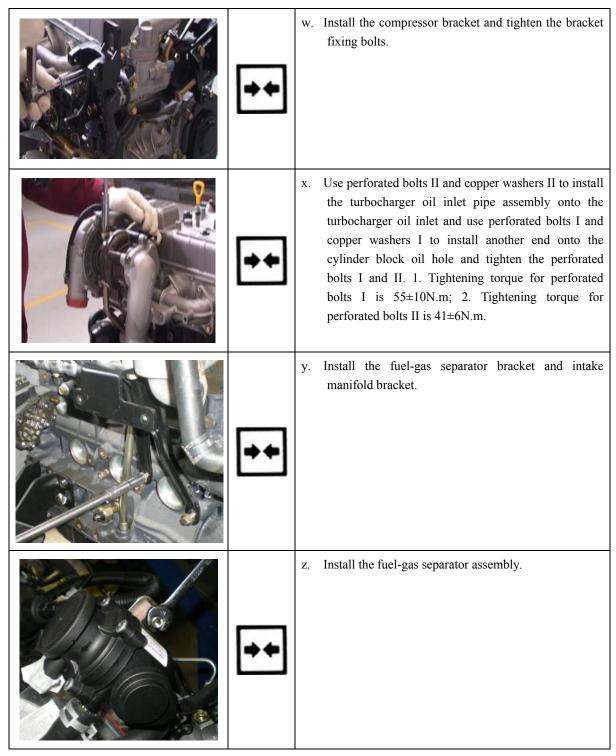


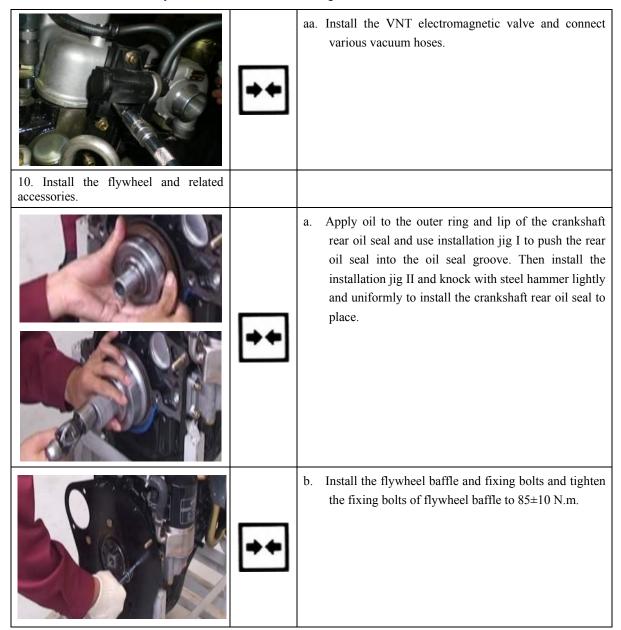

- f. Loosen the clearance adjustment screws for the valves, as shown in the figure.
- g. Insert the feeler gauge with appropriate thickness between rocker arm and valve rod end.

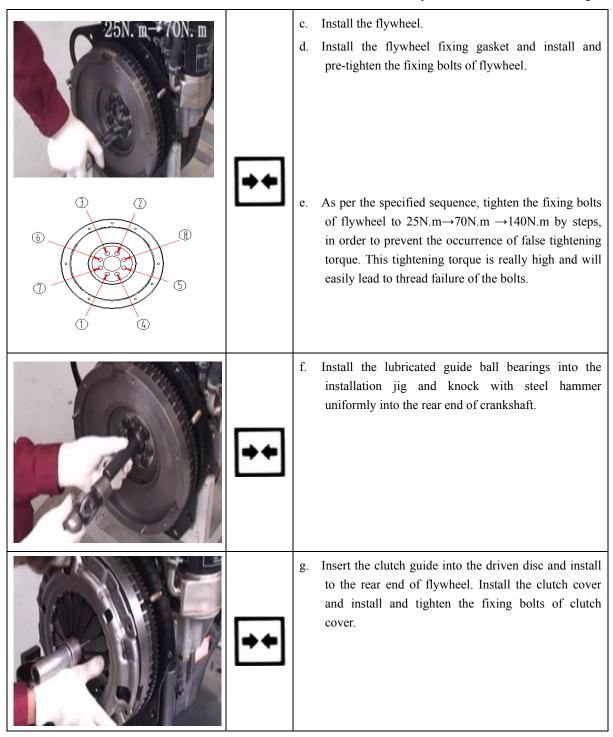




- i. Securely tighten the lock nut.
- i. Rotate the crankshaft for 360°.
- k. Align the TDC marking of crankshaft damping pulley with the timing pointer.
- Adjust the clearance for other valves, as shown in the figure.



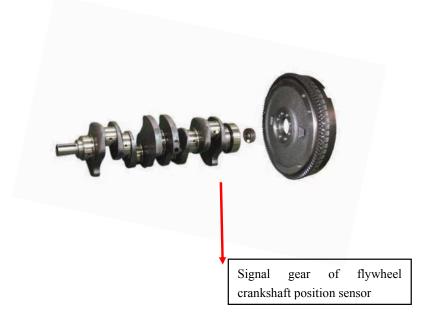


| 9. Install other peripheral accessories. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ++                                       | <ul> <li>a. In turn install the fuel injection assembly with sealing gasket onto the cylinder head.</li> <li>b. Install the fuel injector fixing pressure plate and install and tighten the fuel injector pressure plate bolts to 8±2N.m+40~45°.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>+</b>                                 | c. Install the 1 <sup>st</sup> cylinder high pressure fuel pipe assembly, 2 <sup>nd</sup> cylinder high pressure fuel pipe assembly, fuel injection pump high pressure fuel pipe, 3 <sup>rd</sup> cylinder high pressure fuel pipe assembly, and 4 <sup>th</sup> cylinder high pressure fuel pipe assembly and tighten the corresponding nuts. Notice: 1. Notice the installation direction of high pressure fuel pipes; 2. The tightening torque for nuts at fuel injector end is 27±5N.m; 3. The tightening torque is 20±5N.m for nuts at high pressure fuel rail end, 27±2N.m for high pressure fuel pipe nuts at fuel pump end, and 20±2N.m for high pressure nuts at fuel rail end. |
| +                                        | d. Use accelerator cable bracket bolts to install the fuel return three-way valve onto the gear chamber and tighten to 7.5±2.5N.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |









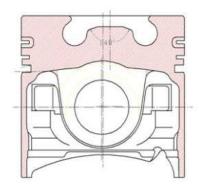



# Section III Crankshaft and Flywheel System

- It works along with the connecting rod to convert the gas pressure applied onto the piston into rotating power and transmit to the transmission mechanism of the chassis. At the same time, it drives the valve distribution mechanism and other accessories, such as fan, water pump, and alternator.
- The crankshaft is made of medium carbon steel alloy forging. To improve the wear resistance and fatigue
  resistance, the journal surface is treated with high-frequency hardening or nitriding treatment and high-precision
  grounded to meet the higher surface hardness and surface roughness requirements.
- With fully supported structure and 8 balance weights, the crankshaft is cast to an integral structure with balance weights to improve the rigidity and bending strength of the crankshaft.
- The crankshaft is made of high strength steel alloy forging, with fillet rolled journals.
- Its front end adopts rubber-embedded crankshaft torsional shock absorber to reduce the crankshaft torsional shock generated during the running of the engine. The signal wheel of crankshaft position sensor is installed at the last crank.
- There are two pieces of crankshaft thrust plates installed on two sides of the 3rd main bearing block, with the face with oil groove facing to the thrust surface of the crankshaft.
- The grouping numbers for crankshaft main journal and connecting rod journal are stamped on the first crank of the crankshaft.
- The flywheel assembly is installed at the rear end of crankshaft and the flywheel is located by locating pin and connected by flywheel bolts.
- The crankshaft, flywheel, and clutch assembly qualified the dynamic balance test before the factory leave.



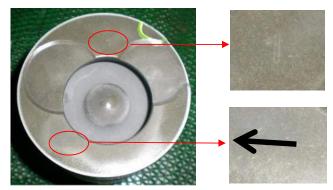
# **Section IV Piston and Connecting Rod Group**


• The piston crown is of  $\omega$  type combustion chamber;

Depending on the performance and reliability requirements, the piston profile designed can guarantee the normal working of engine under high speed, high temperature, and high pressure conditions. The good skirt sizes can reduce the frictional power consumption of piston and improve the economic performance of the engine.

• The HFC4DA1-2C piston rings include two compression rings and one oil control ring:

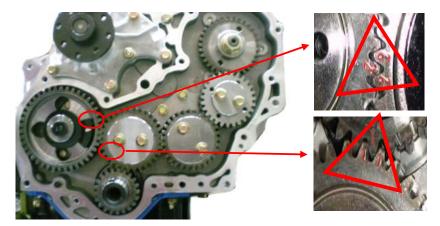
The first ring adopts the trapezoid tubbish ring, which can effective reduce the consumption of engine oil.


The second compression ring adopts the torsional trapezoid ring to increase the flexibility of piston ring and improve the capability of piston ring for adapting to deformation of cylinder sleeve.



The oil control ring is of coil spring expander type and adopts the combined oil ring composed of two side guide rings (upper and lower) and the middle expander, featuring the advantages of low mass and outstanding oil scraping effect. It can reduce the consumption of engine oil and the grain emission while meeting the Euro-IV emission standard.

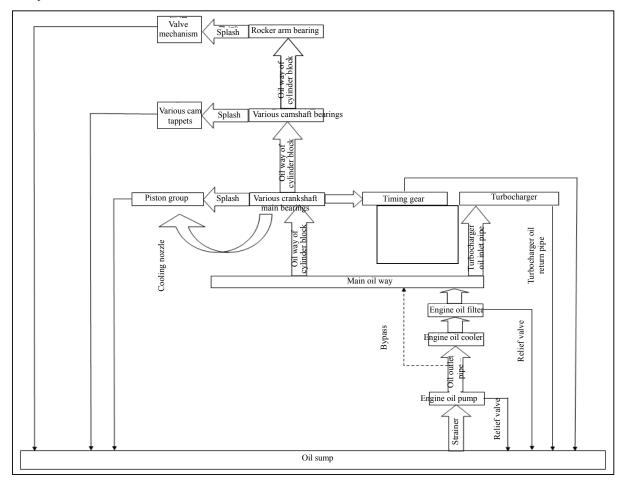
40~50% of the frictional power consumption of the engine is attributed to the pistons and piston rings. The piston rings of 4DA1 engine can effectively arrange the engine oil, reduce the friction power of piston subassembly, and improve the fuel economy.


• The piston is stamped with mark, which shall face upward during assembly. During assembly, take caution to position the spring connector 180° away from the opening of oil control ring. Notice the opening direction of the ring while installing the cylinder sleeve. The openings of the piston rings shall separate 120° from each other and the ring opening shall not face towards the piston pin. Apply an appropriate amount of lubricating oil during the assembly. The piston rings shall rotate flexibly after being installed in the ring grooves.



- a. The arrow on the piston crown shall point to the front of the engine.
- b. It adopts variable section connecting rod to effectively reduce the force applied onto the connecting rod.
- c. The piston pin is of full-floating structure and adopts retainer ring for limiting. The piston pin can be directly assembled during installation.
- d. The body of connecting rod adopts H-shaped cross section, featuring good bending strength and light weight.

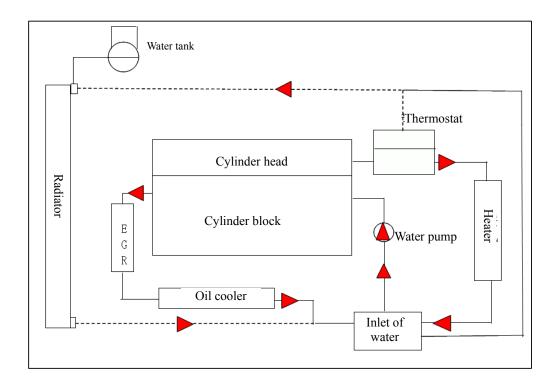
# **Section V Valve Distribution Mechanism**


- It's a device that opens and closes at fixed times the intake and exhaust valves of all cylinder to enable the ingress of fresh air into cylinders and the exhaust of exhaust gas from the cylinders.
- The front valve distribution timing adopts gear drive, featuring stability and reliability.



# **Section VI Lubrication System**

While the engine is working, all motion parts apply one specific force onto another part and generate relatively high speed motion. With the relative motion, the friction is necessarily generated on the part surfaces, which will accelerate the wear. Therefore, to relieve the wear, reduce the friction resistance, and prolong the service life, the engine must be fitted with lubrication system.

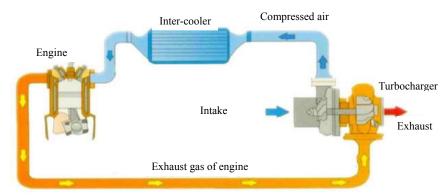

- The engine oil filter is functioned to filter out the metallic wear dust, mechanical impurity, and engine oil oxide from the engine oil. The ingress of these impurities into the lubrication system along with the engine oil will speed up the wear of engine parts and may block the oil pipe or oil passage.
- The engine oil pump is of externally engaged gear pump and is driven by the crankshaft.
- The cooling nozzle of piston is arranged on the main oil passage to realize the stable oil spray for cooling. The spray of engine oil into the cold oil passage within the piston can effectively reduce the thermal load of the piston.



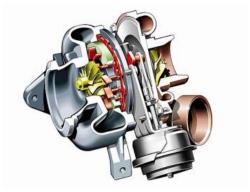
# **Section VII Cooling System**

- The cooling system is functioned to maintain the engine within an appropriate temperature range under all
  working conditions.
- The cooling system can prevent the engine against overheating and prevent the engine from being too cold in winter
- After the cold start of the engine, the cooling system can guarantee the rapid temperature rise of the engine to reach normal working temperature as soon as possible.
- Composition: Water pump, cooling fan, silicone oil fan clutch, thermostat, engine cylinder block, water jacket in cylinder head, and other accessories.
- The cooling system is of enclosed forced recirculation water cooling type. Its structure is mainly composed of radiator (water tank), water pump, fan, thermostat, cooling water jacket, and pipeline.
- The cooling recirculation of the heater system and engine oil cooler is always under working state and is not subject to the restraints of large or small recirculation.

Dual thermostat control: When the water temperature is less than 82°C, the thermostat is under natural state (namely the cooling water from the water tank is closed and the cooling water from the cooling module is opened). In such case, the cooling circuit works in the small recirculation circuit and the cooling water from the cooling module enters into the engine block and cylinder head for recirculation through the water pump so that the temperatures of the water and oil in the engine block and the cylinder head will rise. When the water temperature reaches 82°C, the thermostat starts to open. When the thermostat is opened, the small valve closes the small recirculation circuit. As the thermostat is not fully opened, the cooling water from water tank enters into the cylinder block for large recirculation through water pump. If the water temperature continues to rise to 95°C, the thermostat valve is fully opened.

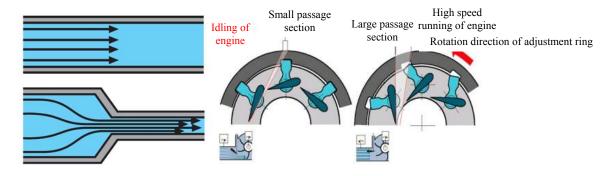



# **Section VIII Turbocharger and Inter-Cooler System**


The turbocharger technology utilizes the motion energy of engine exhaust gas to drive the rotation of turbine. At the same time, the coaxial air compressor compresses the air and provides more air to the cylinder so that more fuel can combust to generate higher power, promote the engine torque, and reduce the fuel consumption.

The common turbocharger is of bypass valve turbocharger, which can't provide sufficient pressure while the engine is running at low speed and thus restrains the torque output at low speed and influences the engine performance. To change this situation, the 1.9CTI engine adopts variable nozzle turbocharger (VNT) control system to promote the turbocharger pressure at low speed of engine and at the same time adopts inter-cooler system to exert higher torque at low speed of engine and promote the engine performance.

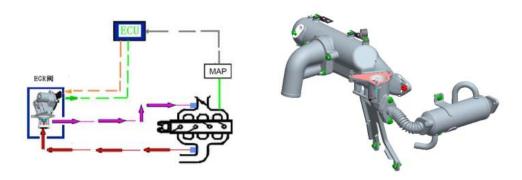
Theory of inter-cooler: The temperature of the air compressed at high speed may reach 100~120°C. The high temperature air will impair the intake efficiency of the engine and lead to power drop of the engine. Therefore, it's necessary to cool down the air to approximate 60°C. The inter-cooler is located in front of the radiator or at windward position easily arranged, in order to reduce the temperature of air entering into the cylinder, further improve the combustion of diesel engine, and promote the performance and emission of the diesel engine.




Variable nozzle turbocharger (VNT): The VNT is functioned similar to one turbine housing in which the size is varying steplessly. The VNT actuator can accurately control the nozzle area within the entire working condition range so that the engine can not only maintain the turbine efficiency at high speed, but also increase the turbine efficiency at low speed, promote the torques at low speed, maximum torque output, and nominal working condition, improve the cold start performance and low speed performance of turbocharged diesel engine, realize high specific power and low speed torque of the engine simultaneously, and greatly reduce the smoke intensity and improve the economy. Meanwhile, the VNT can reduce the turbine lag, improve the engine response, and enhance the braking capability and safety.



Adjustment theory for variable nozzle turbocharger (VNT): There are two passages, one is in constant section and one is in variable section. If the pressure is same for two passages, the speed of airflow passing through the variable


Maintenance manual for sunray hfc4da1-2c china-IV diesel engines section passage is greatly higher than that passing through the constant section passage.



# **Section IX EGR System**

The exhaust gas recirculation (EGR) introduces one small portion of exhaust gas from the exhaust pipe into the intake pipe that is mixed with the fresh intake air to artificially increase the exhaust amount in the fresh intake air and thus reduce the combustion temperature of engine and reduce the formation of NOx.

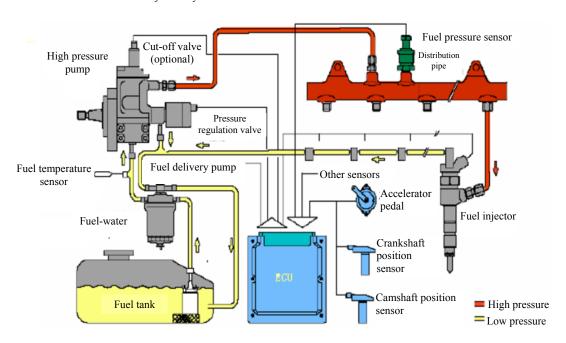
- The NOx is increased following the increasing of engine load and the EGR ratio shall increase accordingly.
- The EGR is not be performed when the engine coolant temperature is low;
- The EGR is not performed under idling or low load, as the NOx emission is not high in such case.
- The EGR is not performed under full load or acceleration;
- The water-cooled EGR further reduces the temperature of exhaust gas entering into the cylinder and further reduces the emission of NOx.



# **Section X Exhaust System**

The exhaust pipe is composed of four exhaust manifolds leading to the exhaust master pipe and one manifold leading to the exhaust gas chamber of EGR valve. During the operation, the exhaust gas from the combustion chamber is introduced into the EGR valve by the manifold leading to the exhaust gas chamber of EGR valve through the EGR passage in the cylinder head. Under the control of the EGR valve, the exhaust gas is mixed with fresh air and enters into the combustion chamber to realize exhaust gas recirculation and reduce the emission.

4DA1-2C diesel engine real-time monitors the pressure drop of the exhaust gas post-treatment unit to determine whether the post-treatment system is working normally. Via two pressure ports on the sensor, the pressure on two sides of the exhaust gas post-treatment unit is introduced. The sensor converts the measurement into voltage value and feeds back to the control unit, which can guarantee the sufficient oxidization of grains and prevent the blockage of catalytic converter.






# Chapter III Working Principle of Engine Control and Actuator Units

## Section I Overview of Diesel Common Rail System

Diesel common rail injection system

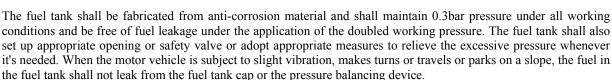


The electronically controlled high pressure common rail system means one fuel supply mode in which the generation of injection pressure and fuel injection are completely separated in the closed-loop system composed of high pressure fuel pump, pressure sensor, and ECU. The high pressure fuel pump generates high pressure fuel and conveys to the common rail pipe to realize precise control of fuel pressure within the common rail pipe. This fuel injection system can ensure that the fuel injection pressure will not vary following the variation of the engine speed and thus relieve the defect of traditional diesel engines. Instead of the common pulse theory, this system adopts the pressure-time measuring theory and combines the high pressure common rail with the control of fuel injection solenoid valves of all cylinders, in which the last pulse of the control unit introduces the injection signal into the solenoid valve to trigger one injection cycle and the injection amount is controlled by the accumulated pressure and the open duration of the injector. The injection pressure of EDC17 control system adopted by this engine is up to 1,600bar.

The electronically controlled common rail fuel injection technology of diesel engine integrates the computer control technology, modern sensing and measuring technology, and advanced fuel injection mechanism. The main characteristic of this technology is as below: The main parameters (including speed, torque, power, oil temperature, oil pressure, water temperature, and turbocharger pressure of the diesel engine) under actual working conditions of the diesel engine are measured by modern sensing and measuring technology and transmitted to the ECU and the ECU compares these measurements with the pre-inputted optimized running MAPs of the diesel engine and processes and calculates out the best values to control the pressure of common rail pipe and the open moment, duration, and injection frequency of the high speed solenoid valves of the fuel injectors, in order to realize the best working state of the diesel engine. The electric pulses generated by the ECU trigger the solenoid valves of the fuel injector as per specified sequence to determine the open and close moments of each fuel injection cycle of the engine and flexibly control the fuel injection speed and frequency. The common rail fuel injection mechanism forms directly or indirectly constant high pressure fuel and distributes to each fuel injector. The electronically controlled common rail fuel injection technology of the diesel engine can guarantee that the diesel engine achieves the best air-combustion ratio and excellent atomization.

The high pressure common rail system is composed of fuel tank, diesel filter, high pressure fuel pump, common rail pipe, electronically controlled fuel injector, high pressure fuel pipe, and low pressure fuel return pipeline.

- It adopts direct injection combustion chamber system and common rail fuel supply system to realize high performance, clean emission, low noise, and low vibration;
- Single camshaft and four-valve technology brings about higher air charging efficiency and improves the combustion;
- High power per liter design and compact design;
- Variable nozzle turbocharger (VNT) control;
- Exhaust Gas Recirculation (EGR);
- Electronic throttle control.

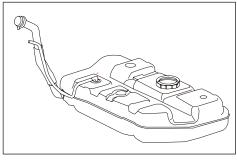

# **Section II Working Principle of Low Pressure Fuel Line System**

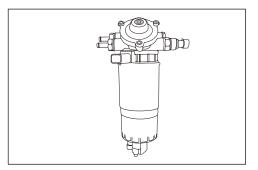
#### I. Composition of low pressure fuel line:

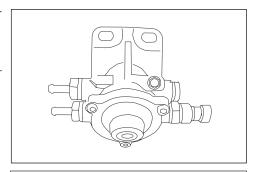
The low pressure fuel line is functioned to supply sufficient fuel to the high pressure fuel line and is composed of:

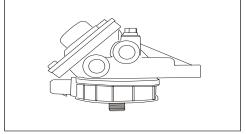
- Fuel tank (including filter screen)
- Fuel filter (including manual fuel delivery pump)
- Low pressure fuel delivery pump
- Other low pressure fuel hoses

#### II. Fuel tank





### III. Fuel filter (including manual fuel delivery pump)


Sunray long-wheelbase model adopts two-stage diesel filter, including one primary filter and one fine filter. Compared with traditional diesel engines, it requires cleaner fuel supply. The impurities contained in the fuel will damage the fuel system including the high pressure pump, high pressure common rail, and fuel injector. The fuel filter purifies the fuel inputting into the high pressure fuel pump, in order to help the normal functioning of the high pressure pump. The contaminant, impurity, and particle in the fuel will lead to the damage of pump units, fuel supply valve, and fuel injector. Therefore, the use of fuel filter capable of meeting the fuel injector requirements becomes the premise for normal working of the engine and guarantee of service life. The water content in the diesel may exist in non-free radical form (emulsified fuel) or radical form (such as water condensate generated due to variation of temperature). If entering into the fuel injection system, this water content will lead to damage of parts due to corrosion. Similar to other fuel injection systems, common rail system requires the fuel filter with water collection chamber as well as the automatic water content alarm. When the alarm lamp lights up, make sure to drain the water from the water collection chamber.


The fuel filter is composed of fuel temperature sensor, fuel heater, manual fuel pump, fuel-water separator, and water level sensor.

The fuel leakage during traveling or the air ingress into fuel pipeline after replacement of fuel filter may lead to start failure or poor functioning of the engine. Therefore, make sure to bleed the air from the low pressure fuel pipeline after the installation of manual fuel delivery pump. Installed on the fuel filter, the manual fuel delivery pump is the device for supplying fuel to the fuel filter and the device required to guarantee the first start of the engine. In event of the following conditions, press the manual fuel delivery pump, till the manual fuel delivery pump can't be further pressed, before starting the



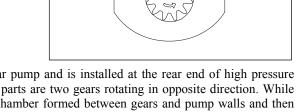






- After the fuel is used up.
- After the water drainage from the fuel-water separator.
- After the replacement of fuel filter

#### Replacement of fuel filter


- 1. Replacement interval of fuel filter: Once every 7,000km;
- 2. Water separation interval: Once every 5,000Km;
- 3. It's prohibited to use any used fuel filter.

#### IV. Low pressure fuel delivery pump

The low pressure fuel delivery pump is one gear pump and is stalled at the rear end within the high pressure pump housing. The low pressure fuel delivery pump continually supplies the required fuel amount to the high pressure pump from the fuel tank.

The fuel delivery pump is functioned to supply sufficient fuel supply to the high pressure pump under following conditions:

- (1) Under any working condition;
- (2) Under necessary pressure;
- (3) Throughout the entire service life.



The low pressure fuel delivery pump is one mechanical gear pump and is installed at the rear end of high pressure pump and driven by the high pressure pump shaft. Its main parts are two gears rotating in opposite direction. While rotating, two gears engages to vacuumize the fuel into the chamber formed between gears and pump walls and then conveys to the outlet (pressure end). The closing line of the rotating gears realizes the sealing between vacuumization end and pressure end of the pump and prevents the fuel backflow.

The fuel supply amount of the gear pump is approximately in proportion to the engine speed. This is why the fuel supply amount of the gear pump can be reduced by means of the throttle valve at the inlet end or can be restrained by means of the relief valve at the outlet end.

No maintenance is required for the gear pump. Charge the fuel from the fuel system before the first start. When the fuel in the fuel tank is used up, operate the manual fuel delivery pump to charge fully the low pressure fuel line.

#### V. Fuel pipeline

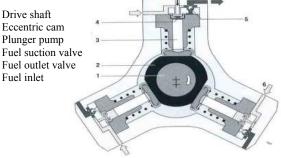
Besides the steel pipe, the low pressure fuel line can also adopt flame-retardant braided and armored fuel hose. The fuel pipes shall be arranged in such manner to prevent the mechanical damage and that the fuel dripped or evaporated will not concentrate nor burn.

In event of vehicle distortion, engine displacement, or similar conditions, the functions of the fuel pipeline shall not be impaired. All fuel delivery pipelines shall have the radiation shield measures.

# VI. Common malfunctions and troubleshooting for low pressure fuel line

| No. | Malfunction                                                                    | Troubleshooting                                                                                                                                                                  | Remarks                                                                                                                                                                                                                                        |
|-----|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Weak pumping of fuel                                                           | Retighten the connectors (temperature sensor, plug, and pile connector), in order to prevent the pumping failure due to ingress of air. If ineffective, replace the manual pump. | The tightening torque for connectors is 30-35N.m. Higher torque will lead to thread failure.                                                                                                                                                   |
| 2   | Fuel leakage of air<br>bleeding screw                                          | Check the screw hole of manual pump<br>for presence of thread failure. If yes,<br>replace the transitional thread insert<br>and air bleeding screw and washer.                   | The tightening torque is 7~9N.m. Higher torque will lead to thread failure. While assembling the transitional thread insert, add an appropriate amount of thread sealant onto the thread. Prevent the ingress of sealant into the manual pump. |
| 3   | Fuel leakage of manual pump                                                    | Replace the manual pump                                                                                                                                                          | The knocking or improper use will lead to fuel leakage of manual pump                                                                                                                                                                          |
| 4   | Slow acceleration<br>and difficult start<br>due to difficult<br>fuel supply    | The filter is blocked. Replace the filter. If the malfunction still occurs after replacement of fuel filter, check other engine parts.                                           | The blockage of fuel filter will increase the pressure difference.                                                                                                                                                                             |
| 5   | Failure for timely water drainage                                              | Make sure to drain the water when the water level sensor indicator lamp lights up.                                                                                               | If the water is not drained, the water content in fuel will increase to impair the engine performance.                                                                                                                                         |
| 6   | Light-up failure of<br>water level sensor<br>indicator lamp at<br>engine start | <ol> <li>Water level sensor is damaged.</li> <li>Indicator lamp is damaged.</li> <li>Circuit malfunction</li> </ol>                                                              |                                                                                                                                                                                                                                                |
| 7   | Working failure of heater                                                      | <ol> <li>The heater is damaged.</li> <li>Circuit malfunction</li> <li>Low battery current</li> <li>The heater is punctured due to high current</li> </ol>                        |                                                                                                                                                                                                                                                |
| 8   | Working failure of temperature sensor                                          | Damage o temperature sensor<br>Circuit malfunction                                                                                                                               |                                                                                                                                                                                                                                                |

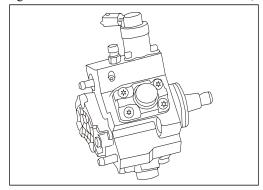
# Section III Working Theory of High Pressure Fuel Line


# I. High pressure fuel line parts

The high pressure fuel line generates and accumulates sufficient fuel pressure required for the fuel injectors. The parts include: High pressure pump, fuel rail, high pressure fuel pipe, and fuel injector.

# II. High pressure pump

The high pressure pump compresses the fuel to a system pressure of up to 1,450bar and then the fuel is transmitted to the tubular high pressure fuel accumulator (rail) via the high pressure pipe.


- Drive shaft
- Eccentric cam
- Plunger pump
- Fuel suction valve
- Fuel inlet



The high pressure pump is the interface between low pressure stage and high pressure stage. Under all working conditions, it can reliably supply sufficient high pressure fuel throughout the entire service life of the vehicle,

including supplying addition fuel required for rapid start and the rapid establishment of pressure in the common rail. The high pressure pump continually generates the system pressure required for the high pressure accumulator (rail). Therefore, it means that, compared with traditional system, it's unnecessary to compress the fuel for each individual injection cycle.

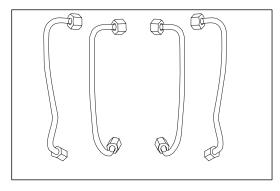
The fuel is compressed by three plunger pumps arranged radially at spacing of 120° from each other. As each rotation turn can generate three compression strokes and only generate low peak drive torque, the drive unit of the pump maintains uniform force application. As far as 16Nm torque is concerned, this torque is only 1/9 of the torque required for driving similar distribution pump. This means



that, compared with traditional fuel injection systems, the common rail generates lower load onto the drive unit of the pump. The raising power of the drive pump is in proportion to the preset pressure of common rail and the speed of the fuel pump (fuel delivery amount).

# Working mode:

Through one water separator, the fuel delivery pump pumps out the fuel from the fuel tank and the fuel enters into the lubricating and cooling lines of high pressure pump via the fuel inlet. The drive shaft with eccentric wheel drives three pump plungers for upward and downward movements along with the profile of the cam. The pump plungers move downward under the application of the fuel delivery pressure (fuel suction stroke). When the plungers overpass the bottom dead center, the fuel inlet valve is closed so that the fuel in the pump chamber will not leak out. In such case, the fuel is compressed so that the fuel pressure exceeds the fuel delivery pressure of the fuel delivery pump. In such case, once the pressure established exceeds the pressure in the common rail, the fuel outlet valve opens so that the fuel enters into the high pressure line. The pump plungers will continue the fuel supply, till the top dead center is reached (fuel delivery stroke). Then the pressure drops and the fuel outlet valve closes. The residual fuel is pressure relieved: The pump plungers move downward. When the pressure in the pump chamber is less than the fuel delivery pressure, the fuel inlet valve re-opens and the pumping process is started again.


# III. Fuel rail (Common rail)

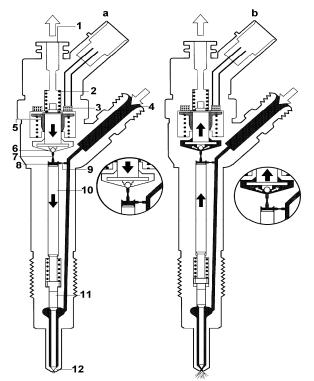
The high pressure accumulator (rail) stores the high pressure fuel and at the same time restrains the pressure variation generated during the fuel supply and fuel injection of the high pressure pump. The high pressure accumulator is shared by all cylinders and therefore is referred to as "common rail". Even when a great amount of fuel is drained, the common rail can maintain its internal pressure basically unchanged. Therefore it maintains the constant fuel injection pressure of the fuel injector.

The space of the common rail is always filled with high pressure fuel. It utilizes the fuel compressed due to high pressure to achieve the accumulator effect. When the fuel is departed from the common rail for injection, the pressure in the high pressure accumulator is basically constant. At the same time, the pressure variation generated by the pulsed fuel supply of high pressure pump is balanced and the pressure information is provided to the ECU.

# IV. High pressure fuel pipe

The high pressure fuel pipe is used to convey the high pressure fuel and is made of steel to endure the intermittent high




frequency pressure variation under the maximum system pressure of the engine. The fuel pipe is generally 6mm in outside diameter and 2.4mm in inside diameter. All high pressure fuel pipes between fuel rail and fuel injectors are same in length, which means that the distances between the fuel rail and all fuel injectors are the same and the bending points compensate the corresponding length differences.

# IV. Fuel injector

The fuel injectors are the core parts of the high pressure common rail and are installed on the high pressure common

rail. In accordance with the directive of the ECU, the fuel injectors spray high pressure well-atomized fuel into the combustion chamber at specified moment and specified pressure for a specified duration.

The fuel injector is mainly composed of fuel injector nozzle, hydraulic servo unit, and solenoid valve. When the coil control valve acquires control signal through the ECU, the control valve will depart from its seat ring so that the fuel pressure in the needle valve control chamber drops rapidly. As the pressure at the injector nozzle holder is maintained at similar pressure with common rail, the needle valve opens and the injection starts. When the current of the solenoid control valve drops to zero, as the control valve returns to the seat cushion under the application of coil spring, the pressure of the needle control chamber will increase to lightly higher than he pressure at the injector holder so that the needle valve closes the injector and the injection stops. The sealing copper washer beneath the fuel injector must be replaced once the fuel injector is disassembled or loosened. During the disassembly, use the special tools recommended or designated by JAC Multifunctional Commercial Vehicle Company. Note: Never disassemble the fuel injector by self in any case. All maintenances and services of the fuel injector body shall be fulfilled by Bosch relevant service stations or JAC designated service stations.



# Section IV Electronic Control Unit of High Pressure Common Rail System

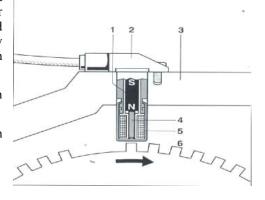
The EDC17 system of HFC4DA1-2C engine belongs to electronically controlled diesel injection system and incorporates the dynamic fuel injection timing system and air and fuel management system. It adopts the BOSCH diesel high pressure common rail system, with the rail pressure up to 1,600bar, and applies new technologies including VNT, electronically controlled EGR, and POC pressure difference control to meet the Euro-IV emission standard, with potential compliance for Euro-V emission standard.

The characteristics of this system is one single ECU, one set of fuel injection control system, and one set of sensor system. It's functioned to inject the fuel into the engine cylinder, with accurate injection timing and fuel amount, so that the fuel is mixed with air in the cylinder to achieve best combustion efficiency.

The electronic control unit of the diesel common rail system is mainly composed of three parts: sensor, ECU, and actuator.

- ① Sensor part: The sensors and rated value transmitters collecting the running state and rated values of the engine and complete vehicle, which convert various types of physical parameters into electric signals.
- ② ECU: It's functioned to process the information as per definite mathematic calculation method and issue the electric signals of the directives.
- 3 Actuator: It's functioned to convert the electric signals of the directives issued by the ECU into mechanical parameters.

# I. Sensor part


# 1. Crankshaft position sensor

#### 1) Overview

- The crankshaft position sensor is one electromagnetic sensor.
- The position of piston in the combustion chamber determines the start moment of fuel injection. As the engine piston is connected with crankshaft through connecting rod, the crankshaft position sensor can provide all data information for the piston position and the engine speed determines the revolution per minute of the crankshaft.
- Generation of signal: The crankshaft is connected with one 60-tooth ferromagnetic actuation gear. The actuation gear actually in use has two teeth missing. This large gap corresponds to one specified crankshaft position of 1<sup>st</sup> cylinder. The crankshaft position sensor records the tooth sequence of the actuation gear. It's composed of one permanent magnet and soft iron core with copper coil. The magnetic flux in the sensor varies along with the gear and gap passing through and generates one sine AC voltage, of which the amplitude rapidly increases following the speed of the engine (crankshaft). It can achieve sufficient amplitude even when the speed is at 50r/min.
- The crankshaft position sensor is situated on the rear clutch housing of the engine;
- Wiring terminals: 1. Signal terminal of crankshaft position sensor; 2. Grounding terminal of crankshaft position sensor;

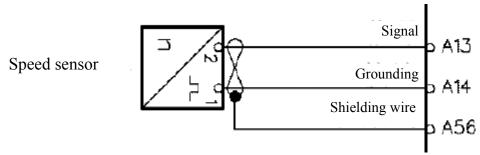


- Crankshaft speed sensor
- 1. Permanent magnet
- 3. Engine outer cap
- 5. Coil
- 2. Sensor housing
- 4. Soft iron core
- Sensing gear



Resistance: 860 Ohm;

• Clearance between sensor and top of signal gear: 0.5~1.2mm.


# 2) Working Principle

The electromagnetic sensor simulates the AC signal generator, namely such sensor generates AC signal, and is generally composed of a magnet wound by coil and two wiring terminals. These two coil terminals are the output terminals of the sensor. When the steel annular gear (sometimes referred to as magnetic resistance gear or target gear or signal gear) rotates to pass through this sensor, the magnetic flux of the magnet passing through the coil varies at certain level and the induction voltage is generated in the coil.

The same tooth profiles of the signal gear will generate continual pulses in same form. The pulses have consistent form amplitudes (peak-peak voltages) and are in proportion to the speed of crankshaft signal gear. The frequency of the output signal is based on the rotation speed of the magnetic resistance gear and the air gap between sensor magnetic pole and the magnetic resistance gear is of great influence over the amplitude of the sensor signal (Attention shall be paid to the backlash during the installation). During the production, removing the synchronous pulse generated by one tooth or two really close teeth from the sensor can determine the signal of top dead center, which will lead to the frequency variation of output signal. When the number of teeth is reduced, the voltage output amplitude will vary greatly. This pulse signal is transmitted to the ECU, based on which the ECU controls the fuel injection of the engine.

As the electromagnetic crankshaft position sensor is weak in signal and sensitive and is vulnerable to the electromagnetic interference by the electric devices such as car telephone, fan, and starter, it will lead to malfunction of traveling performance or generate trouble code. To prevent the occurrence of such phenomenon, two signal wires of the crankshaft position sensor adopt the twisted-pair structure in the manufacturing of engine harness, which can effectively guard the signal of crankshaft position sensor against the external signals and reduce the production cost.

#### 3) Measurement analysis:



1 – Signal -; 2 – Signal +; Use a multimeter to measure the resistances for two signal terminals of the crankshaft position sensor. The resistance measurement shall be 860 Ohm.

### 4) Malfunction Mode:

- Short-circuit or open-circuit of sensor;
- Distorted, error, and suspicious signal;
- Unstable sensor signal;
- Sensor signal is out of range.

The crankshaft position and speed sensor is the main sensor of the engine electronic control system. In event of the malfunction of crankshaft position and speed sensor, the engine can't start. If the malfunction occurs after the start of the engine, the engine will stop immediately.

#### 5) Troubleshooting

Use diagnosis instrument to check the trouble code and determine the malfunction position. Mainly check whether the sensor is installed in place and whether the clearance is normal, check the sensor circuit whether there is short-circuit or open-circuit to grounding wire, check whether there is short-circuit or open-circuit to the power supply, and check whether the circuit is consistent with the given pin definition.

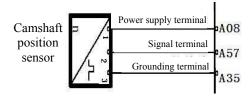
Notice: Take caution to install the sensor and make sure not to add any washer, or it may lead to signal distortion of sensor.



#### 2. Camshaft position sensor

#### 1) Overview

- The camshaft position sensor is one Hall sensor.
- The camshaft position sensor utilizes the Hall effect to determine the camshaft position. One steel actuation gear rotates along with the camshaft, the Hall effect integrated circuit is installed between actuation gear and permanent magnet, and the permanent magnet generates a magnetic field perpendicular to the Hall unit. If one tooth of actuation gear passes through the current-carrying linear sensor unit (semiconductor chip), it changes the strength of magnetic field perpendicular to the Hall unit. In such case, the electron driven by the voltage in major axis direction is offset in the direction perpendicular to the current direction to generate one temporary signal voltage (Hall voltage) so that the calculation circuit integrated with the sensor Hall integrated circuit will process the signal and output as square wave signal.
- The camshaft position sensor is installed on the cylinder head shield.
- Wiring terminals: 1. +5V power supply, 2. Signal output, 3. Grounding;
- The clearance between sensing end of sensor and the signal gear of camshaft: 0.5~1.5mm. Required torque: 8±0.5Nm


#### 2) Working Principle

The camshaft controls the intake and exhaust valves of the engine, of which the speed is only half of the crankshaft speed. When the piston moves towards the top dead center, the camshaft position determines whether the piston is at compression stroke or the exhaust stroke and then judges the fuel injection or not. If the engine is under start stage, such data information can't be acquired from the crankshaft position. On the other hand, during the normal working of the engine, the data information generated by the crankshaft sensor is enough to determine the engine state. In other words, while the vehicle is traveling, even the camshaft sensor is failed, the ECU can still receive the data information of engine working state from the crankshaft sensor.

The camshaft sensor utilizes Hall effect to determine the camshaft position. One steel toothed part is fixed on the camshaft and rotates along with the camshaft. When this toothed part passes through the semiconductor chip of the camshaft sensor, its magnetic field will offset the electron of the semiconductor chip towards the current direction. Therefore, one temporary voltage signal (Hall voltage) is generated to remind ECU that the 1<sup>st</sup> cylinder enters into the compression stroke.

# 3) Measurement analysis

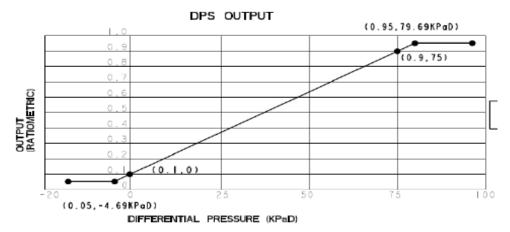
Wiring terminals: 1 - +5V, 2 - Signal +, 3 - Grounding



#### 4) Malfunction Mode

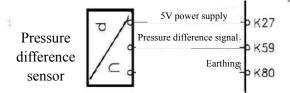
- Short-circuit or open-circuit of sensor;
- Distorted, error, and suspicious signal;
- Unstable sensor signal;
- Sensor signal is out of range.

#### 5) Troubleshooting


Use diagnosis instrument to check the trouble code and determine the malfunction position. Mainly check whether the sensor is installed in place and whether the clearance is normal, check the sensor circuit whether there is short-circuit or open-circuit to grounding wire, check whether there is short-circuit or open-circuit to the power supply, and check whether the circuit is consistent with the given pin definition.

#### 3. Pressure difference sensor

#### 1) Overview

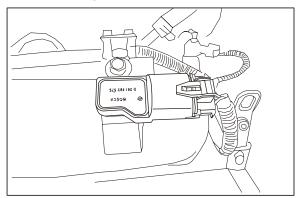

- The pressure difference sensor is functioned to real-time monitor the pressure drop of the POC and determine whether the after-treatment system is working normally. The pressure at two ends of the POC is introduced via two pressure ports of the sensor and then the sensor converts the measurement into voltage value and feeds back to control unit. This can not only guarantee the sufficient oxidization of grains, but also prevent the blockage of catalytic converter.
- The pressure difference sensor and the POC are connected via stainless steel pipe and high temperature rubber hose. The pressure is introduced via stainless steel pipe, which is at least 250mm in length, from two sides of POC and then is led to the pressure difference sensor via high temperature rubber hose, which is capable of enduring more than 150°C.

# 2) Working Principle



# 3) Test analysis

Wiring terminals: 1 - +5V, 2 - Signal +, 3 - Grounding




# 3. Turbocharger pressure sensor

#### 1) Overview

The turbocharger pressure sensor is connected to the intake pipe and is functioned to measure the absolute pressure of the intake pipe. This sensor is composed of one pressure unit with two sensing units and one evaluation circuit chamber. The sensing units and evaluation circuit are mounted on common ceramic substrate. Each sensing unit incorporates one horn-shaped diaphragm embodying the benchmark capacity for determination of internal pressure. The diaphragm moves towards large or small open extent as a function of charging pressure. The pressure sensitive resistor is mounted on the diaphragm surface, of which the resistance varies under the application of pressure. These resistors are connected to form a resistor bridge. Therefore, any movement of the diaphragm will change the balance of resistor bridge, namely the voltage of the resistor bridge is one measurement of turbocharger pressure. The evaluation circuit is functioned to amplify the bridge voltage and compensate the linear variation of temperature influence and pressure characteristic. The output signal of evaluation circuit is transmitted to ECU and then the turbocharger pressure is obtained by means of the programming characteristic curve.

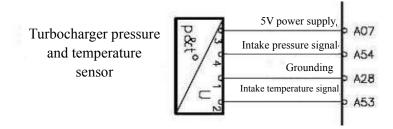
 The temperature sensor incorporates one negative temperature coefficient (NTC) thermistor that is connected in the voltage division circuit of 5V power supply.





- The voltage drop on the resistor is inputted to the ECU via one analog and one digital converters (ADC), which
  is one measurement for evaluating the temperature. The ECU micro-processor embodies one characteristic curve,
  which defines the temperature as a function of given voltage.
- It's installed on the pressure stabilizing chamber of intake manifold and take the priority to measure the pressure.
- Wiring terminals: 1 Grounding, 2 Temperature signal, 3 +5V, 4 Pressure signal.

#### 2) Working Principle


The turbocharger pressure sensor is connected in the intake pipe and is capable of measuring the absolute pressure of intake pipe at 0.5~3bar. This sensor is composed of one pressure unit with two sensing units and one evaluation circuit chamber. The sensing units and evaluation circuit are mounted on common ceramic substrate. Each sensing unit incorporates one horn-shaped diaphragm embodying the benchmark capacity for determination of internal pressure. The diaphragm moves towards large or small open extent as a function of charging pressure. The pressure sensitive

resistor is mounted on the diaphragm surface, of which the resistance varies under the application of pressure. These resistors are connected to form a resistor bridge. Therefore, any movement of the diaphragm will change the balance of resistor bridge, namely the voltage of the resistor bridge is one measurement of turbocharger pressure. The evaluation circuit is functioned to amplify the bridge voltage and compensate the linear variation of temperature influence and pressure characteristic. The output signal of evaluation circuit is transmitted to ECU and then the turbocharger pressure is obtained by means of the programming characteristic curve.

The voltage drop on the resistor is inputted to the ECU via one analog and one digital converters (ADC), which is one measurement for evaluating the temperature. The ECU micro-processor embodies one characteristic curve, which defines the temperature as a function of given voltage.

#### 3) Measurement analysis

Wiring terminals: 1 - Grounding, 2 - Temperature signal, 3 - +5V, 4 - Pressure signal.



#### 4) Malfunction Mode

The light-up of the engine malfunction indicator lamp indicates the presence of malfunction in the engine system and it's necessary to diagnose with diagnosis instrument. Use Sunray special diagnosis instrument to communicate with ECU of electronic injection system and read out the malfunction data in the ECU.

#### 5) Troubleshooting

Use Sunray special diagnosis instrument to check the trouble code and determine whether there is short-circuit or open-circuit between circuit of malfunction position and the grounding wire, whether there is short-circuit or open-circuit to power supply, and whether the circuit is consistent with the given pin definition.

#### 4. Thermal diaphragm air flowmeter

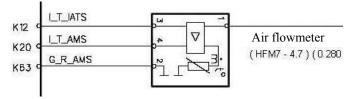
#### 1) Overview

- The thermal diaphragm airflow sensor is one air mass sensor fitted with logic output. To obtain the air flow, the sensor diaphragm on the sensor is heated by the heating resistor installed in the middle and the temperature distribution on the diaphragm is measured by the temperature resistors installed paralleling with the heating resistor. The air flow passing through the sensor changes the temperature distribution on the diaphragm to cause resistance difference between two temperature resistors. The resistance difference depends on the direction and flow rate of the airflow so that the airflow sensor has high requirements over the flow rate and direction of the airflow. The sensor manufactured by micro-machinery features small size, low thermal capacity, and <15ms response time.
- The sensor is internally fitted with intake temperature sensor to measure the intake temperature.
- The air flowmeter is installed at the port of the air cleaner.
- Wiring terminals: 1. +12V power supply; 2. Grounding; 3. Air temperature signal; 4. Airflow rate signal.



#### 2) Working Principle

This sensor is composed of two sensors, namely airflow sensor and intake temperature sensor, and is installed on the intake hose after the air cleaner. This type of sensor requires that there shall be free of air leakage from the sensor to the engine combustion chamber, or it will lead to unstable idling of engine or even engine flameout.


The airflow sensor integrates some micro-electronic units on a ceramic substrate. When the engine is working, the diaphragm will be heated. The intake airflow passing through the diaphragm will take away the heat and the Wheatstone bridge integrated on the diaphragm will increase the current to supplement the heat loss, which leads to the variation of electric signal. This signal is transmitted to the engine control unit ECU, based on which the ECU can obtain the load variation of the engine and thus control the fuel injection pulse width.

The intake temperature sensing unit is one negative temperature coefficient (NTC) thermistor. The sensor installs two same sensing units on two sides of the thermal diaphragm. When the intake airflow flows through the diaphragm, the temperature of the temperature sensing unit on the front of diaphragm is slightly lower than that of temperature sensing unit on the rear. Based on this characteristic, the ECU can judge the direction of airflow.



# 3) Measurement analysis

Wiring terminals: 1. +12V power supply; 2. Grounding; 3. Air temperature signal; 4. Airflow rate signal.



#### 4) Malfunction Mode

The subsequent electronic device of the air flowmeter in the ECU can judge the malfunctions such as open-circuit or short-circuit of internal circuit and connecting circuit of air flowmeter and the damage of sensor. Upon the detection that the output signal of the sensor is out of its output characteristic curve, the ECU will judge as malfunction of sensor.

# 5) Troubleshooting

When the airflow sensor is failed, the engine cooling fan will run at high speed for one period after the ignition key is turned to Off. For instance: When the airflow rate is higher than the upper limit of airflow or less than the lower limit of airflow, the ECU will judge as malfunction of sensor (Though the intake airflow rate is less than lower limit (closing to zero) at the start of the vehicle, the ECU can judge the start condition) and at the same time light up the engine malfunction lamp and work under malfunction mode.

# 5. Rail pressure sensor

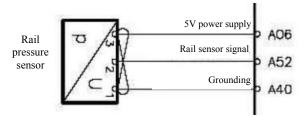
#### 1) Overview

The resistance of the metal film installed on the diaphragm will change accordingly following the change of shape. This change of shape generated by the established system pressure (approximate 1mm under 1,500bar pressure) will change the resistance and lead to the change of voltage between two sides of 5V bridge composed of resistor units. This voltage change range is  $0\sim70$ mv (depending on the applied pressure) and is amplified to  $0.5\sim4.5$ V by the evaluation circuit.

The accurate measurement of rail pressure is of great importance to the effective working of the system. This is one of the causes for very strict tolerance over the rail pressure sensor during the pressure measurement. Under the scope of main working conditions, the measurement accuracy is approximately  $\pm 2\%$  of the full scale reading.

Wiring terminals: 1. Grounding; 2. Rail pressure sensor signal; 3. +5V power supply.

# 2) Working Principle


It transmits one voltage signal to the ECU, depending on the fuel pressure. The rail pressure sensor must measure the instant pressure in the fuel rail and embody sufficient accuracy and rapid response capability. The rail pressure sensor is composed of following parts:

- ①Integrated sensing unit welded onto the pressure device
- ② Printed circuit board (PCB) with electric evaluation circuit

sensor housing with electric connector. The fuel flows into the rail pressure sensor via one hole on the common rail and the end of this hole is sealed by one sensor diaphragm. The fuel under high pressure reaches the sensor diaphragm via one blind hole. One sensing unit (semiconductor unit) is arranged on this diaphragm and converts the pressure into electric signal. This signal generated is transmitted via wire to evaluation circuit, which will amplify this signal and transmit to the ECU.

# 3) Test analysis

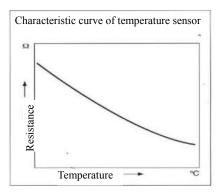
Wiring terminals: 1 - Grounding; 2 - Rail pressure sensor signal; 3 - +5V power supply.



#### 4) Malfunction Mode

The malfunction indicator lamp lights up if the voltage is higher or less than this limit. If the voltage is out of the normal working voltage range, but is not out of the limit, the malfunction indicator lamp will not light up.

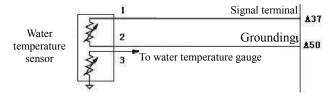
#### 5) Troubleshooting


The light-up of the engine malfunction indicator lamp indicates the presence of malfunction in the engine system and it's necessary to diagnose with diagnosis instrument. Use JAC special diagnosis instrument to communicate with ECU of electronic injection system and read out the malfunction data in the ECU.

# 6. Engine coolant temperature sensor

# 1) Overview

• The sensor is installed on the cylinder head, closing to the water outlet. The body is made of brass to protect the resistor unit fabricated from negative temperature coefficient (NTC) resistor;


- The temperature resistor of the temperature sensor is one part of the 5V voltage division circuit. Two terminals of the temperature sensor is connected with the voltage charged circuit. When the temperature resistor of the temperature sensor changes along with the temperature, the voltage of the voltage charged circuit changes accordingly, which will be inputted to the analog/digital conversion circuit of ECU interface circuit. The relationship characteristic curve between voltage and temperature is stored in the ECU of engine management system;
- Sunray is equipped with 3-wire water temperature sensor to save the cost and guarantee the system unity.



#### 2) Working Principle

The coolant temperature sensor is used to measure the working temperature of the engine. The ECU will provide the engine with best control scheme, depending on different temperatures.

This sensor is one negative temperature coefficient (NTC) thermistor, of which the resistance reduces following the increasing of coolant temperature in a non-linear mode. The negative temperature coefficient thermistor is installed within one copper heat conducting sleeve. By means of one voltage division circuit, the ECU converts the resistance change of thermistor to one varying voltage and provides to the ECU and thus monitors the change of water temperature (internal structure of ECU).



# 3) Measurement analysis

Wiring terminals: 1 – Temperature signal; 2 – Grounding

Reference values:  $-10^{\circ}$ C 8.642---10.152 k $\Omega$ 

20°C 2.351---2.649 kΩ

 $80^{\circ}$ C 0.313--- $0.332~k\Omega$ 

### 4) Malfunction Mode

Upon the detection that the water temperature signal is higher or less than the limit range, the ECU will light up the malfunction indicator lamp.

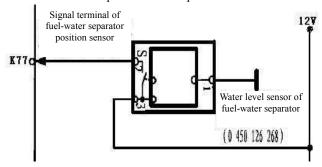
#### 5) Troubleshooting

Sunray is fitted with one independent coolant temperature sensor to transmit the water temperature signal to the instrument for display of instrument water temperature alarm. If the water temperature alarm indicator lamp lights up, stop for cooling immediately. If the water temperature alarm indicator lamp lights up frequently, drive to the authorized service station of JAC Multifunctional Commercial Vehicle Company for service.

#### 7. Water level sensor

#### 1) Overview

- The fuel-water separator position sensor is functioned to measure the water content in the fuel filter;
- When the water content reaches a predefined level, the ECU will control the working of the engine. This sensor
  is installed on the bottom of the fuel filter;


- The fuel-water separator position sensor is installed on the bottom of the fuel filter;
- Wiring terminals: 1. Water level sensor; 2. Water level signal; 3. +12V power supply.

#### 2) Working Principle

The grain substances are high-accuracy filtered by means of the interception and absorption of the filter medium and

the water concentrated on the filter medium is separated by gravity force. The water separated is deposited in the water chamber at the lower portion of filter housing.

The water level sensor is installed at the lower portion of water chamber. When the water level reaches the sensing point of the sensor, the internal circuit of sensor is actuated to output signal to the ECU. At the same time, the signal is transmitted to the instrument to light up the water level alarm lamp.



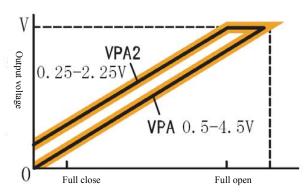
#### 3) Measurement analysis

Wiring terminals: 1 - Water level sensor; 2 - Water level signal; 3 - +12V power supply.

#### 4) Malfunction Mode

- Short-circuit or open-circuit of sensor;
- Unstable sensor signal;
- Sensor signal is out of range.

#### 1) Troubleshooting


Use Sunray special diagnosis instrument to check the trouble code and determine the malfunction position. Mainly check the circuit of sensor and determine whether there is short-circuit or open-circuit between circuit and the grounding wire, whether there is short-circuit or open-circuit to power supply, and whether the circuit is consistent with the given pin definition.

#### 8. Accelerator pedal position sensor

#### 1) Overview

The accelerator pedal position sensor is mounted on the accelerator pedal.

The accelerator pedal position sensor and the accelerator pedal form one integral part. The accelerator pedal position sensor internally incorporates two same potentiometer sensors to provide the driver's driving demand signal to the ECU. This process is completely same with the presently mechanical pedal in terms of operation, in order to adapt to the years of driving habit of the driver. Two same sensors provide the accelerator signal to the



Open angle of accelerator pedal

ECU respectively, which guarantees more safety and reliability of the system.

Wiring terminals: 1. +5V; 2. +5V; 3. Grounding of accelerator pedal 1; 4. Signal of accelerator pedal 1; 5. Grounding of accelerator pedal 2; 6. Signal of accelerator pedal 2.

# 2) Working Principle

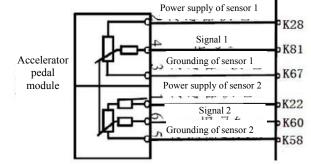
The accelerator pedal position sensor internally adopts the damping structure and internally incorporates two same potentiometer sensors. The signal pointers of the sensors are coaxial with the pedal. When the accelerator pedal is stepped down, the potentiometer pointer will rotate coaxially with the pedal and, following the sliding of the potentiometer pointer, the signal terminals output different voltage or resistance signal. Two movable potentiometer sensors with different resistances within the position sensor output different resistances. However, there is a defined relationship between the resistances outputted by two sensors. The ECU adopts the voltage signals, instead of the resistance signals of the sensor, in order to prevent the signal distortion caused by the voltage fluctuation of the alternator. A comparison circuit is adopted to compare the signal voltage outputted by the sensor with the standard voltage and the ECU adopts the comparison result to judge the movement amplitude of the pedal. The ECU compares the signals inputted by the sensor 1 and sensor 2 and considers other sensors (engine speed, load, etc.) to jointly judge the trueness of the signals outputted by the sensors. If the signal distortion is judged in any of two sensors, the ECU controls the engine to actuate malfunction mode and adopt restrained driving measures.

The accelerator pedal position sensor provides one signal voltage varying along with the accelerator pedal position. The engine control unit (ECU) will provide independent 5V reference voltage and low level reference voltage to each accelerator pedal position sensor. When the accelerator pedal is stepped down, the signal voltage of the accelerator pedal position sensor 1 is increased, namely from approximate 0.7V at the free position to above 4V at the fully stepped down position. When the accelerator pedal is stepped down, the signal voltage of the accelerator pedal position sensor 2 is increased, namely from approximate 0.3V at the free position to above 2V at the fully stepped down position. Two data monitor mutually via control system.

#### 3) Measurement analysis

Wiring terminals: 1 - +5V; 2 - +5V; 3 - Grounding of accelerator pedal 1; 4 - Signal of accelerator pedal 1; 5 - Grounding of accelerator pedal 2; 6 - Signal of accelerator pedal 2.

Working voltage of sensor: 5V


Malfunction Mode

Short-circuit or open-circuit of sensor 1;

Short-circuit or open-circuit of sensor 2;

Unstable sensor signal;

Sensor signal is out of range.

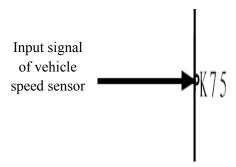


#### 4) Troubleshooting

Use Sunray special diagnosis instrument to check the trouble code and determine the malfunction position. Mainly check the circuit of sensor and determine whether there is short-circuit or open-circuit between circuit and the grounding wire, whether there is short-circuit or open-circuit to power supply, and whether the circuit is consistent with the given pin definition.

Characteristic of sensor internal structure: Two potentiometer sensors within the sensor adopt independent power supply and independent grounding wire, which can guarantee the system safety. When one sensor is damaged, another sensor can still work. However, the engine system has already actuated the malfunction mode in such case and the electronic control system will adopt the restrained driving measures.

# 9. Vehicle speed sensor


# 1) Overview

The vehicle speed sensor is located at the rear portion of the transmission and is mainly functioned to provide speed signal to the engine control unit and instruments.

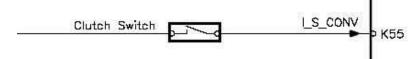
#### 2) Working Principle

The signal of vehicle speed sensor provides vehicle speed signal to the ECU, based on which the ECU calculates the vehicle speed. It's internally composed of one Hall speed sensor. Please refer to the camshaft position sensor for the working principle.

# 3) Measurement analysis



# 10. Clutch switch


#### 1) Overview

The clutch switch is located on the upper portion of the clutch pedal and is mainly functioned for cruise control and engine torque smoothness control.

# 2) Working Principle

The clutch switch is installed at the clutch pedal and transmits the operation signal of clutch pedal to the engine ECU. Its inside is one two-pin contact switch. When the clutch pedal is stepped down, the lower central position of the clutch switch springs out. In such case, two pins of the clutch switch are connected. When the clutch pedal is released, two pins of the clutch switch are disconnected. Therefore, the engine can learn the operation state of the driver by measuring the electric level (high or low) of the clutch switch signal wire.

# 3) Measurement analysis



#### 4) Malfunction Mode

Short-circuit or open-circuit of sensor;

Unstable sensor signal;

Sensor signal is out of range.

#### 5) Troubleshooting

Use Sunray special diagnosis instrument to check the trouble code and determine the malfunction position. Mainly check the circuit of sensor and determine whether there is short-circuit or open-circuit between circuit and the grounding wire, whether there is short-circuit or open-circuit to power supply, and whether the circuit is consistent with the given pin definition.

#### 11.Dual brake switch

#### 1) Overview

The dual brake switch is located on the upper portion of the brake pedal and internally incorporates two independent switches.

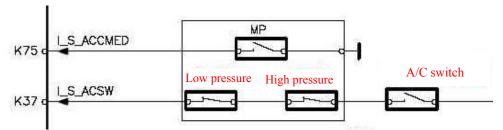
#### 2) Working Principle

The brake switch monitors the action of the brake pedal and transmits the signal measured to the engine ECU. The brake switch is equipped with two switching mechanisms, which are the main and secondary units of the brake switch. When the signals from both units are inputted, the engine ECU will judge as normal braking signal. These switching signals are related to the accelerator pedal and are used to control the fuel amount during the braking. This means that the operation of accelerator pedal will not lead to malfunction when the brake pedal is stepped down, but the operation of accelerator pedal will reduce the fuel amount when the brake pedal is stepped down.

#### 3) Measurement analysis



#### 12. A/C switch


#### 1) Overview

The A/C switch is located on the A/C control panel and is mainly functioned to transmit actuation directive of A/C compressor to the engine control unit.

# 2). Working Principle

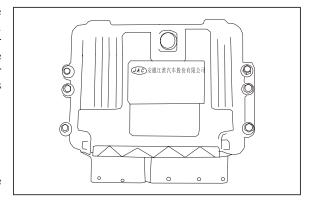
A/C request is the input signal that the driver requests the working of A/C and controls the working of A/C relay as well as the speed promotion of the engine.

#### 3) Measurement analysis



### 4) Malfunction Mode:

- Short-circuit or open-circuit of signal circuit;
- Unstable signal;
- The signal is out of range.


#### 5) Troubleshooting

Use Sunray special diagnosis instrument to check the trouble code and determine the malfunction position. Mainly check the circuit of sensor and determine whether there is short-circuit or open-circuit between circuit and the grounding wire, whether there is short-circuit or open-circuit to power supply, and whether the circuit is consistent with the given pin definition.

# II. Engine control unit (ECU)

#### 1) Overview

The engine control unit is located on the firewall on the back of the bottom of the glove box.

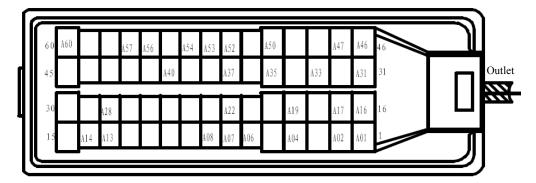


#### 2) Working Principle

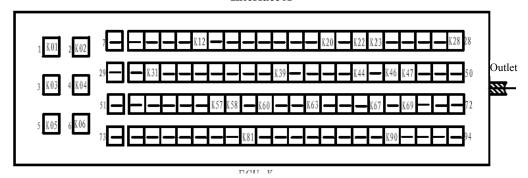
The ECU has one metal housing and the sensors, actuators, and power supply are connected to the ECU via multi-pole plug. The power supply parts for direct control of actuators are integrated in the ECU so that their heat can be effectively expanded to the ECU housing.

Requirements for ECU are as below:

- Surrounding (ambient) temperature: -40°C~+85°C
- Resistance to fuel, lubricating oil, etc.
- Resistance to moisture.
- The mechanical load has high requirements of the exposure to electromagnetic compatible (EMC) signal.


The ECU is used to calculate the signal received from the external sensors and control at the allowable voltage level. Based on these input data and stored characteristic graph, the microprocessor can calculate out the duration and accurate moment for fuel injection and convert into time-signal curve. The specific accuracy requirement and high dynamic response of engine require high level calculation capability.

The driver stage is actuated by means of the output signal and supplies proper power to the actuators to control the common rail pressure and the high pressure pump units. In addition, the actuators can control the engine functions (such as relays for exhaust gas recirculation actuator, turbocharger pressure actuator, and electronically controlled fuel pump) and other auxiliary functions (such as fan relay, auxiliary heater relay, and electric heating plug relay, and air conditioner). The driver stage has the short-circuit protection and the protection against damage due to current overload. These types of malfunctions and the open-circuit will be reported to the microprocessor. The diagnosis function of the fuel injector driver stage can identify the error signal curve occurred. In addition, one series of output signal can be transmitted to other vehicle systems via different interfaces. Within the specific safety concept framework, the ECU can monitor the entire injection system.


The actuation of fuel injector advances special requirements over the driver stage. Within the fuel injector, the current from the driver stage generates one magnetic field force in the magnetic coil that applies onto the hydraulic high pressure system. To ensure the accurate tolerance and high repeatability of the fuel injection amount, this coil must be actuated in front of a steep current wave. This requires ECU to form high voltage.

The actuation time (fuel injection duration) can be classified by the current control circuit into start current stage and holding stage. It must work accurately to ensure that the fuel injectors can guarantee the repeatability of fuel injection under all working conditions. In addition, it must reduce the energy loss in the ECU and the fuel injectors.

# 3) Measurement analysis



Interface A



Interface K



Definition for ECU pins of EDC17 control system:

| Terminal<br>No. | Description                                    | Terminal<br>No. | Description                                   |
|-----------------|------------------------------------------------|-----------------|-----------------------------------------------|
| Interface A     |                                                |                 |                                               |
| A01             | High fuel injector of 3 <sup>rd</sup> cylinder | A31             | Low fuel injector of 2 <sup>nd</sup> cylinder |
| A02             | High fuel injector of 2 <sup>nd</sup> cylinder | A32             |                                               |
| A03             |                                                | A33             | Low fuel injector of 4 <sup>th</sup> cylinder |
| A04             | Power supply of EGR actuator                   | A34             |                                               |
| A05             |                                                | A35             | Earthing of camshaft position sensor          |
| A06             | 5V power supply of rail pressure sensor        | A36             |                                               |
| A07             | 5V power supply of absolute pressure sensor    | A37             | High coolant temperature signal               |

| Terminal<br>No. | Description                                    | Terminal<br>No. | Description                                    |
|-----------------|------------------------------------------------|-----------------|------------------------------------------------|
| A08             | 5V power supply of camshaft position sensor    | A38             |                                                |
| A09             |                                                | A39             |                                                |
| A10             |                                                | A40             | Earthing of rail pressure sensor               |
| A11             |                                                | A41             |                                                |
| A12             |                                                | A42             |                                                |
| A13             | Signal of crankshaft position sensor           | A43             |                                                |
| A14             | Earthing of crankshaft position sensor         | A44             |                                                |
| A15             |                                                | A45             |                                                |
| A16             | High fuel injector of 1 <sup>st</sup> cylinder | A46             | Low fuel injector of 3 <sup>rd</sup> cylinder  |
| A17             | High fuel injector of 4 <sup>th</sup> cylinder | A47             | Low fuel injector of 1st cylinder              |
| A18             |                                                | A48             |                                                |
| A19             | Earthing of EGR actuator                       | A49             |                                                |
| A20             |                                                | A50             | Low coolant temperature signal                 |
| A21             |                                                | A51             |                                                |
| A22             | Air conditioner relay control                  | A52             | Rail pressure sensor signal                    |
| A23             |                                                | A53             | Temperature signal of absolute pressure sensor |
| A24             |                                                | A54             | Pressure signal of absolute pressure sensor    |
| A25             |                                                | A55             |                                                |
| A26             |                                                | A56             | Shielding wire of crankshaft position sensor   |
| A27             |                                                | A57             | Signal of camshaft position sensor             |
| A28             | Earthing of absolute pressure sensor           | A58             |                                                |
| A29             |                                                | A59             |                                                |
| A30             |                                                | A60             | Control of fuel metering unit                  |
| Interface K     |                                                |                 |                                                |
| K01             | Positive pole of battery                       | K48             | Vehicle speed sensor output                    |
| K02             | Negative pole of battery                       | K49             |                                                |
| K03             | Positive pole of battery                       | K50             |                                                |
| K04             | Negative pole of battery                       | K51             | Cruise control lamp                            |
| K05             | Positive pole of battery                       | K52             | Cruise control mode                            |
| K06             | Negative pole of battery                       | K53             | Cruise control mode                            |
| K07             |                                                | K54             | Anti-theft cable                               |
| K08             |                                                | K55             | Clutch switch control                          |
| K09             |                                                | K56             |                                                |
| K10             |                                                | K57             | Preheating feedback signal                     |
| K11             |                                                | K58             | Grounding of accelerator pedal sensor 2        |
| K12             | Intake temperature signal of air flowmeter     | K59             | Pressure difference sensor signal              |

| Terminal<br>No. | Description                                   | Terminal<br>No. | Description                             |
|-----------------|-----------------------------------------------|-----------------|-----------------------------------------|
| K13             |                                               | K60             | Accelerator pedal sensor signal 2       |
| K14             |                                               | K61             |                                         |
| K15             |                                               | K62             |                                         |
| K16             |                                               | K63             | Earthing signal of air flowmeter        |
| K17             |                                               | K64             |                                         |
| K18             |                                               | K65             |                                         |
| K19             | Vehicle speed signal input                    | K66             | CAN communication                       |
| K20             | Intake flow signal of air flowmeter           | K67             | Grounding of accelerator pedal sensor 1 |
| K21             | Exhaust brake switch control                  | K68             |                                         |
| K22             | Power supply 2 of accelerator pedal sensor    | K69             | Control signal of turbocharger actuator |
| K23             | 5V power supply of EGR                        | K70             | Malfunction indicator lamp              |
| K24             |                                               | K71             | OBD indicator lamp                      |
| K25             |                                               | K72             |                                         |
| K26             |                                               | K73             |                                         |
| K27             | 5V power supply of pressure difference sensor | K74             | Cruise control mode                     |
| K28             | Power supply 1 of accelerator pedal sensor    | K75             |                                         |
| K29             | Exhaust brake relay control                   | K76             |                                         |
| K30             | Anti-theft cable                              | K77             | Water level signal                      |
| K31             | Position signal of EGR                        | K78             | Auxiliary brake switch                  |
| K32             |                                               | K79             |                                         |
| K33             |                                               | K80             | Earthing of pressure difference sensor  |
| K34             |                                               | K81             | Accelerator pedal sensor signal 1       |
| K35             |                                               | K82             |                                         |
| K36             |                                               | K83             |                                         |
| K37             | Air conditioner switch signal                 | K84             |                                         |
| K38             | Main brake switch                             | K85             |                                         |
| K39             | Earthing of EGR position sensor               | K86             |                                         |
| K40             | Cruise control mode                           | K87             | CAN communication                       |
| K41             |                                               | K88             |                                         |
| K42             |                                               | K89             |                                         |
| K43             | Engine speed signal output                    | K90             | Preheating control signal               |
| K44             | Line K diagnosis                              | K91             | Preheating indicator lamp               |
| K45             |                                               | K92             |                                         |
| K46             | Ignition switch power switch control          | K93             |                                         |
| K47             | Main relay control                            | K94             |                                         |

# 4) Malfunction Mode

Unstable idling, poor acceleration, start failure, high idling, out-of-tolerance of emission, difficult start, failure of air conditioner, control failure of fuel injector, engine flameout, etc.

Failure arising from the burnout of ECU internal parts due to electric overload of external devices; rusting of circuit

board due to water ingress of ECU.

# 5) Troubleshooting

Connect the plug and use engine data diagnosis cable to read the engine malfunction records; disconnect the plug and check whether the ECU connecting wire is intact. Mainly check whether ECU power supply and grounding circuit are normal, whether the external sensors are working normally, whether the output signal are reliable, and whether the circuit is intact.

Check whether the actuators are working normally and whether their circuits are intact. Finally replace the ECU for test

#### III. Actuators

#### 1. Fuel injector

#### 1) Overview

The fuel injectors are located on the engine cylinder head and are mainly functioned to provide accurate fuel injection for the engine at the correct moment.

#### 2) Working Principle

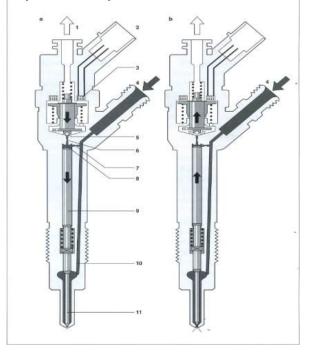
To realize effective fuel injection start point and accurate injection amount, the common rail system adopts the special fuel injector with hydraulic servo system and electronic control unit (solenoid valve). At the start of fuel injection process, the fuel injector needs to adopt a relatively high current to rapidly open the solenoid valve. Till the needle valve of the fuel injector nozzle reaches the maximum travel and the fuel injector nozzle is fully opened, the control

current is reduced to a relatively low constant current. In such case, the fuel injection amount depends on the open moment and the pressure in the common rail. When the solenoid valve is no longer working and is closed, the fuel supply process is completed.

The fuel injection start moment and the fuel injection amount are regulated by the electronically controlled fuel injector. These fuel injectors substitute the fuel injector assembly (injector nozzle and fuel injector body). Similar to the fuel injector assembly of modern direct injection diesel engine, the holders are used to install the fuel injector on the cylinder head. In other words, it's unnecessary to make any large modification to the cylinder head to install the common rail fuel injectors onto the modern direct injection diesel engine.

#### Design structure

The fuel injector (figure) can be divided into several functional blocks:


- Injector nozzle
- Hydraulic servo system
- Solenoid valve

As shown in the figure, the fuel enters into nozzle through high pressure connecting pipe (4) and fuel inlet groove (10) and enters into the valve control chamber (8) through fuel inlet (7). The control chamber is connected with fuel return pipe (1) via fuel drainage hole (6) and the fuel drainage hole

Fuel injector

a. Close of fuel injector (Still state) b. Open of fuel injector (Fuel injection)

1. Fuel return pipe 2. Electric connector 3. Control unit (electromagnetic field) 4. Rail fuel inlet (high pressure) 5. Ball valve 6. Fuel drainage hole 7. Fuel inlet hole 8. Valve control chamber 9. Valve control plunger 10. Fuel inlet groove to injector nozzle 11. Injector nozzle needle valve



is opened by solenoid valve. After the fuel drainage hole is closed, the hydraulic force applied onto the valve controlled plunger (9) exceeds the pressure on the pressure shoulder of injector nozzle needle valve (11). Therefore, the needle valve is pushed into the needle valve seat to block the high pressure passage to the combustion chamber. When the solenoid valve of the fuel injector is actuated, the fuel drainage hole opens. In such case, the pressure in the control chamber drops and thus the force applied onto the plunger reduces. Once the hydraulic pressure is less than the force applied onto the pressure shoulder of the needle valve, the injector nozzle needle valve opens and the fuel injects into the combustion chamber via the injection hole. The cause to indirectly control the injector nozzle needle valve by hydraulic gain system is that the solenoid valve can't directly generate the force required to rapidly open the needle valve. The control amount required to open the injector nozzle needle valve is not included from the actual fuel injection amount and is conveyed to the fuel return pipe through the fuel drainage hole of the control chamber. Besides the control amount, the loss control fuel and the leak fuel at the injector nozzle needle valve and the valve plunger chamber are conveyed to the fuel tank via the fuel return pipe and the fuel collection pipe connecting the relief valve.

Depending on the working condition of the engine and the pressure generated by the high pressure fuel pump, the fuel injector can be classified to 4 working conditions:

- Close of fuel injector (due to application of high pressure)
- Open of fuel injector (start of fuel injection)
- Full open of fuel injector
- Close of fuel injector (complete of fuel injection)

These working conditions are generated by means of the pressure distribution applied onto the fuel injector parts. When the engine is stopped and there is no pressure in the common rail, the injector nozzle spring will close the fuel injector.

Close of fuel injector (still state):

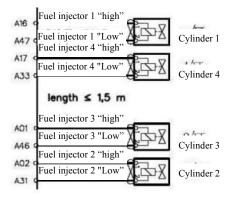
The solenoid valve is not actuated under still state and thus the fuel injector is closed (a). When the fuel drainage hole is closed, the valve spring will press the ball vale of armature onto the fuel return orifice. The high pressure of common rail is formed in the valve control chamber. Afterwards, a similar pressure is formed within the injector nozzle chamber. The pressure applied onto the end face of control plunger by the rail pressure and the injector nozzle spring force work together against the open force applied onto the conical pressure bearing face of needle valve by fuel to maintain the needle valve at close state.

Open of fuel injector (start of fuel injection):

While the injector nozzle is at still state, the solenoid valve is actuated by the start current to ensure rapid open (b). The force generated by the actuated solenoid valve overcomes the spring force so that the armature opens the fuel drainage hole. Almost at the same time, the high start current drops to the low holding current required by the electric magnet. This is possible as the air cap of the magnetic circuit becomes really small. When the ball valve of the fuel drainage hole opens, the fuel flows from the valve control chamber to the empty chamber above and then returns to the fuel tank via the fuel return pipe. The fuel drainage hole makes the pressure not completely balanced so that the pressure in the valve control chamber drops. Therefore, the pressure in the valve control chamber is less than the pressure of the fuel rail, which is still maintained in the fuel injector chamber, and the pressure drop in the valve control chamber reduces the force applied onto the control plunger so that the injector nozzle needle valve opens and the fuel injection starts.

The open speed of the injector nozzle needle valve depends on the flow difference between the fuel drainage hole and the fuel inlet hole. The control plunger reaches its top dead center and then is held by one film of fuel, which is formed by the fuel flow between the fuel drainage hole and the fuel inlet hole. In such case, the injector nozzle completely opens and the fuel is injected into the combustion chamber at a pressure almost equaling to the fuel pressure in the common rail. The pressure distribution in the injector nozzle is similar to that at the open stage.

Close of fuel injector (complete of fuel injection):


When the solenoid valve is no longer actuated, the valve spring pushes down the armature so that the ball of the valve

closes the fuel drainage hole. The armature is of two-part design. Though the armature block is guided by the pressure shoulder during the downward movement, it can bounce back following the return spring and thus will not apply downward force onto the armature and the ball valve.

The close of fuel drainage hole enables the entry of fuel via fuel inlet hole into the control chamber for pressure establishment. This pressure is equivalent to the rail pressure and applies additional force onto the end face of the control plunger. The resultant force from this force and spring force overcomes the pressure in the injector nozzle chamber to close the injector nozzle needle valve.

The close speed of the injector nozzle needle valve depends on the flow passing through the fuel inlet hole. Once the injector nozzle needle valve hits its lower seat again, the fuel injection stops.

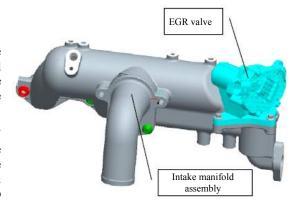
#### 3) Measurement analysis



# 4) Matching of fuel injector

The matching of fuel injector must be performed in event of any of the following conditions:

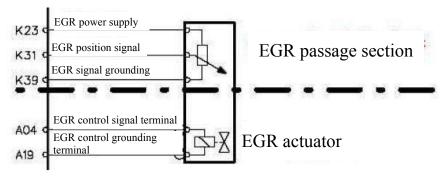
- Replacement of fuel injector.
- Replacement of ECU
- Confusion of installation serial number before and after the maintenance.


While performing the matching, input the matching code on the fuel injector (as shown in the figure) in order into the diagnosis instrument for matching.

# 9747 78824 999 1888 1898 1899

# 2. EGR valve control system

#### 1) Overview

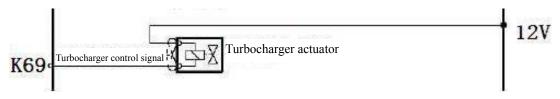

- The electronically controlled EGR valve controls the open extent of the valve by means of the positive and reverse rotation of the DC motor and performs the close-loop control as per the feedback signal of the position sensor.
- To guarantee the NOx emission of the engine, the ECU measures and calculates the EGR percentage as per the input parameters of the engine (such as speed and intake pressure) and the calibrated MAPs), issues control signal to the EGR valve, and performs the close-loop control via the position sensor.



• The EGR valve is installed on the intake manifold. The constant temperature of the EGR valve inlet emission

Maintenance manual for sunray hfc4da1-2c china-IV diesel engines can't exceed 260°C, with the peak temperature no more than 300°C.

#### 2) Measurement analysis




#### 3. Variable nozzle turbocharger (VNT) control

### 1) Overview

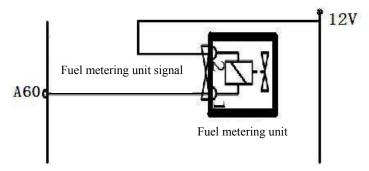
- HFC4DA1-2C adopts variable section turbocharger technology so that the turbocharger and the engine are well
  matched under all working conditions to realize best engine performance.
- The blades of the VNT are connected to the control tie rod and the displacement of the control tie rod is controlled by the vacuum pressure of the vacuum chamber on the VNT. Changing the vacuum pressure of the vacuum chamber can change the position of VNT blades and control the flow area of the turbine. The vacuum pressure of the vacuum chamber is controlled by VNT solenoid valve, of which one port is connected to the vacuum chamber on the VNT, one port is connected to the vacuum pump, and another port is connected to the air. This connector in the engine is additionally fitted with filter to prevent the ingress of contaminant (such as dust) into the valve. The open extent of the VNT solenoid valve is regulated by the PWM wave issued by ECU and the solenoid valve is installed on the crossbeam of the body water tank.

#### 2) Measurement analysis



# 4. Fuel metering unit

#### 1) Overview

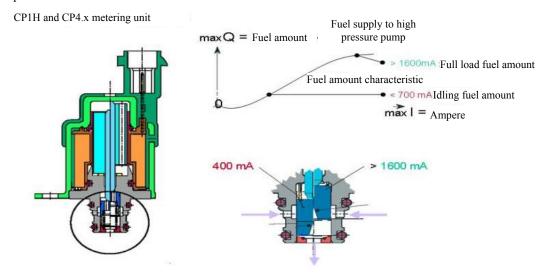

The fuel metering unit is located on the high pressure fuel pump and is functioned to control the fuel amount from the low pressure pump to the high pressure pump.

# 2) Working Principle

The fuel metering valve is installed at the high pressure fuel inlet of high pressure fuel pump and is functioned to regulate the fuel supply amount and fuel pressure, of which the regulation requirement is subject to the control of ECU. The control coil of the metering valve is closed when not electrified, which cuts off the fuel supply to the plunger of high pressure fuel pump. The ECU changes the fuel inlet section area of metering unit by means of pulse signal to increase or reduce the fuel supply amount.

#### 3) Measurement analysis

Wiring terminals: 1 – Signal terminal; 2 – 12V voltage.




#### 4) Malfunction Mode

Short-circuit or open-circuit of metering valve; damage of metering valve; contamination of metering valve.

#### 5) Troubleshooting

Use Sunray special diagnosis instrument to check the trouble code and determine the malfunction position. Mainly check the circuit of metering valve and determine whether there is short-circuit or open-circuit between circuit and the grounding wire, whether there is short-circuit or open-circuit to power supply, and whether the circuit is consistent with the given pin definition.



#### 5. Preheating control unit

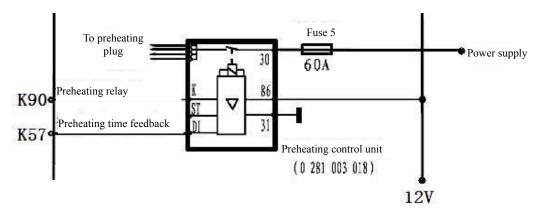
# 1) Overview

The preheating control unit is located in the engine compartment and is mainly functioned for the rapid start of engine under cold state.

# 2) Working Principle

The preheating control unit is functioned to ensure effective cold start and shorten the warm-up time, which is closely related to the exhaust emission. The preheating time is a function of coolant temperature. At the start of the engine or during the actual running, the turn-on duration of the electric heating plug depends on one series of parameters, including the fuel injection amount and engine speed. The control of the electric heating plug is realized by one power relay (GCU).

The main part of the electric heating plug is the tubular heating unit. The heating unit is firmly and air-tightly installed within the electric heating plug housing to guard against corrosion and thermal gas impact. The heating unit is one


helical metal wire embedded within the magnesium oxide powder (Figure). This helical metal wire is composed of two resistors in series connection and one heating oil and one control coil are installed on the tip of the heating tube. The heating coil maintains one resistance almost irrelevant to the temperature and the control coil is made of positive temperature coefficient (PTC) material. In the new generation heating plug (GSK2), the rise amplitude in the resistance of control coil is larger than common electric heating plug. With capability of rapidly reaching the temperature required for ignition (up to 850°C within 4s) and relatively low constant temperature, new electric heating plug GSK features outstanding performance. Therefore, the temperature of the electric heating plug is restrained at one critical value. Therefore, after the start of the engine, the GSKZ electric heating plug can continue to maintain electrified for 3min. This after-combustion performance improves the noise and exhaust emission of start and warm-up stages.

The control instrument of the electric heating plug adopts one power relay and the electric switch set to control the electric heating plug, which control the heating time of electric heating plug and feature the protection and monitoring functions. Thanks to its diagnosis function, higher grade of electric heating plug control instrument can identify the malfunction of single electric heating plug and display to the driver. The control input terminal of the electric heating plug control instrument is connected to the electronic control unit (ECU) via multi-pole plug. To prevent the voltage drop, the series connection circuit connected to the electric heating plug adopts the threaded pin or connector.

The controlled preheating process and the start process are controlled by the electric heating plug starter switch. The preheating process is started when the key is turned to "ON" position. When the heating control lamp goes out, the electric heating plug reaches sufficient temperature and the start process can be conducted. In the subsequent start process, the fuel drips injected will be atomized and get combusted in the compressed hot air so that the heat released starts the combustion process.

The after-heating after the successful start can help the warm-up process to form one speed promotion and idle run with no interruption and little smoke. This can reduce the combustion noise at the cold start. In event of non-successful start, the protection circuit of the electric heating plug is turned off to prevent the excessive discharge of the battery.

# 3) Measurement analysis



# 4) Malfunction Mode:

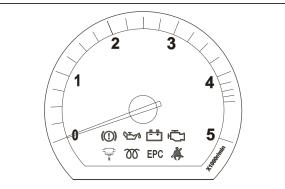
Short-circuit or open-circuit of preheating control unit;

Damage of preheating control unit;

#### 5) Troubleshooting:

Use special diagnosis instrument to check the trouble code and determine the malfunction position. Mainly check the circuit of preheating control unit and determine whether there is short-circuit or open-circuit between circuit and the grounding wire, whether there is short-circuit or open-circuit to power supply, and whether the circuit is consistent with the given pin definition.

#### 6. Malfunction indicator lamp


# 1) Overview

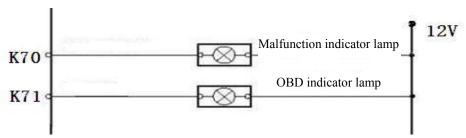
The malfunction indicator lamp is located on the instrument. In event of malfunction of engine control system units, the engine malfunction indicator lamp will light up to

remind the driver for checking and service by the service station as soon as possible.

2) Working Principle

The malfunction indicator lamp (MIL) is located on the instrument panel and is directly powered by the voltage of battery. The engine control unit (ECU) lights up the malfunction indicator lamp by grounding the control circuit of malfunction indicator lamp. When the ignition switch is turned on but the engine is not started, the malfunction indicator lamp (MIL) shall light up for 5s and then go out.



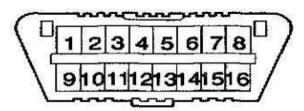

Functions of malfunction indicator lamp:

- The malfunction indicator lamp reminds the driver of the occurrence of malfunction. The vehicle shall be serviced as soon as possible.
- The malfunction indicator lamp lights up during the test of the malfunction indicator lamp.
- If the diagnosis procedure requests to light up the malfunction indicator lamp, one diagnosis trouble code will be stored.

Light-up of malfunction indicator lamp

- When the ignition switch is turned on but the engine is not started, the malfunction indicator lamp will light up for 5s and then go out.
- The malfunction indicator lamp goes out after the engine is started.
- If any malfunction is detected by the self-diagnosis system, the malfunction indicator lamp will keep lighted up.
- If no malfunction is detected, the malfunction indicator lamp will go out.

# 3) Measurement analysis




#### 4) Malfunction Mode

Short-circuit or open-circuit between engine control unit to instrument circuit.

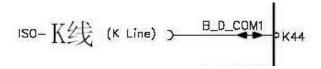
#### 5) Troubleshooting:

Use Sunray special diagnosis instrument to check the trouble code and determine the malfunction position. Mainly check the circuit from engine control unit to



instrument circuit and determine whether there is short-circuit or open-circuit between circuit and the grounding wire, whether there is short-circuit or open-circuit to power supply, and whether the circuit is consistent with the given pin definition

#### 7. Diagnosis interface


#### 1) Overview

The diagnosis interface is located in the electric box beneath the driver's side instrument panel and is used to connect the special diagnosis instrument.

#### 2) Working Principle

This is one data transmission interface for communication with ECU and is one standard OBD interface.

#### 3) Measurement analysis



#### 4) Malfunction Mode

Short-circuit or open-circuit between engine control unit and diagnosis interface.

Working failure of engine control unit.

# 5) Troubleshooting:

Use Sunray special diagnosis instrument to check the trouble code and determine the malfunction position. Mainly check the circuit from engine control unit to diagnosis interface circuit and determine whether there is short-circuit or open-circuit between circuit and the grounding wire, whether there is short-circuit or open-circuit to power supply, and whether the circuit is consistent with the given pin definition.

# **Chapter IV Engine Diagnosis**

# Section I. Precautions

# 1. Removal/Installation Requirements for Electronic Control Unit (ECU):

- Remove the controller before welding or baking finish;
- When removing the controller, turn off the ignition switch and disconnect the battery from the system at the same time, in order to avoid damaging the ECU.
- It is not allowed to remove power cord from the battery when the engine or the electrical system is working.
- Large-current equipment such as charger is not allowed to be directly connected to the starting motor.
- Note: The ambient temperature of ECU should not be greater than 75 degree.

# 2. Cleaning Requirements:

Please observe the following rules before the operation of fuel supply system and fuel injection system:

• The removed components should be placed at clean field and properly covered by the cloth other than fiber type (cotton cloth or gauze cloth)

# 3. All types of harness connectors and the connector for diagnostic instrument should be connected and disconnected only when the ignition switch is turned off:

- When measuring the power voltage or ground wire of the ECU, please ensure the wiring sequence and method is correct.
- Disconnecting the power cord or the ground wire of the battery from the system or removing ECU harness connector will result in the loss of diagnosis and self-learning information stored in ECU. (If the vehicle model is different, the time of retaining Pleas of the ECU is also different after the loss of power.)

# 4. Please pay attention to the following points when maintaining the fuel supply system (fuel supply pipe, fuel pump and fuel injection system):

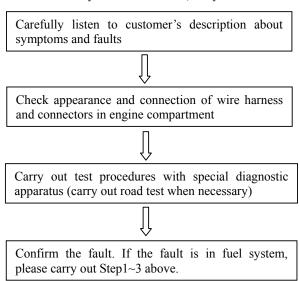
- Please be very careful during installation/removal of fuel pump on the fuel tank with fuel.
- Prepare proper materials around the fuel tank opening to absorb a lot of fuel leaked from it timely...
- Avoid the fuel contacting your body.
- Thoroughly clean the part and its surrounding before loosening a connector.
- Please prevent any fuel from splashing from the loose part and place a rug around the connector.
- If the disassembled parts could not be timely repaired or properly treated, store the parts properly.
- Take the spare parts out of the package only when they are needed to be installed. Do not use unpacked spare parts and the spare parts in severe damaged package
- Do not damage the O-ring of return pipe when assembling fuel injector return pipe. Coat a little diesel oil on the O-ring for assembling convenience.
- Do not use the compressed air and do not move the vehicle after the fuel supply system is disassembled.

# **5. Safety Measures**

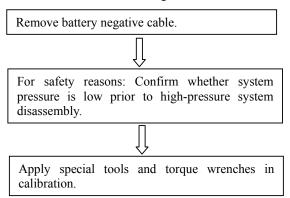
To prevent the maintenance technicians from being injured and the fuel and ECU being damaged, please pay attention

Maintenance manual for sunray hfc4da1-2c china-IV diesel engines to the following points:

- If the engine is working or at the starting speed, it is not allowed to check for any single cylinder failure by the way of disconnecting the fuel injector harness.
- If the engine needs to be dragged but not started by the starter, such as when you check the engine cylinder pressure, the harness plug should be disconnected from the crankshaft position (engine speed) sensor and camshaft position (phase) sensor. After inspection, all sensors should be well connected and system DTCs should be cleared by using the special diagnostic instrument for JAC commercial vehicles.
- It is not allowed to touch the engine gear train and rotating parts when the engine is at high speed;
- When the engine reaches normal operating temperature, the coolant temperature and pressure of cooling system
  is very high; therefore, stop the engine and let the cooling system fully cool down if it is needed to repair the
  engine cooling system.
- If the engine compartment relevant maintenance is necessary to be conducted in repairing engine fuel system, please do it after the engine compartment is fully cooled down.
- Don't touch the engine cooling fan at any time when the system is normally electrified, for the cooling fan is likely to be started suddenly.


# **Section II. Maintenance Procedures**

Fuel system of common rail engine consists of low-pressure delivery pipes and high-pressure oil pipes and maximum pressure of it is over 1800bar. Some components of fuel injector and HP pump are machined with accuracy of 0.1mm. Pressure regulation and fuel injection are controlled by engine ECU. In the case of stuck internal needle valve, fuel injector will maintain open and HP pump keeps operating to supply high-pressure fuel oil. Therefore, excessive fuel will be sprayed into combustion chamber and this will lead to rapid increase of combustion chamber internal pressure (over 250bar) and even serious engine damage.


Core component of fuel system possesses very high accuracy and will be easily influenced by dust or tiny foreign matters. Therefore, the following preparations and procedures should be carried out or there will be a lot of system failures.

#### **Operation Procedures:**

- 1. It is necessary to keep maintenance site clean (it should be free of dust especially);
- 2. It is necessary to keep maintenance tools clean (they should be free of oil and foreign matters);
- 3. Wear ethylene pinafore to prevent hairs, dust and foreign matters from entering engine fuel system. Wash your hands instead of wear gloves;
- 4. Prior to fuel system maintenance, carry out the following procedures:



- 5. If the fault is in HP pump, fuel delivery line or fuel injector, prepare clean special tools and sealing covers and carry out relevant procedures for engine fuel system. Prior to maintenance, clean relevant areas to engine compartment completely;
- 6. Find out faulted parts according to the above operation procedures and replace these parts with parts from OEM;



In disassembly or replacement of fuel injector, it is necessary to apply new copper washers and tighten fixing bolts for fuel injector according to fixed torque at the same time. Otherwise, injection position of fuel injector will deviate from correct position and this will make engine operation out of control.

- 7. Apply clean and intact sealing covers on disassembled components and keep them well;
- 8. After fuel injector replacement, carry out fuel injector matching with special diagnostic apparatus;
- 9. Keep pressing manual oil delivery pump on oil-water separator to provide low-pressure line with fuel oil until the pump can not be pressed any longer.

Attention: Do not start the engine before the pump is filled up.

- 10. Recheck installed components, connect battery cable and start the engine for engine operation condition inspection;
- 11. Apply special diagnostic apparatus to check current faults for existence and eliminate historical faults.

# **Section III. Fault Diagnosis**

#### 1. Fault Information Record

Electronic control unit continually monitors sensors, actuators, relevant circuits, MILs, battery voltage and even its self and carries out reliability tests to sensor output signals, actuator drive signals and internal signals. Once there are faults in certain link or certain signal is unreliable, electronic control unit sets fault information record in RAM fault memory immediately. Fault information record is stored in the form of diagnostic trouble code (DTC) and shown in the sequence of fault occurrence.

Faults can be divided into "steady fault" and "random fault" (such as faults caused by temporary open circuit of harness or poor contact of connectors) according to fault occurrence frequency.

#### 2. Fault Condition

If duration of an identified fault exceeds set stabilization time for the first time, ECU identifies it as a steady fault and stores it as a "steady fault". If the fault disappears, ECU identifies it as a "random fault" and "nonexistent". If the fault is identified once again, it is still a "random fault". However, "existent" historical faults will not influence normal application of engine.

# 3. Fault Type

Short to power supply positive pole

Short or open to ground (In the case of pull-up or pull-down resistor for input stage, ECU will identify open circuit failure of input port as the fault of input port short to power supply positive pole or short to ground)

Unreliable signal

# 4. Fault Frequency Counter

For every identified fault, there is an individual frequency counter value (HZ). Frequency counter value (Hz) determines storage time of corresponding fault information record in the memory after fault disappearance (fault elimination).

For the first time fault identification, it (Hz) is set to be its initial value as 40. If fault condition does not change, this value will maintain the same forever.

Once identified fault has disappeared and then the condition has been maintained for certain period of time, the value (Hz) is reduced by 1 after every successful engine start (engine speed exceeds that of engine start completion). At this moment, ECU recognizes the fault has disappeared but fault information record still exists.

If the fault (such as fault caused by poor contact) appears and disappears frequently, the value (Hz) is increased by 1 but the value will not exceed set upper limit of 100.

When the value (Hz) becomes zero, all fault information records in the fault memory are cleared completely.

#### 5. Fault Alarm

In the case of electronic control system, when there are faults in some important components such as ECU, coolant temperature sensor, phase sensor, boost pressure sensor, revolution speed sensor, air flow meter, fuel injector, fan relay and etc, ECU will give alarms via MIL flashing until faults are eliminated.

#### 6. Fault Reading

Fault information records can be brought out from electronic control unit via fault diagnostic apparatus. However, some faults can be detected only when vehicle reaches corresponding operation condition.

#### 7. Elimination of Fault Information Record

Fault information records in memory should be cleared after fault elimination. DTC can be cleared with ways as follows:

- . When value of ECU frequency counter (Hz) becomes 0, fault information records in fault memory are all cleared automatically.
- . In the case of "Fault memory zero clearing" command, fault information records can be cleared with the application of fault diagnostic apparatus.

# 8. Fault Detection

After obtaining fault information records with means above, only suspicious positions for fault occurrence are known. However, this does not mean faults have been detected. Therefore, cause for one fault may be damaged electrical component (like sensor or actuator or ECU, etc), wire in open circuit, wire short to ground or battery positive pole and even mechanical failure.

Faults are internal with their external expressions as various symptoms. When symptoms are detected, check fault information record for existence with fault diagnostic apparatus or flash code first of all and then eliminate corresponding faults. Finally, detect faults according to engine symptoms.

# **Section IV. DTC List**

| S/N | DTC   | Meaning                                                                                                 |
|-----|-------|---------------------------------------------------------------------------------------------------------|
| 1   | P0030 | The linear oxygen sensor heater circuit is open.                                                        |
| 2   | P0031 | The linear oxygen sensor heater circuit is short to ground.                                             |
| 3   | P0032 | The linear oxygen sensor heater circuit is short to battery.                                            |
| 4   | P0045 | EGR valve circuit is open.                                                                              |
| 5   | P0046 | Overtemperature of EGR valve bridge-H chip                                                              |
| 6   | P0047 | EGR valve circuit is short to ground.                                                                   |
| 7   | P0048 | EGR valve circuit is short to power supply.                                                             |
| 8   | P0068 | Short-term drifting error in the process of throttle offset self-adaption                               |
| 9   | P0069 | The absolute difference between intercooler downstream air pressure and ambient pressure is unreliable. |
| 10  | P0070 | Reliability check function for ambient temperature                                                      |
| 11  | P0072 | Too low ambient temperature                                                                             |
| 12  | P0073 | Too high ambient temperature                                                                            |
| 13  | P0087 | The minimum rail pressure is below the lower limit.                                                     |
| 14  | P0088 | The maximum rail pressure is above the upper limit.                                                     |
| 15  | P0097 | The signal level of intercooler downstream temperature is too low.                                      |
| 16  | P0098 | The signal level of intercooler downstream temperature is too high.                                     |
| 17  | P00BE | The original value of fuel rail pressure is incoherent.                                                 |
| 18  | P0100 | The supply voltage of air flow sensor exceeds the limit.                                                |
| 19  | P0101 | Timeout error of air flow sensor hardware signal                                                        |
| 20  | P0102 | The sensitivity deviation of air flow sensor is below the lower limit.                                  |
| 21  | P0103 | The sensitivity deviation of air flow sensor is above the upper limit.                                  |
| 22  | P010C | The signal level measured by air flow sensor is too low.                                                |
| 23  | P010D | The signal level measured by air flow sensor is too high.                                               |
| 24  | P0112 | The voltage is below the lower limit of intake air temperature sensor.                                  |
| 25  | P0113 | The voltage is above the upper limit of intake air temperature sensor.                                  |
| 26  | P0116 | Error reported in dynamic reliability test of coolant temperature sensor                                |
| 27  | P0117 | Coolant temperature signal level is too low (downstream).                                               |
| 28  | P0118 | Coolant temperature signal level is too high (downstream).                                              |
| 29  | P0119 | Error reported in static reliability test of coolant temperature sensor                                 |
| 30  | P0122 | The signal level of accelerator pedal position sensor 1 is relatively low.                              |
| 31  | P0123 | The signal level of accelerator pedal position sensor 1 is relatively high.                             |
| 32  | P0127 | The signal level of air temperature sensor is relatively high.                                          |

| S/N | DTC   | Meaning                                                                                                  |
|-----|-------|----------------------------------------------------------------------------------------------------------|
| 33  | P0128 | Closed-loop control is actuated due to too low coolant temperature.                                      |
| 34  | P0131 | Oxygen sensor IAIPUNVG point is short to ground.                                                         |
| 35  | P0132 | Oxygen sensor IAIPUNVG point is short to battery.                                                        |
| 36  | P0168 | The signal level of fuel temperature sensor is relatively high.                                          |
| 37  | P0182 | The signal level of fuel temperature sensor is below the lower limit.                                    |
| 38  | P0183 | The signal level of fuel temperature sensor is above the upper limit.                                    |
| 39  | P0191 | The uncorrected rail pressure value is above the upper limit of drift.                                   |
| 40  | P0192 | The voltage of fuel rail pressure sensor is below the lower limit.                                       |
| 41  | P0193 | The voltage of fuel rail pressure sensor is above the upper limit.                                       |
| 42  | P0194 | The uncorrected rail pressure value is below the lower limit of drift.                                   |
| 43  | P0195 | Engine oil temperature signal fault on CAN                                                               |
| 44  | P0196 | The oil temperature signal is unreliable.                                                                |
| 45  | P0197 | The oil temperature signal level is too low.                                                             |
| 46  | P0198 | The oil temperature signal level is too high.                                                            |
| 47  | P0201 | The 1 <sup>st</sup> cylinder fuel injector circuit is open.                                              |
| 48  | P0202 | The 2 <sup>nd</sup> cylinder fuel injector circuit is open.                                              |
| 49  | P0203 | The 3 <sup>rd</sup> cylinder fuel injector circuit is open.                                              |
| 50  | P0204 | The 4 <sup>th</sup> cylinder fuel injector circuit is open.                                              |
| 51  | P0205 | The 5 <sup>th</sup> cylinder fuel injector circuit is open.                                              |
| 52  | P0206 | The 6 <sup>th</sup> cylinder fuel injector circuit is open.                                              |
| 53  | P020A | An error is reported when the time for electrifying the 1 <sup>st</sup> cylinder reaches to the maximum. |
| 54  | P020B | An error is reported when the time for electrifying the 2 <sup>nd</sup> cylinder reaches to the maximum. |
| 55  | P020C | An error is reported when the time for electrifying the 3 <sup>rd</sup> cylinder reaches to the maximum. |
| 56  | P020D | An error is reported when the time for electrifying the 4 <sup>th</sup> cylinder reaches to the maximum. |
| 57  | P020E | An error is reported when the time for electrifying the 5 <sup>th</sup> cylinder reaches to the maximum. |
| 58  | P020F | An error is reported when the time for electrifying the 6 <sup>th</sup> cylinder reaches to the maximum. |
| 59  | P0215 | Avoid resonance of double mass flywheel when stopping.                                                   |
| 60  | P0219 | Overspeed protection for engine parts                                                                    |
| 61  | P0222 | The signal level of accelerator pedal position sensor 2 is relatively low.                               |
| 62  | P0223 | The signal level of accelerator pedal position sensor 2 is relatively high.                              |

| S/N | DTC    | Meaning                                                                                                       |
|-----|--------|---------------------------------------------------------------------------------------------------------------|
| 63  | P022A  | EGR valve circuit is open.                                                                                    |
| 64  | P022B  | EGR valve circuit is short to ground.                                                                         |
| 65  | P022C  | EGR valve circuit is short to power supply.                                                                   |
| 66  | P022E  | The signal level at the output position of EGR cooling bypass valve position sensor is below the lower limit. |
| 67  | P022F  | The signal level at the output position of EGR cooling bypass valve position sensor is above the upper limit. |
| 68  | P0234  | The actual air intake flow is greater than the target set by system.                                          |
| 69  | P0237  | The original voltage of intercooler downstream air pressure sensor is below the lower limit.                  |
| 70  | P0238  | The original voltage of intercooler downstream air pressure sensor is above the upper limit.                  |
| 71  | P023D  | The long-term jitter of EGR valve exceeds the limit.                                                          |
| 72  | P023E  | The short-term jitter of EGR valve exceeds the limit.                                                         |
| 73  | P024A  | An error is reported when the temperature of EGR cooler bypass valve in electrifying phase is too high.       |
| 74  | P024E  | The signal level measured by EGR cooler bypass valve position sensor is below the limit.                      |
| 75  | P024F  | The signal level measured by EGR cooler bypass valve position sensor is above the limit.                      |
| 76  | P0251  | The fuel metering unit circuit is open.                                                                       |
| 77  | P0252  | The temperature of fuel metering unit driver module is too high.                                              |
| 78  | P0253  | The fuel metering unit circuit is short to ground.                                                            |
| 79  | P0254  | The fuel metering unit circuit is short to power supply.                                                      |
| 80  | P0255  | Poor contact between ECU and fuel metering unit                                                               |
| 81  | P025C  | The voltage of fuel metering unit is below the lower limit.                                                   |
| 82  | P025D  | The voltage of fuel metering unit is above the upper limit.                                                   |
| 83  | P0263  | An error is reported when the electrifying time reaches to the maximum.                                       |
| 84  | P0266  | An error is reported when the electrifying time reaches to the maximum.                                       |
| 85  | P0269  | An error is reported when the electrifying time reaches to the maximum.                                       |
| 86  | P0272  | An error is reported when the electrifying time reaches to the maximum.                                       |
| 87  | P0275  | An error is reported when the electrifying time reaches to the maximum.                                       |
| 88  | P0278  | An error is reported when the electrifying time reaches to the maximum.                                       |
| 89  | P0299. | The positive deviation of pressure controller is above the upper limit.                                       |
| 90  | P0335  | No signal from crankshaft                                                                                     |
| 91  | P0336  | Crankshaft speed signal is irrational.                                                                        |
| 92  | P0339  | Camshaft speed signal is irrational.                                                                          |

| S/N | DTC   | Meaning                                                                                       |
|-----|-------|-----------------------------------------------------------------------------------------------|
| 93  | P0340 | No signal from camshaft                                                                       |
| 94  | P0341 | The offset angle of camshaft is too large.                                                    |
| 95  | P0380 | The preheating indicator light output circuit is high.                                        |
| 96  | P0382 | The preheating indicator light output circuit is low.                                         |
| 97  | P0383 | EGR valve circuit is short to ground.                                                         |
| 98  | P0384 | EGR valve circuit is short to power supply.                                                   |
| 99  | P0401 | The actual air intake flow is greater than the target set by system.                          |
| 100 | P0402 | The actual air intake flow is less than the target set by system.                             |
| 101 | P0403 | Overtemperature of EGR valve bridge-H chip                                                    |
| 102 | P0404 | The short-term jitter of EGR valve exceeds the limit.                                         |
| 103 | P0405 | The original voltage of EGR valve sensor signal is below the lower limit.                     |
| 104 | P0406 | The original voltage of EGR valve sensor signal is above the upper limit.                     |
| 105 | P0409 | EGR valve circuit is open.                                                                    |
| 106 | P040C | The signal level of EGR cooler downstream temperature sensor is relatively low.               |
| 107 | P040D | The signal level of EGR cooler downstream temperature sensor is relatively high.              |
| 108 | P0426 | Upstream temperature fault of oxidation catalytic converter                                   |
| 109 | P0427 | The signal level of upstream temperature of oxidation catalytic converter is relatively low.  |
| 110 | P0428 | The signal level of upstream temperature of oxidation catalytic converter is relatively high. |
| 111 | P0480 | EGR valve circuit is open.                                                                    |
| 112 | P0481 | EGR valve circuit is open.                                                                    |
| 113 | P0483 | Overtemperature of EGR valve bridge-H chip                                                    |
| 114 | P0484 | Overtemperature of EGR valve bridge-H chip                                                    |
| 115 | P0487 | CJ945 Power level no-load fault                                                               |
| 116 | P0488 | CJ945 Overheating fault                                                                       |
| 117 | P0489 | EGR valve circuit is short to ground.                                                         |
| 118 | P0490 | EGR valve circuit is short to power supply.                                                   |
| 119 | P0500 | Wheel fault                                                                                   |
| 120 | P0501 | Unreliable vehicle speed                                                                      |
| 121 | P0503 | Signal of speed sensor exceeds the upper limit.                                               |
| 122 | P0504 | Unreliable brake signal                                                                       |
| 123 | P0520 | Engine oil pressure signal fault on CAN                                                       |
| 124 | P0521 | The maximum oil pressure signal is unreliable.                                                |
| 125 | P0522 | The signal level of oil pressure sensor is relatively low.                                    |

| S/N | DTC   | Meaning                                                                                                                                       |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 126 | P0523 | The signal level of oil pressure sensor is relatively high.                                                                                   |
| 127 | P0524 | The minimum oil pressure signal is unreliable.                                                                                                |
| 128 | P0532 | The signal level measured by A/C coolant pressure sensor is too low.                                                                          |
| 129 | P0533 | The signal level measured by A/C coolant pressure sensor is too high.                                                                         |
| 130 | P0537 | The signal level of A/C evaporator's temperature is relatively low.                                                                           |
| 131 | P0538 | The signal level of A/C evaporator's temperature is relatively high.                                                                          |
| 132 | P0562 | The signal level of battery voltage sensor is too low.                                                                                        |
| 133 | P0563 | The signal level of battery voltage sensor is too high.                                                                                       |
| 134 | P0571 | False brake signal                                                                                                                            |
| 135 | P0575 | The analog cruise control signal is unreliable.                                                                                               |
| 136 | P0576 | The analog cruise control signal level is too low.                                                                                            |
| 137 | P0577 | The analog cruise control signal level is too high.                                                                                           |
| 138 | P0578 | The analog cruise control button is stuck.                                                                                                    |
| 139 | P0607 | Cy320 Hardware error reported                                                                                                                 |
| 140 | P060A | Error reported in monitoring too high voltage                                                                                                 |
| 141 | P060D | The accelerator pedal voltage signal is unreliable.                                                                                           |
| 142 | P0611 | The injection frequency is limited by system.                                                                                                 |
| 143 | P061B | Error reported in torque comparison                                                                                                           |
| 144 | P061C | The deviation difference between the engine speed signals obtained from the 1 <sup>st</sup> level and the 2 <sup>nd</sup> level is too large. |
| 145 | P061D | The set value of air system is limited by the torque limit of the function control unit.                                                      |
| 146 | P061F | Error reported in the process of throttle offset self-adaption                                                                                |
| 147 | P0627 | The control line of priming fuel pump is open.                                                                                                |
| 148 | P0628 | The control line of priming fuel pump is short to ground.                                                                                     |
| 149 | P0629 | The control line of priming fuel pump is short to power supply.                                                                               |
| 150 | P062A | Overheating of priming pump                                                                                                                   |
| 151 | P062B | The set value of fuel injection amount is limited by the torque limit of the function control unit.                                           |
| 152 | P062F | Error reported in EEP read-write                                                                                                              |
| 153 | P0643 | The sensor power supply monitoring fault 1                                                                                                    |
| 154 | P0645 | The compressor circuit is open.                                                                                                               |
| 155 | P0646 | The compressor circuit is short to ground in electrifying phase.                                                                              |
| 156 | P0647 | The compressor circuit is short to power supply in electrifying phase.                                                                        |
| 157 | P0650 | EGR valve circuit is open.                                                                                                                    |
| 158 | P0653 | The sensor power supply monitoring fault 2                                                                                                    |
|     |       | -                                                                                                                                             |

| S/N | DTC   | Meaning                                                                                                                 |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------|
| 159 | P0660 | The positive deviation of throttle controller exceeds the upper limit for a long time.                                  |
| 160 | P0661 | The Port 1 of EGR valve bridge-H chip is short to ground.                                                               |
| 161 | P0662 | The Port 1 of EGR valve bridge-H chip is short to power supply.                                                         |
| 162 | P0663 | Short circuit / overload of EGR valve bridge-H                                                                          |
| 163 | P0664 | The Port 2 of EGR valve bridge-H chip is short to ground.                                                               |
| 164 | P0665 | The Port 2 of EGR valve bridge-H chip is short to power supply.                                                         |
| 165 | P0668 | The voltage of ECU temperature sensor is below the lower limit.                                                         |
| 166 | P0669 | The voltage of ECU temperature sensor is above the upper limit.                                                         |
| 167 | P0670 | EGR valve circuit is open.                                                                                              |
| 168 | P0686 | The main relay opens too early.                                                                                         |
| 169 | P0687 | The main relay opens too late.                                                                                          |
| 170 | P0691 | EGR valve circuit is short to power supply.                                                                             |
| 171 | P0692 | EGR valve circuit is short to ground.                                                                                   |
| 172 | P0693 | EGR valve circuit is short to power supply.                                                                             |
| 173 | P0694 | EGR valve circuit is short to ground.                                                                                   |
| 174 | P0699 | The sensor power supply monitoring fault 3                                                                              |
| 175 | P0704 | Clutch signal error                                                                                                     |
| 176 | P0737 | Then engine speed output signal circuit is open.                                                                        |
| 177 | P0738 | Then engine speed output signal circuit is short to ground.                                                             |
| 178 | P0739 | Then engine speed output signal circuit is short to power supply.                                                       |
| 179 | P0A32 | Parking counter error                                                                                                   |
| 180 | P1000 | The long-term jitter of EGR valve exceeds the limit.                                                                    |
| 181 | P1001 | The relief valve reaches to the maximum permissible opening position.                                                   |
| 182 | P1002 | The relief valve reaches to the maximum permissible opening time.                                                       |
| 183 | P1003 | The average fuel rail pressure regulated by relief valve is out of the range.                                           |
| 184 | P1004 | Check the flow equilibrium if the relief valve is opened normally.                                                      |
| 185 | P1005 | The relief valve opens.                                                                                                 |
| 186 | P1006 | The relief valve is forced open to implement the pressure shock.                                                        |
| 187 | P1007 | The torque in MAP for torque and fuel conversion does not increase along the fuel direction strictly and monotonically. |
| 188 | P1008 | PhyMod_trq2qBas_MAP contains non-strict and non-monotonic Q curve.                                                      |
| 189 | P1011 | The positive deviation of rail pressure is above the upper limit.                                                       |
| 190 | P1012 | The negative deviation of rail pressure is below the lower limit.                                                       |
| 191 | P1013 | The maximum negative deviation of rail pressure is below the lower limit.                                               |

| S/N | DTC   | Meaning                                                                    |
|-----|-------|----------------------------------------------------------------------------|
| 192 | P1020 | The heating drive circuit of fuel filter is open.                          |
| 193 | P1021 | The heating drive circuit of fuel filter is short to power supply.         |
| 194 | P1022 | The heating drive circuit of fuel filter is short to ground.               |
| 195 | P102A | The signal level of ambient pressure sensor is relatively high.            |
| 196 | P102B | The signal level of ambient pressure sensor is relatively low.             |
| 197 | P102C | The signal level of ambient temperature sensor is relatively high.         |
| 198 | P102D | The signal level of ambient temperature sensor is relatively low.          |
| 199 | P1030 | Overtemperature of EGR valve bridge-H chip                                 |
| 200 | P1031 | Short circuit / overload of EGR valve bridge-H                             |
| 201 | P1032 | Overcurrent of EGR valve bridge-H based on temperature                     |
| 202 | P1033 | Under-voltage of EGR valve bridge-H                                        |
| 203 | P1034 | The EGR valve in closed status is stuck.                                   |
| 204 | P1035 | The EGR valve in open status is stuck.                                     |
| 205 | P1036 | The long-term jitter of EGR valve exceeds the limit.                       |
| 206 | P1037 | An error is reported when the EGR valve is stuck in closing or opening.    |
| 207 | P1038 | The physical value of EGR valve position sensor is too high.               |
| 208 | P1039 | The physical value of EGR valve position sensor is too low.                |
| 209 | P103A | The signal level of intercooler downstream temperature is relatively high. |
| 210 | P103B | The signal level of intercooler downstream temperature is relatively low.  |
| 211 | P103C | EGR valve offset is unreliable.                                            |
| 212 | P103D | The positive deviation of regeneration controller is above the limit.      |
| 213 | P103E | The positive deviation of regeneration controller is below the limit.      |
| 214 | P1040 | Overheating of throttle bridge-H                                           |
| 215 | P1041 | Short circuit / overload of throttle bridge-H                              |
| 216 | P1042 | Overtemperature caused by overcurrent of throttle bridge-H                 |
| 217 | P1043 | Long-term deviation in the process of throttle self-adaption               |
| 218 | P1044 | Output circuit 2 of throttle bridge-H is short to ground.                  |
| 219 | P1045 | Under-voltage of throttle bridge-H                                         |
| 220 | P1046 | Output circuit 2 of throttle bridge-H is short to power supply.            |
| 221 | P1047 | The physical value of throttle position is below the lower limit.          |
| 222 | P1048 | The throttle circuit is short to ground.                                   |
| 223 | P1049 | The physical value of throttle position is above the upper limit.          |
| 224 | P104A | The throttle circuit is short to power supply.                             |
| 225 | P1060 | OBD General fault 1                                                        |

| S/N | DTC   | Meaning                                                                                                  |
|-----|-------|----------------------------------------------------------------------------------------------------------|
| 226 | P1061 | OBD General fault 10                                                                                     |
| 227 | P1062 | OBD General fault 11                                                                                     |
| 228 | P1063 | OBD General fault 12                                                                                     |
| 229 | P1064 | OBD General fault 13                                                                                     |
| 230 | P1065 | OBD General fault 14                                                                                     |
| 231 | P1066 | OBD General fault 15                                                                                     |
| 232 | P1067 | OBD General fault 16                                                                                     |
| 233 | P1068 | OBD General fault 2                                                                                      |
| 234 | P1069 | OBD General fault 3                                                                                      |
| 235 | P106A | OBD General fault 4                                                                                      |
| 236 | P106B | OBD General fault 5                                                                                      |
| 237 | P106C | OBD General fault 6                                                                                      |
| 238 | P106D | OBD General fault 7                                                                                      |
| 239 | P106E | OBD General fault 8                                                                                      |
| 240 | P106F | OBD General fault 9                                                                                      |
| 241 | P1070 | Blockage of particulate filter                                                                           |
| 242 | P1100 | The regulated idling value of air flow sensor is above the upper limit.                                  |
| 243 | P1102 | The duty cycle of air temperature sensor on the air flow meter is above the upper limit.                 |
| 244 | P1103 | The duty cycle of air temperature sensor on the air flow meter is below the lower limit.                 |
| 245 | P1106 | The time interval measured by the air temperature sensor on the air flow meter is above the upper limit. |
| 246 | P1107 | The time interval measured by the air temperature sensor on the air flow meter is below the lower limit. |
| 247 | P110A | System degradation 0                                                                                     |
| 248 | P110B | Level-1 degradation                                                                                      |
| 249 | P110C | Level-2 degradation                                                                                      |
| 250 | P110D | Level-3 degradation                                                                                      |
| 251 | P110E | Vehicle performance limit function is activated.                                                         |
| 252 | P1110 | The detected signal within physical range is relatively high.                                            |
| 253 | P1111 | The engine coolant temperature signal level is relatively low.                                           |
| 254 | P1120 | The correction of air flow sensor load exceeds the maximum deviation limit.                              |
| 255 | P1121 | The physical value of air flow meter is above the upper limit.                                           |
| 256 | P1122 | The physical value of air flow meter is below the lower limit.                                           |

| S/N | DTC   | Meaning                                                                                                      |
|-----|-------|--------------------------------------------------------------------------------------------------------------|
| 257 | P1123 | The signal level of intake air temperature sensor (integrated inside the air flow sensor) is relatively low. |
| 258 | P1130 | The signal level of fuel temperature sensor is relatively low.                                               |
| 259 | P1131 | The signal of fuel temperature is unreliable.                                                                |
| 260 | P113A | The signal of too high oil temperature is unreliable.                                                        |
| 261 | P113B | The signal level of oil temperature sensor is relatively high.                                               |
| 262 | P113C | The signal level of oil temperature sensor is relatively low.                                                |
| 263 | P1200 | Short circuit between the high end and low end of the 1st cylinder fuel injector                             |
| 264 | P1201 | Short circuit between the high end and low end of the 2 <sup>nd</sup> cylinder fuel injector                 |
| 265 | P1202 | Short circuit between the high end and low end of the 3 <sup>rd</sup> cylinder fuel injector                 |
| 266 | P1203 | Short circuit between the high end and low end of the 4 <sup>th</sup> cylinder fuel injector                 |
| 267 | P1204 | Short circuit between the high end and low end of the 5 <sup>th</sup> cylinder fuel injector                 |
| 268 | P1205 | Short circuit between the high end and low end of the 6 <sup>th</sup> cylinder fuel injector                 |
| 269 | P1207 | 1 <sup>st</sup> cylinder special error                                                                       |
| 270 | P1208 | 2 <sup>nd</sup> cylinder special error                                                                       |
| 271 | P1209 | 3 <sup>rd</sup> cylinder special error                                                                       |
| 272 | P120A | 4 <sup>th</sup> cylinder special error                                                                       |
| 273 | P120B | 5 <sup>th</sup> cylinder special error                                                                       |
| 274 | P120C | 6 <sup>th</sup> cylinder special error                                                                       |
| 275 | P1210 | An error is reported when the time for electrifying the 1 <sup>st</sup> cylinder reaches to the minimum.     |
| 276 | P1211 | An error is reported when the time for electrifying the 2 <sup>nd</sup> cylinder reaches to the minimum.     |
| 277 | P1212 | An error is reported when the time for electrifying the 3 <sup>rd</sup> cylinder reaches to the minimum.     |
| 278 | P1213 | An error is reported when the time for electrifying the 4 <sup>th</sup> cylinder reaches to the minimum.     |
| 279 | P1214 | An error is reported when the time for electrifying the 5 <sup>th</sup> cylinder reaches to the minimum.     |
| 280 | P1215 | An error is reported when the time for electrifying the 6 <sup>th</sup> cylinder reaches to the minimum.     |
| 281 | P1216 | Maximum deviation error in the inner control circuit of electronic throttle                                  |
| 282 | P1217 | Minimum deviation error in the inner control circuit of electronic throttle                                  |
| 283 | P1218 | Maximum deviation error in the outer control circuit of electronic throttle                                  |
| 284 | P1219 | Minimum deviation error in the outer control circuit of electronic throttle                                  |
| 285 | P121A | 1 <sup>st</sup> cylinder IQA error                                                                           |
| 286 | P121B | 2 <sup>nd</sup> cylinder IQA error                                                                           |

| S/N | DTC   | Meaning                                                                                                                            |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------|
| 287 | P121C | 3 <sup>rd</sup> cylinder IQA error                                                                                                 |
| 288 | P121D | 4 <sup>th</sup> cylinder IQA error                                                                                                 |
| 289 | P121E | 5 <sup>th</sup> cylinder IQA error                                                                                                 |
| 290 | P121F | 6 <sup>th</sup> cylinder IQA error                                                                                                 |
| 291 | P1220 | The signal level of intercooler downstream temperature sensor is relatively high.                                                  |
| 292 | P1221 | The signal level of intercooler downstream temperature sensor is relatively low.                                                   |
| 293 | P122A | The positive deviation of throttle controller exceeds the upper limit for a long time.                                             |
| 294 | P122B | The negative deviation of throttle controller is below the lower limit for a long time.                                            |
| 295 | P1230 | Error reported in monitoring the OBDII maximum threshold correction                                                                |
| 296 | P1231 | Error reported in monitoring the OBDII minimum threshold correction                                                                |
| 297 | P1245 | System degradation information                                                                                                     |
| 298 | P1250 | An error is triggered when the ET time of the 1 <sup>st</sup> cylinder reaches the maximum limit (when the ZEL comes into effect). |
| 299 | P1251 | An error is triggered when the ET time of the 2 <sup>nd</sup> cylinder reaches the maximum limit (when the ZEL comes into effect). |
| 300 | P1252 | An error is triggered when the ET time of the 3 <sup>rd</sup> cylinder reaches the maximum limit (when the ZEL comes into effect). |
| 301 | P1253 | An error is triggered when the ET time of the 4 <sup>th</sup> cylinder reaches the maximum limit (when the ZEL comes into effect). |
| 302 | P1254 | An error is triggered when the ET time of the 1 <sup>st</sup> cylinder reaches the minimum limit (when the ZEL comes into effect). |
| 303 | P1255 | An error is triggered when the ET time of the 2 <sup>nd</sup> cylinder reaches the minimum limit (when the ZEL comes into effect). |
| 304 | P1256 | An error is triggered when the ET time of the 3 <sup>rd</sup> cylinder reaches the minimum limit (when the ZEL comes into effect). |
| 305 | P1257 | An error is triggered when the ET time of the 4 <sup>th</sup> cylinder reaches the minimum limit (when the ZEL comes into effect). |
| 306 | P1400 | EGR valve circuit is open.                                                                                                         |
| 307 | P1401 | Overtemperature of EGR valve bridge-H chip                                                                                         |
| 308 | P1402 | EGR valve circuit is short to power supply.                                                                                        |
| 309 | P1403 | EGR valve circuit is short to ground.                                                                                              |
| 310 | P140A | The signal level of the EGR cooler downstream temperature is relatively high.                                                      |
| 311 | P140B | The signal level of the EGR cooler downstream temperature is relatively low.                                                       |
| 312 | P1410 | The positive deviation of throttle controller exceeds the upper limit for a long time.                                             |
| 313 | P1411 | The negative deviation of throttle controller is below the lower limit for a long time.                                            |
| 314 | P1415 | The time for transforming from RGN to NRM mode is too long.                                                                        |
| 315 | P1418 | The indicator actuator circuit for EGR bypass regulating valve is open.                                                            |

| S/N | DTC   | Meaning                                                                               |
|-----|-------|---------------------------------------------------------------------------------------|
| 316 | P1419 | Overheating of indicator actuator for EGR bypass regulating valve                     |
| 317 | P141A | The indicator actuator circuit for EGR bypass regulating valve is short to battery.   |
| 318 | P141B | The indicator actuator circuit for EGR bypass regulating valve is short to ground.    |
| 319 | P141C | The relay actuator circuit for EGR bypass regulating valve is open.                   |
| 320 | P141D | Overheating of relay actuator for EGR bypass regulating valve                         |
| 321 | P141E | The relay actuator circuit for EGR bypass regulating valve is short to battery.       |
| 322 | P141F | The relay actuator circuit for EGR bypass regulating valve is short to ground.        |
| 323 | P1420 | The maximum exhaust temperature signal of the 1 <sup>st</sup> cylinder is too strong. |
| 324 | P1421 | The maximum exhaust temperature signal of the 2 <sup>nd</sup> cylinder is too strong. |
| 325 | P1422 | The maximum exhaust temperature signal of the 3 <sup>rd</sup> cylinder is too strong. |
| 326 | P1423 | The maximum exhaust temperature signal of the 4 <sup>th</sup> cylinder is too strong. |
| 327 | P1424 | The maximum exhaust temperature signal of the 5 <sup>th</sup> cylinder is too strong. |
| 328 | P1425 | The maximum exhaust temperature signal of the 6 <sup>th</sup> cylinder is too strong. |
| 329 | P1426 | The minimum exhaust temperature signal of the 1 <sup>st</sup> cylinder is too strong. |
| 330 | P1427 | The minimum exhaust temperature signal of the 2 <sup>nd</sup> cylinder is too strong. |
| 331 | P1428 | The minimum exhaust temperature signal of the 3 <sup>rd</sup> cylinder is too strong. |
| 332 | P1429 | The minimum exhaust temperature signal of the 4 <sup>th</sup> cylinder is too strong. |
| 333 | P142A | The minimum exhaust temperature signal of the 5 <sup>th</sup> cylinder is too strong. |
| 334 | P142B | The minimum exhaust temperature signal of the 6 <sup>th</sup> cylinder is too strong. |
| 335 | P1430 | The exhaust temperature T0 in cold start is unreliable.                               |
| 336 | P1431 | The exhaust temperature T1 in cold start is unreliable.                               |
| 337 | P1432 | The exhaust temperature T2 in cold start is unreliable.                               |
| 338 | P1433 | The exhaust temperature T3 in cold start is unreliable.                               |
| 339 | P1434 | The exhaust temperature T4 in cold start is unreliable.                               |
| 340 | P1435 | The exhaust temperature T5 in cold start is unreliable.                               |
| 341 | P1436 | The exhaust temperature signal is unreliable.                                         |
| 342 | P1437 | Unreliable monitoring of the 1st cylinder exhaust temperature                         |
| 343 | P1438 | Unreliable monitoring of the 2 <sup>nd</sup> cylinder exhaust temperature             |
| 344 | P1439 | Unreliable monitoring of the 3 <sup>rd</sup> cylinder exhaust temperature             |
| 345 | P143A | Unreliable monitoring of the 4 <sup>th</sup> cylinder exhaust temperature             |
| 346 | P143B | Unreliable monitoring of the 5 <sup>th</sup> cylinder exhaust temperature             |
| 347 | P143C | Unreliable monitoring of the 6 <sup>th</sup> cylinder exhaust temperature             |
| 348 | P1440 | Negative deviation error of oxygen sensor regulator                                   |
| 349 | P1441 | Positive deviation error of oxygen sensor regulator                                   |

| S/N | DTC   | Meaning                                                                                                            |
|-----|-------|--------------------------------------------------------------------------------------------------------------------|
| 350 | P1442 | Conversion failure of oxygen sensor regulator                                                                      |
| 351 | P1450 | The particulate filter upstream temperature is unreliable.                                                         |
| 352 | P1451 | The signal level of particulate filter upstream temperature is relatively high.                                    |
| 353 | P1452 | The signal level of particulate filter upstream temperature is relatively low.                                     |
| 354 | P1453 | The signal level of particulate filter upstream temperature sensor is relatively high.                             |
| 355 | P1454 | The signal level of particulate filter upstream temperature sensor is relatively low.                              |
| 356 | P1455 | Connection failure of particulate filter differential pressure sensor hose                                         |
| 357 | P1456 | The particulate filter differential pressure sensor is unreliable.                                                 |
| 358 | P1457 | Maximum characteristic differential pressure of particulate filter                                                 |
| 359 | P1458 | Minimum characteristic differential pressure of particulate filter                                                 |
| 360 | P1459 | Minimum deviation of particulate filter                                                                            |
| 361 | P145A | The signal level of particulate filter flow impedance is high.                                                     |
| 362 | P145B | Maximum deviation of particulate filter smoke mass                                                                 |
| 363 | P145C | Minimum deviation of particulate filter smoke mass                                                                 |
| 364 | P145D | Maximum value of particulate filter smoke mass                                                                     |
| 365 | P145E | The signal level of particulate filter flow impedance is relatively high.                                          |
| 366 | P145F | The signal level of particulate filter flow impedance is relatively low.                                           |
| 367 | P1460 | The maximum differential pressure signal of particulate filter is enhanced.                                        |
| 368 | P1461 | The minimum differential pressure signal of particulate filter is enhanced.                                        |
| 369 | P1462 | The dynamic differential pressure of particulate filter is unreliable.                                             |
| 370 | P1463 | The differential pressure self-adaption of particulate filter hose is unreliable.                                  |
| 371 | P1464 | Particulate filter differential pressure error                                                                     |
| 372 | P146A | The physical value of differential pressure sensor for particulate oxidation catalyst exceeds the upper limit.     |
| 373 | P146B | The physical value of differential pressure sensor for particulate oxidation catalyst falls below the lower limit. |
| 374 | P146C | CAN Signal error                                                                                                   |
| 375 | P146D | CAN Signal error                                                                                                   |
| 376 | P1470 | Nernst signal error of oxygen sensor                                                                               |
| 377 | P1471 | The oxygen sensor is virtually grounded.                                                                           |
| 378 | P1472 | The dynamic signal level of oxygen sensor is relatively low.                                                       |
| 379 | P1473 | Oxygen sensor heater coupling signal fault                                                                         |
| 380 | P1474 | The oxygen sensor heater signal is unreliable.                                                                     |
| 381 | P1475 | The oxygen sensor battery voltage is relatively low.                                                               |
| 382 | P1476 | The calibration signal level of oxygen sensor is relatively high.                                                  |

| S/N | DTC   | Meaning                                                                                   |
|-----|-------|-------------------------------------------------------------------------------------------|
| 383 | P1477 | The calibration signal level of oxygen sensor is relatively low.                          |
| 384 | P1478 | The oxygen concentration of oxygen sensor exceeds the maximum threshold.                  |
| 385 | P1479 | The oxygen concentration of oxygen sensor exceeds the minimum threshold.                  |
| 386 | P147A | Relatively high oxygen concentration is unreliable.                                       |
| 387 | P147B | Relatively high oxygen concentration is unreliable.                                       |
| 388 | P147C | Relatively high oxygen concentration is unreliable.                                       |
| 389 | P147D | Relatively low oxygen concentration is unreliable.                                        |
| 390 | P147E | Relatively low oxygen concentration is unreliable.                                        |
| 391 | P147F | Relatively low oxygen concentration is unreliable.                                        |
| 392 | P1480 | The calibration value of oxygen sensor internal impedance is too high.                    |
| 393 | P1481 | The calibration value of oxygen sensor internal impedance is too low.                     |
| 394 | P1482 | The SPI battery voltage of oxygen sensor is too low.                                      |
| 395 | P1483 | The SPI signal of oxygen sensor is unreliable.                                            |
| 396 | P1484 | The oxygen sensor temperature is above the upper limit.                                   |
| 397 | P1485 | The oxygen sensor temperature is below the lower limit.                                   |
| 398 | P1486 | The oxygen sensor voltage in shunting exceeds the threshold.                              |
| 399 | P148A | The signal level of turbocharger upstream temperature sensor is relatively high.          |
| 400 | P148B | The signal level of turbocharger upstream temperature sensor is relatively low.           |
| 401 | P1500 | The voltage signal level of vehicle speed sensor is relatively high.                      |
| 402 | P1501 | The voltage signal level of vehicle speed sensor is relatively low.                       |
| 403 | P150A | Power supply diagnosis is disabled in electrifying phase due to overvoltage of battery.   |
| 404 | P150B | Power supply diagnosis is disabled in electrifying phase due to under-voltage of battery. |
| 405 | P1510 | The signal level measured by A/C coolant pressure sensor is too low.                      |
| 406 | P1511 | The signal level measured by A/C coolant pressure sensor is too low.                      |
| 407 | P1512 | The signal level measured by A/C coolant pressure sensor is too high.                     |
| 408 | P1513 | The signal level measured by A/C coolant pressure sensor is too high.                     |
| 409 | P1514 | Overtemperature of compressor torque reduction command circuit in electrifying phase      |
| 410 | P1515 | A/C switch CAN input signal is unreliable.                                                |
| 411 | P1516 | The compressor torque reduction command circuit in electrifying phase is short to ground. |
| 412 | P1517 | The compressor torque reduction command circuit in electrifying phase is short to power.  |
| 413 | P1520 | Short circuit of turbocharger bridge-H                                                    |

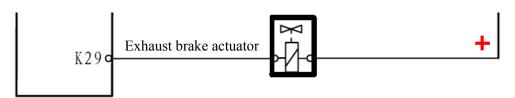
| S/N | DTC   | Meaning                                                                      |
|-----|-------|------------------------------------------------------------------------------|
| 414 | P1521 | Under-voltage of turbocharger bridge-H                                       |
| 415 | P1522 | Overcurrent of turbocharger bridge-H                                         |
| 416 | P1523 | Overtemperature of turbocharger bridge-H                                     |
| 417 | P1524 | Overcurrent of turbocharger bridge-H temperature sensor                      |
| 418 | P1525 | The valve is stuck in deviation learning process.                            |
| 419 | P1526 | Output circuit 1 of turbocharger bridge-H is short to ground.                |
| 420 | P1527 | Output circuit 1 of turbocharger bridge-H is short to ground.                |
| 421 | P1528 | Output circuit 1 of turbocharger bridge-H is short to battery.               |
| 422 | P1529 | Output circuit 2 of turbocharger bridge-H is short to battery.               |
| 423 | P1601 | EGR valve circuit is open.                                                   |
| 424 | P1602 | Too high downstream temperature of coolant temperature sensor is unreliable. |
| 425 | P1603 | EGR valve circuit is short to power supply.                                  |
| 426 | P1604 | EGR valve circuit is short to ground.                                        |
| 427 | P1608 | EGR valve circuit is short to power supply.                                  |
| 428 | P1609 | EGR valve circuit is short to ground.                                        |
| 429 | P160A | EGR valve circuit is open.                                                   |
| 430 | P160B | Overtemperature of EGR valve bridge-H chip                                   |
| 431 | P160C | Overcurrent of turbocharger bridge-H temperature sensor                      |
| 432 | P1610 | Execute closing fuel injection under standard ICO mode.                      |
| 433 | P1613 | The electrifying time detected by galloping prevention monitor is too long.  |
| 434 | P1614 | Several faults occur during SPI communication.                               |
| 435 | P1615 | Time-out when trying to set up or cancel alarm task                          |
| 436 | P1617 | Error reported in monitoring under-voltage                                   |
| 437 | P1618 | WDA works abnormally.                                                        |
| 438 | P1619 | EGR valve circuit is short to power supply.                                  |
| 439 | P161A | EGR valve circuit is short to ground.                                        |
| 440 | P161B | EGR valve circuit is open.                                                   |
| 441 | P161C | EGR valve circuit is open.                                                   |
| 442 | P161D | Failure in software reset visibility                                         |
| 443 | P161E | Failure in software reset visibility                                         |
| 444 | P161F | Failure in software reset visibility                                         |
| 445 | P1620 | TTLAMP drive circuit is open.                                                |
| 446 | P1621 | The drive circuit for fuel consumption display is short to power supply.     |
| 447 | P1622 | The drive circuit for fuel consumption display is short to ground.           |

| 448P1623The drive circuit for fuel consumption display is open.449P1624Overtemperature of the drive circuit for fuel consumption display450P1625TTLAMP drive circuit is short to power supply.451P1626TTLAMP drive circuit is short to ground.452P1627Overheating of TTLAMP drive circuit453P1633The signal level of ECU temperature sensor is relatively high.454P1634The signal level of ECU temperature sensor is relatively high.455P1635The signal level of ECU temperature sensor is relatively low.456P1636The signal level of ECU temperature sensor is relatively low.457P1637The power supply voltage is too high.458P1638The power supply voltage is too low.459P1639The physical value of ECU temperature sensor exceeds the upper limit.460P163AThe physical value of ECU temperature sensor falls below the lower limit.461P163BECU temperature sensor SPI fault (LM71)462P1640Compressor overtemperature in electrifying phase463P1643Signal safety checkout error464P1645The injection frequency is limited by the high pressure fuel pump fuel quantity balance.466P1647The injection frequency is limited by the runtime.467P164CEGR valve circuit is open.468P164DEGR valve circuit is short to power supply.469P164EEGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 450 P1625 TTLAMP drive circuit is short to power supply.  451 P1626 TTLAMP drive circuit is short to ground.  452 P1627 Overheating of TTLAMP drive circuit  453 P1633 The signal level of ECU temperature sensor is relatively high.  454 P1634 The signal level of ECU temperature sensor is relatively high.  455 P1635 The signal level of ECU temperature sensor is relatively low.  456 P1636 The signal level of ECU temperature sensor is relatively low.  457 P1637 The power supply voltage is too high.  458 P1638 The power supply voltage is too low.  459 P1639 The physical value of ECU temperature sensor exceeds the upper limit.  460 P163A The physical value of ECU temperature sensor falls below the lower limit.  461 P163B ECU temperature sensor SPI fault (LM71)  462 P1640 Compressor overtemperature in electrifying phase  463 P1643 Signal safety checkout error  464 P1645 The injection frequency is limited by the boosting electric quantity charging bal  465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity balance.  466 P1647 The injection frequency is limited by the runtime.  467 P164C EGR valve circuit is open.  468 P164D EGR valve circuit is short to power supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 451 P1626 TTLAMP drive circuit is short to ground. 452 P1627 Overheating of TTLAMP drive circuit 453 P1633 The signal level of ECU temperature sensor is relatively high. 454 P1634 The signal level of ECU temperature sensor is relatively high. 455 P1635 The signal level of ECU temperature sensor is relatively low. 456 P1636 The signal level of ECU temperature sensor is relatively low. 457 P1637 The power supply voltage is too high. 458 P1638 The power supply voltage is too low. 459 P1639 The physical value of ECU temperature sensor exceeds the upper limit. 460 P163A The physical value of ECU temperature sensor falls below the lower limit. 461 P163B ECU temperature sensor SPI fault (LM71) 462 P1640 Compressor overtemperature in electrifying phase 463 P1643 Signal safety checkout error 464 P1645 The injection frequency is limited by the boosting electric quantity charging bal 465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity balance. 466 P1647 The injection frequency is limited by the runtime. 467 P164C EGR valve circuit is open. 468 P164D EGR valve circuit is short to power supply. 469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 452 P1627 Overheating of TTLAMP drive circuit 453 P1633 The signal level of ECU temperature sensor is relatively high. 454 P1634 The signal level of ECU temperature sensor is relatively high. 455 P1635 The signal level of ECU temperature sensor is relatively low. 456 P1636 The signal level of ECU temperature sensor is relatively low. 457 P1637 The power supply voltage is too high. 458 P1638 The power supply voltage is too low. 459 P1639 The physical value of ECU temperature sensor exceeds the upper limit. 460 P163A The physical value of ECU temperature sensor falls below the lower limit. 461 P163B ECU temperature sensor SPI fault (LM71) 462 P1640 Compressor overtemperature in electrifying phase 463 P1643 Signal safety checkout error 464 P1645 The injection frequency is limited by the boosting electric quantity charging bal 465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity balance. 466 P1647 The injection frequency is limited by the runtime. 467 P164C EGR valve circuit is open. 468 P164D EGR valve circuit is short to power supply. 469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 453 P1633 The signal level of ECU temperature sensor is relatively high. 454 P1634 The signal level of ECU temperature sensor is relatively high. 455 P1635 The signal level of ECU temperature sensor is relatively low. 456 P1636 The signal level of ECU temperature sensor is relatively low. 457 P1637 The power supply voltage is too high. 458 P1638 The power supply voltage is too low. 459 P1639 The physical value of ECU temperature sensor exceeds the upper limit. 460 P163A The physical value of ECU temperature sensor falls below the lower limit. 461 P163B ECU temperature sensor SPI fault (LM71) 462 P1640 Compressor overtemperature in electrifying phase 463 P1643 Signal safety checkout error 464 P1645 The injection frequency is limited by the boosting electric quantity charging bal 465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity balance. 466 P1647 The injection frequency is limited by the runtime. 467 P164C EGR valve circuit is open. 468 P164D EGR valve circuit is short to power supply. 469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 454 P1634 The signal level of ECU temperature sensor is relatively high. 455 P1635 The signal level of ECU temperature sensor is relatively low. 456 P1636 The signal level of ECU temperature sensor is relatively low. 457 P1637 The power supply voltage is too high. 458 P1638 The power supply voltage is too low. 459 P1639 The physical value of ECU temperature sensor exceeds the upper limit. 460 P163A The physical value of ECU temperature sensor falls below the lower limit. 461 P163B ECU temperature sensor SPI fault (LM71) 462 P1640 Compressor overtemperature in electrifying phase 463 P1643 Signal safety checkout error 464 P1645 The injection frequency is limited by the boosting electric quantity charging bal 465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity 466 P1647 The injection frequency is limited by the runtime. 467 P164C EGR valve circuit is open. 468 P164D EGR valve circuit is short to power supply. 469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 455 P1635 The signal level of ECU temperature sensor is relatively low. 456 P1636 The signal level of ECU temperature sensor is relatively low. 457 P1637 The power supply voltage is too high. 458 P1638 The power supply voltage is too low. 459 P1639 The physical value of ECU temperature sensor exceeds the upper limit. 460 P163A The physical value of ECU temperature sensor falls below the lower limit. 461 P163B ECU temperature sensor SPI fault (LM71) 462 P1640 Compressor overtemperature in electrifying phase 463 P1643 Signal safety checkout error 464 P1645 The injection frequency is limited by the boosting electric quantity charging bal 465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity 466 P1647 The injection frequency is limited by the runtime. 467 P164C EGR valve circuit is open. 468 P164D EGR valve circuit is short to power supply. 469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 456 P1636 The signal level of ECU temperature sensor is relatively low.  457 P1637 The power supply voltage is too high.  458 P1638 The power supply voltage is too low.  459 P1639 The physical value of ECU temperature sensor exceeds the upper limit.  460 P163A The physical value of ECU temperature sensor falls below the lower limit.  461 P163B ECU temperature sensor SPI fault (LM71)  462 P1640 Compressor overtemperature in electrifying phase  463 P1643 Signal safety checkout error  464 P1645 The injection frequency is limited by the boosting electric quantity charging bal.  465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity balance.  466 P1647 The injection frequency is limited by the runtime.  467 P164C EGR valve circuit is open.  468 P164D EGR valve circuit is short to power supply.  469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 457 P1637 The power supply voltage is too high. 458 P1638 The power supply voltage is too low. 459 P1639 The physical value of ECU temperature sensor exceeds the upper limit. 460 P163A The physical value of ECU temperature sensor falls below the lower limit. 461 P163B ECU temperature sensor SPI fault (LM71) 462 P1640 Compressor overtemperature in electrifying phase 463 P1643 Signal safety checkout error 464 P1645 The injection frequency is limited by the boosting electric quantity charging bal. 465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity balance. 466 P1647 The injection frequency is limited by the runtime. 467 P164C EGR valve circuit is open. 468 P164D EGR valve circuit is short to power supply. 469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The power supply voltage is too low.  The physical value of ECU temperature sensor exceeds the upper limit.  The physical value of ECU temperature sensor falls below the lower limit.  The physical value of ECU temperature sensor falls below the lower limit.  ECU temperature sensor SPI fault (LM71)  Compressor overtemperature in electrifying phase  P1643 Signal safety checkout error  The injection frequency is limited by the boosting electric quantity charging bal.  The injection frequency is limited by the high pressure fuel pump fuel quantity balance.  P1646 P1647 The injection frequency is limited by the runtime.  EGR valve circuit is open.  EGR valve circuit is short to power supply.  EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 459 P1639 The physical value of ECU temperature sensor exceeds the upper limit.  460 P163A The physical value of ECU temperature sensor falls below the lower limit.  461 P163B ECU temperature sensor SPI fault (LM71)  462 P1640 Compressor overtemperature in electrifying phase  463 P1643 Signal safety checkout error  464 P1645 The injection frequency is limited by the boosting electric quantity charging ball  465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity balance.  466 P1647 The injection frequency is limited by the runtime.  467 P164C EGR valve circuit is open.  468 P164D EGR valve circuit is short to power supply.  469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The physical value of ECU temperature sensor falls below the lower limit.  Held Pl63B ECU temperature sensor SPI fault (LM71)  ECU temperature sensor SPI fault (LM71)  Compressor overtemperature in electrifying phase  Signal safety checkout error  The injection frequency is limited by the boosting electric quantity charging balance.  The injection frequency is limited by the high pressure fuel pump fuel quantity balance.  The injection frequency is limited by the runtime.  EGR valve circuit is open.  EGR valve circuit is short to power supply.  EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 461 P163B ECU temperature sensor SPI fault (LM71)  462 P1640 Compressor overtemperature in electrifying phase  463 P1643 Signal safety checkout error  464 P1645 The injection frequency is limited by the boosting electric quantity charging balance.  465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity balance.  466 P1647 The injection frequency is limited by the runtime.  467 P164C EGR valve circuit is open.  468 P164D EGR valve circuit is short to power supply.  469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 462P1640Compressor overtemperature in electrifying phase463P1643Signal safety checkout error464P1645The injection frequency is limited by the boosting electric quantity charging ball465P1646The injection frequency is limited by the high pressure fuel pump fuel quantity<br>balance.466P1647The injection frequency is limited by the runtime.467P164CEGR valve circuit is open.468P164DEGR valve circuit is short to power supply.469P164EEGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 463 P1643 Signal safety checkout error  464 P1645 The injection frequency is limited by the boosting electric quantity charging ball  465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity  466 P1647 The injection frequency is limited by the runtime.  467 P164C EGR valve circuit is open.  468 P164D EGR valve circuit is short to power supply.  469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 464 P1645 The injection frequency is limited by the boosting electric quantity charging balance.  465 P1646 The injection frequency is limited by the high pressure fuel pump fuel quantity balance.  466 P1647 The injection frequency is limited by the runtime.  467 P164C EGR valve circuit is open.  468 P164D EGR valve circuit is short to power supply.  469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The injection frequency is limited by the high pressure fuel pump fuel quantity balance.  The injection frequency is limited by the runtime.  The injection frequency is limited by the runtime.  EGR valve circuit is open.  EGR valve circuit is short to power supply.  FIGH EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| balance.  Here the problem of the pr |
| 467 P164C EGR valve circuit is open.  468 P164D EGR valve circuit is short to power supply.  469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 468 P164D EGR valve circuit is short to power supply.  469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 469 P164E EGR valve circuit is short to ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 470 P1650 EEP Clear Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 471 P1651 EEP Clear Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 472 P1652 An error is reported when the module's data-writing is disabled for three times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 473 P165A Null dataset identifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 474 P165B Dataset switchover fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 475 P165C EEPROM data-reading error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 476 P1660 ADC open circuit pulse test fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 477 P1662 The voltage being transformed by ADC module exceeds the set range of test vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 478 P1663 The radiometry correction exceeds the set range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 479 P1664 Monitoring control communication fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 480 P1665 SPI Monitoring control communication fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| S/N | DTC   | Meaning                                                                                                                              |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------|
| 481 | P1666 | Several faults occur when testing the whole ROM zone.                                                                                |
| 482 | P1667 | The number of responsive bytes obtained from CPU in monitoring mode is too small / Error of the set response time of monitoring mode |
| 483 | P1668 | Error of the set response time of monitoring mode                                                                                    |
| 484 | P166A | OFF-route test time-out                                                                                                              |
| 485 | P166B | The electrifying time for injection is unreliable.                                                                                   |
| 486 | P166C | The initial electrifying angle (SO E) is unreliable.                                                                                 |
| 487 | P166D | ZFC is unreliable.                                                                                                                   |
| 488 | P166E | Fuel injection monitoring mode 1                                                                                                     |
| 489 | P166F | Fuel injection monitoring mode 2                                                                                                     |
| 490 | P1670 | Error reported in fuel injection correction                                                                                          |
| 491 | P1671 | Unreliable rail pressure                                                                                                             |
| 492 | P1672 | The torque limit is set once any error is detected before the MoCSOP's error is generated.                                           |
| 493 | P1673 | Monitoring OFF-route forward test fault                                                                                              |
| 494 | P1674 | Monitoring fault mode 3                                                                                                              |
| 495 | P1675 | The negative deviation of throttle controller is below the lower limit for a long time.                                              |
| 496 | P1676 | Open circuit of EGR valve bridge-H                                                                                                   |
| 497 | P1677 | Overload of EGR valve bridge-H                                                                                                       |
| 498 | P1678 | Overtemperature of EGR valve bridge-H chip                                                                                           |
| 499 | P167B | CY33X fault                                                                                                                          |
| 500 | P167C | The set value of rail pressure is limited by the torque limit of the function control unit.                                          |
| 501 | P1680 | The cruise indicator drive circuit is open.                                                                                          |
| 502 | P1681 | Overtemperature of cruise indicator drive circuit                                                                                    |
| 503 | P1682 | The cruise indicator drive circuit is short to power supply or high level.                                                           |
| 504 | P1683 | The cruise indicator drive circuit is short to ground.                                                                               |
| 505 | P1684 | The grill heater is always ON.                                                                                                       |
| 506 | P1685 | DFC mechanical fault when turning on ignition switch                                                                                 |
| 507 | P1686 | Fuel filter heating power level temperature fault                                                                                    |
| 508 | P1687 | CJ945 Power level no load fault                                                                                                      |
| 509 | P1688 | CJ945 Power level no load fault                                                                                                      |
| 510 | P1689 | Overheating of intake air heater drive circuit                                                                                       |
| 511 | P168A | CJ945 Overheating fault                                                                                                              |
| 512 | P168B | CJ945 Power level is short to battery.                                                                                               |

| S/N | DTC   | Meaning                                                                                   |
|-----|-------|-------------------------------------------------------------------------------------------|
| 513 | P168C | CJ945 Power level is short to battery.                                                    |
| 514 | P168D | CJ945 Power level is short to ground.                                                     |
| 515 | P168E | CJ945 Power level is short to ground.                                                     |
| 516 | P1700 | Unreliable clutch signal / Clutch signal error                                            |
| 517 | P1710 | Overheating of engine speed sensor                                                        |
| 518 | P1720 | Transmission neutral position signal                                                      |
| 519 | P2002 | The particulate oxidation catalyst device is removed.                                     |
| 520 | P2004 | Overcurrent of EGR valve bridge-H based on temperature                                    |
| 521 | P2008 | EGR valve circuit is open.                                                                |
| 522 | P2009 | EGR valve circuit is short to ground.                                                     |
| 523 | P2010 | EGR valve circuit is short to power supply.                                               |
| 524 | P2014 | Under-voltage of EGR valve bridge-H                                                       |
| 525 | P2015 | The turbocharger control valve is stuck.                                                  |
| 526 | P2072 | The throttle valve is frozen.                                                             |
| 527 | P2076 | An error is reported when the EGR valve is stuck in closing or opening.                   |
| 528 | P2077 | The signal level of swirl valve position sensor is relatively low.                        |
| 529 | P2078 | The signal level measured by the variable swirl valve position sensor is above the limit. |
| 530 | P207A | Overtemperature of EGR valve bridge-H chip                                                |
| 531 | P207B | The short-term jitter of EGR valve exceeds the limit.                                     |
| 532 | P2100 | Open circuit of throttle bridge-H                                                         |
| 533 | P2101 | Overcurrent of throttle bridge-H                                                          |
| 534 | P2102 | Output circuit 1 of throttle bridge-H is short to ground.                                 |
| 535 | P2103 | Output circuit 1 of throttle bridge-H is short to battery.                                |
| 536 | P2135 | Signals of accelerator pedal position sensor 1 and 2 are unreliable.                      |
| 537 | P213A | Open circuit of EGR valve bridge-H                                                        |
| 538 | P213B | Overload of EGR valve bridge-H                                                            |
| 539 | P213C | The Port 2 of EGR valve bridge-H chip is short to ground.                                 |
| 540 | P213D | The Port 2 of EGR valve bridge-H chip is short to ground.                                 |
| 541 | P2141 | The Port 1 of EGR valve bridge-H chip is short to ground.                                 |
| 542 | P2142 | The Port 1 of EGR valve bridge-H chip is short to power supply.                           |
| 543 | P2146 | Short circuit                                                                             |
| 544 | P2149 | Short circuit                                                                             |
| 545 | P2157 | Unreliable vehicle speed signal                                                           |

| S/N | DTC   | Meaning                                                                                 |
|-----|-------|-----------------------------------------------------------------------------------------|
| 546 | P2173 | False positive deviation of throttle regulator                                          |
| 547 | P2175 | False negative deviation of throttle regulator                                          |
| 548 | P2226 | Fault of signal obtained from CAN by air pressure sensor                                |
| 549 | P2228 | The signal value of ambient pressure is below the lower limit.                          |
| 550 | P2229 | The signal value of ambient pressure is above the upper limit.                          |
| 551 | P2264 | EGR valve circuit is open.                                                              |
| 552 | P2265 | An error is reported when the moisture content in fuel is detected.                     |
| 553 | P2266 | EGR valve circuit is short to ground.                                                   |
| 554 | P2267 | EGR valve circuit is short to power supply.                                             |
| 555 | P2268 | EGR valve circuit is open.                                                              |
| 556 | P2269 | The sensor self-checking signal level is above the upper limit.                         |
| 557 | P2290 | The rail pressure is below the minimum set value.                                       |
| 558 | P242F | The particulate filter smoke load exceeds the maximum.                                  |
| 559 | P2454 | The signal level of particulate filter differential pressure sensor is relatively low.  |
| 560 | P2455 | The signal level of particulate filter differential pressure sensor is relatively high. |
| 561 | P2458 | Particulate filter regeneration permanent fault                                         |
| 562 | P245A | EGR cooler bypass valve fault                                                           |
| 563 | P245B | Too low EGR cooling efficiency                                                          |
| 564 | P245D | The signal level of EGR cooler sensor is relatively high.                               |
| 565 | P250F | Danger is caused by too low fuel level and air ingress into hydraulic system.           |
| 566 | P2519 | A/C switch CAN input signal error                                                       |
| 567 | P2522 | The compressor torque reduction command circuit in electrifying phase is open.          |
| 568 | P2562 | The turbocharger bridge-H chip circuit is open.                                         |
| 569 | P2563 | The turbocharger control valve is stuck.                                                |
| 570 | P2564 | The original voltage of EGR valve sensor signal is below the lower limit.               |
| 571 | P2565 | The original voltage of EGR valve sensor signal is above the upper limit.               |
| 572 | P2621 | The throttle signal level is relatively low.                                            |
| 573 | P2622 | The throttle signal level is relatively high.                                           |
| 574 | P2626 | The oxygen sensor pump current terminal IP is in open circuit.                          |
| 575 | B0020 | Airbag collision status                                                                 |
| 576 | U0121 | ABS ECU main data loss                                                                  |
| 577 | U0400 | CAN received frame BCM1 message length error                                            |
| 578 | U0415 | CAN received frame ABS1 message length error                                            |


### Section V. Fault Diagnosis for Electronic-Controlled Common Rail Diesel Engines

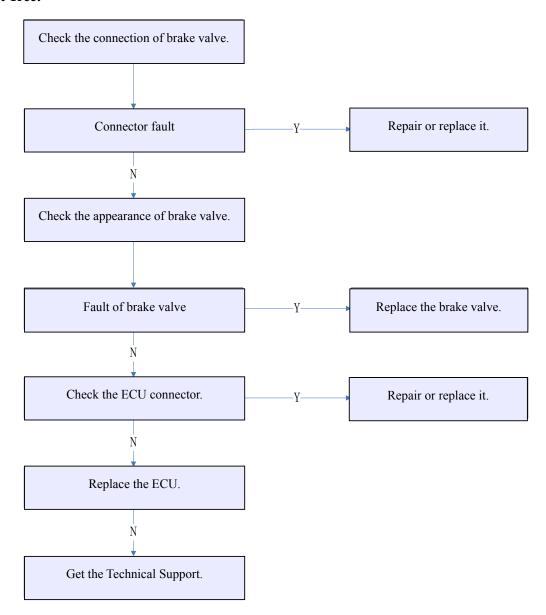
- Prior to disconnecting or reconnecting the power cord of engine control module (ECM), be sure to turn off the ignition switch, in order not to damage the ECM.
- All types of engine DTCs are stored in the ECM memory.
- The engine DTCs should be cleared after the maintenance.

### Common DTCs and Troubleshooting Methods for Electronic Control Systems of Diesel Engines

#### 1.

| DTC | P0475 | The exhaust brake valve control line is open.                                      |
|-----|-------|------------------------------------------------------------------------------------|
|     | P0476 | The ECU internal driver module of exhaust brake valve control line is overheating. |
|     | P0477 | The exhaust brake valve control line is short to ground.                           |
|     | P0478 | The exhaust brake valve control line is short to high level.                       |

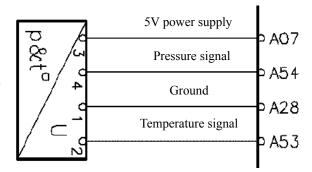



**Fault Description:** The engine control unit (ECU) shall actuate the exhaust braking after processing the signal received from the exhaust brake switch and also check if the exhaust brake feedback signal matches with the ECU control command. If not, DTC shall be reported.

**Diagnosis Hint:** The intermittent failure may be caused by poor contact of wire, abrasion of the insulation or damage of the wire inside insulation.

Check for the following conditions:

- Poor contact of ECU or exhaust brake valve Check the harness connector
- Loose terminal
- Poor matching and connection
- Breakage of keeper
- Distortion or damage of terminal
- Poor contact between terminal and wire
- Damage of harness Check the harness for any damage


| Terminal | ECU |                        |
|----------|-----|------------------------|
|          | K29 | Exhaust brake actuator |



#### 2.

| DTC | P0069 | The boost pressure sensor drift                                                                                |
|-----|-------|----------------------------------------------------------------------------------------------------------------|
|     | P0237 | The boost pressure sensor output voltage is below the lower limit (the wiring is short to ground).             |
|     | P0238 | The boost pressure sensor output voltage is above the upper limit (the wiring is open or short to high level). |
|     | P0097 | The voltage of intake air temperature sensor is too low (the wiring is short to ground).                       |
|     | P0098 | The voltage of intake air temperature sensor is too high (the wiring is open or short to high level).          |

# Boost pressure / intake air temperature sensor

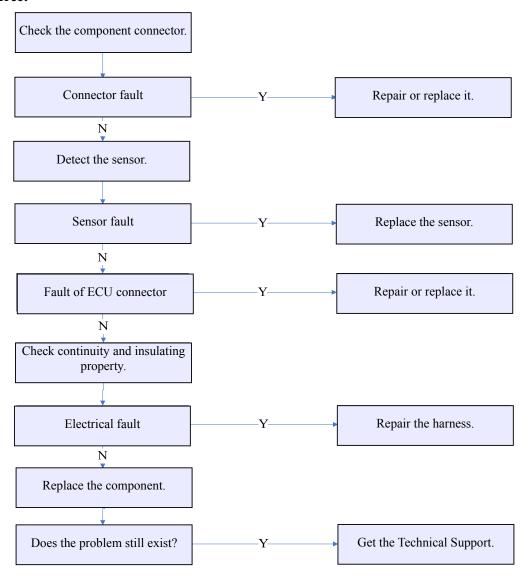


Fault Description: The boost pressure sensor shall make response to the pressure change of intake manifold. The pressure changes with the engine load. The ECU shall supply 5V voltage to the 5V reference voltage circuit of boost pressure sensor and also supply grounding for the low reference voltage circuit. The boost pressure sensor shall provide a signal that is related to the pressure change of intake manifold to ECU via the boost pressure sensor signal circuit. When the intake manifold pressure is relatively low (for example: during idling period), the low level signal voltage shall be detected by the ECU. When it is relatively high (for example: with the accelerator pedal fully open (WOT)), the high level signal voltage shall be detected. The boost pressure sensor is also for determining the barometric pressure (BARO). When the ignition switch is turned on without starting the engine, the following condition shall occur. As long as the accelerator pedal position sensor signal is more than 28%, the barometric pressure reading shall be updated. The boost pressure sensor includes the following circuits:

- A 5V reference voltage circuit
- A low reference voltage circuit
- A MAP sensor signal circuit

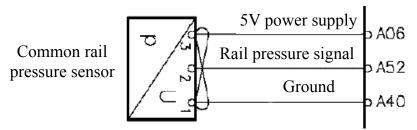
If the boost pressure sensor signal detected by ECU is beyond the set range, relevant DTC shall be generated.

The intake air temperature (IAT) sensor is a kind of variable resistor that can measure the temperature of air into the engine. The ECU shall supply 5V voltage to the signal circuit of IAT sensor and also supply grounding for the reference voltage circuit of IAT sensor. When the IAT sensor is in cold state, the sensor resistance is relatively high. When the air temperature increases, the sensor resistance shall decrease. When the sensor resistance is relatively high, the voltage of IAT sensor signal circuit detected by ECU shall be relatively high. With the decrease of sensor resistance, the voltage of IAT sensor signal circuit detected by ECU shall decrease also. If the signal voltage of IAT sensor detected by ECU is too low (indicating the temperature is too high), or too high (indicating the temperature is too low), relevant DTC shall be generated.


### **Diagnosis Hint:**

The normal boost pressure sensor shall make quick response to the change of accelerator pedal position, so its slow action should not appear or it should not act slower than the change of accelerator pedal position.

For poor contact inspection between ECU and IAT sensor, please check the ECU harness connector for the following conditions:


- Loose terminal
- Poor matching and connection
- Breakage of keeper
- Distortion or damage of terminal
- Poor contact between terminal and wire

| Terminal | ECU |                                 |
|----------|-----|---------------------------------|
|          | A07 | Power supply terminal of sensor |
|          | A53 | Temperature signal terminal     |
|          | A54 | Pressure signal terminal        |
|          | A28 | Ground terminal of sensor       |



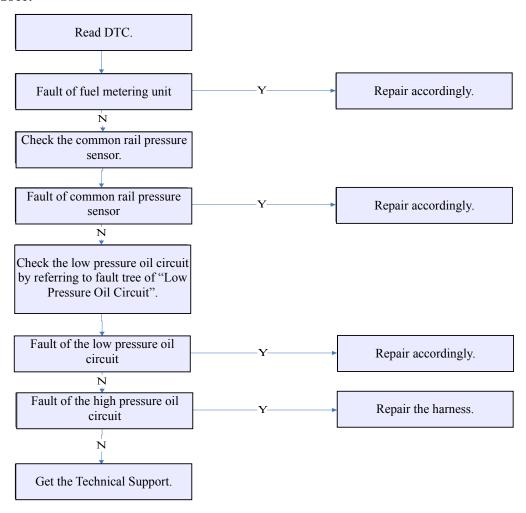
#### 3.

| DTC | P0087 | The fuel pressure is below the lower limit.                                                                          |
|-----|-------|----------------------------------------------------------------------------------------------------------------------|
|     | P0088 | The fuel pressure is above the upper limit.                                                                          |
|     | P0191 | The forward drift of common rail pressure sensor is too large.                                                       |
|     | P0192 | The common rail pressure sensor output voltage is below the lower limit (the wiring is short to ground).             |
|     | P0193 | The common rail pressure sensor output voltage is above the upper limit (the wiring is open or short to high level). |
|     | P0194 | The reverse drift of common rail pressure sensor is too large.                                                       |
|     | P1011 | The positive deviation of rail pressure control is above the upper limit.                                            |
|     | P1012 | The positive deviation of rail pressure control exceeds the upper limit greatly.                                     |
|     | P1013 | The negative deviation of rail pressure control is below the lower limit.                                            |

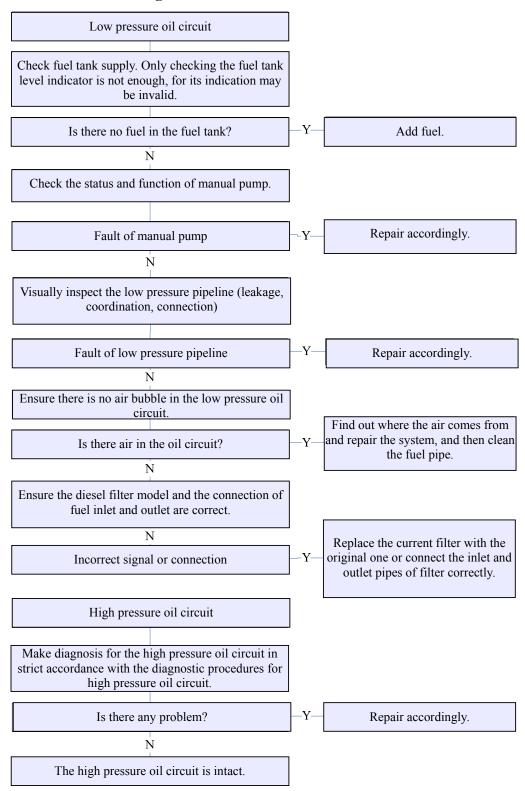


Fault Description: The common rail pressure sensor shall make response to the change of fuel pressure in common rail pipe. The pressure changes with the engine load. The ECU shall supply 5V voltage to the 5V reference voltage circuit of common rail pressure sensor and also supply grounding for the low reference voltage circuit. The common rail pressure sensor shall provide a signal that is related to the change of fuel pressure in common rail pipe to ECU via the common rail pressure sensor signal circuit. When the fuel pressure in common rail pipe is relatively low (for example: during idling period), the low level signal voltage shall be detected by the ECU. When it is relatively high (for example: with the accelerator pedal fully open (WOT)), the high level signal voltage shall be detected. The common rail pressure sensor provides an important parameter for determining engine operation. When its signal is lost, the engine shall stop operation. The common rail pressure sensor includes the following circuits:

- A 5V reference voltage circuit
- A low reference voltage circuit
- A common rail pressure sensor signal circuit

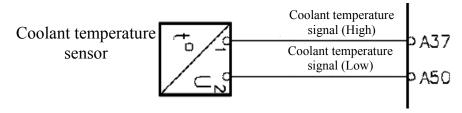

If the common rail pressure sensor signal detected by ECU is beyond the set range, relevant DTC shall be generated.

**Diagnosis Hint:** When the ignition switch is turned on with engine off, the pressure in common rail pipe is zero and the signal voltage level is low. By comparing the readings with those of the same sensor that is known good, the accuracy of the suspicious sensor can be checked. Their difference should be no more than 0.4V. Perform overall inspection for common rail pressure sensor to see if it is damaged.


During engine starting, any pressure change in the common rail pipe should be detected by the common rail pressure sensor, through which, we can determine if the sensor is stuck at a certain value.

The normal common rail pressure sensor shall make quick response to the change of accelerator pedal position, so its slow action should not appear or it should not act slower than the change of accelerator pedal position.

| Terminal | ECU |                                                      |
|----------|-----|------------------------------------------------------|
|          | A06 | Power supply terminal of common rail pressure sensor |
|          | A52 | Signal terminal of common rail pressure sensor       |
|          | A40 | Ground terminal of common rail pressure sensor       |




### **Inspection for Low Pressure/High Pressure Oil Circuit:**



4.

| DTC | P0116 | The dynamic characteristics of coolant temperature sensor are unreliable.                                           |
|-----|-------|---------------------------------------------------------------------------------------------------------------------|
|     | P0117 | The coolant temperature sensor output voltage is below the lower limit (the wiring is short to ground).             |
|     | P0118 | The coolant temperature sensor output voltage is above the upper limit (the wiring is open or short to high level). |
|     | P0119 | The static characteristics of coolant temperature sensor are unreliable.                                            |



**Fault Description:** The engine coolant temperature (ECT) sensor is a kind of negative temperature coefficient variable resistor, which can measure the engine coolant temperature. Its resistance shall decrease with the increase of temperature, so the signal value input into ECU in the form of voltage shall decrease accordingly. The voltage signal range is 0-5V. The ECU searches the characteristic curve of the sensor and converts it into engine coolant temperature. The diagnostic module of engine coolant temperature sensor shall make fault judgment based on this temperature value. The ECU shall supply 5V voltage to the signal circuit of engine coolant temperature sensor and also supply grounding for the low reference voltage circuit. If the signal voltage of engine coolant temperature sensor detected by ECU is too low (indicating the temperature is too high), or too high (indicating the temperature is too low), relevant DTC shall be generated.

The following table illustrates the difference among temperature, resistance and voltage.

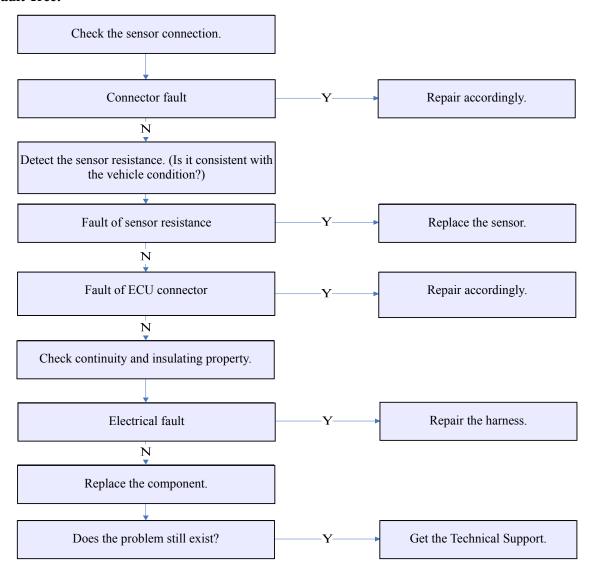
| Engine coolant temperature | Resistance of coolant temperature sensor | Signal voltage of coolant temperature sensor |
|----------------------------|------------------------------------------|----------------------------------------------|
| Low                        | High                                     | High                                         |
| High                       | Low                                      | Low                                          |

#### **Diagnosis Hint:**

Overheating may result in generation of this DTC. After the engine is started, the temperature of engine coolant temperature sensor should increase steadily and become stable after the thermostat is disconnected. Test the engine coolant temperature sensor under different temperature to check for any error of sensor. If any, the error may result in failure of control performance. After the engine is laid up for a night, the indication difference between IAT sensor and engine coolant temperature sensor should be within 3°C (5°F). Refer to "Temperature and Resistance".

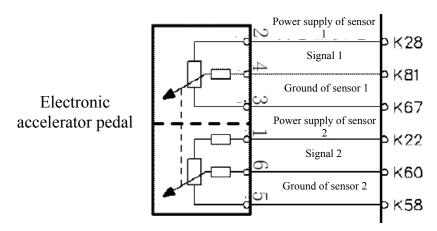
Check for the following conditions:

Poor contact between ECU and engine coolant temperature sensor – Check the harness connector for:


- Loose terminal
- Poor matching and connection
- Breakage of keeper
- Distortion or damage of terminal

#### - Poor contact between terminal and wire

Check the harness for any damage. If the harness appears normal, observe the ECT indication on the diagnostic tool while moving relevant connector and harness of ECT sensor. If the ECT indication changes, there must be failure in that part. If the DTC won't appear again, the fault record data can be used for determining the self-diagnostic code and the running mileage after the previous setting can be used for determining the occurrence frequency of that condition, which can facilitate the troubleshooting for overheating.


After the engine is started, the engine coolant temperature shall increase steadily to about 90°C (194°F) and then become stable after the thermostat is disconnected.

| Terminal | ECU |                               |
|----------|-----|-------------------------------|
|          | A37 | Signal terminal of ECT sensor |
|          | A50 | Ground terminal of ECT sensor |



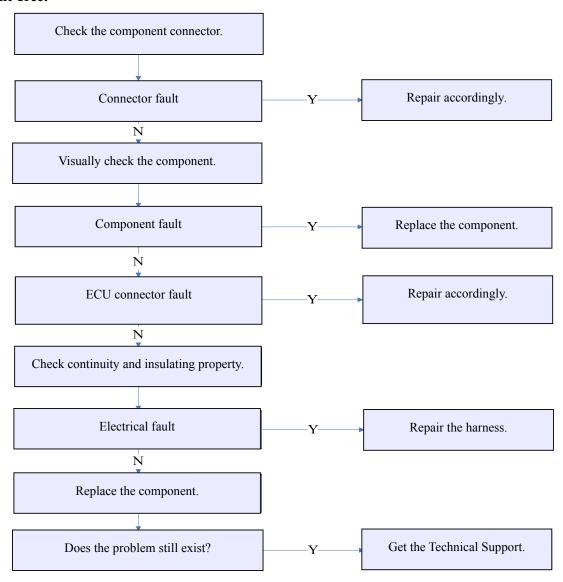
#### 5.

| DTC | P0122                                                                                | The output voltage of accelerator pedal potentiometer 1 is below the lower limit. |  |
|-----|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
|     | P0123                                                                                | The output voltage of accelerator pedal potentiometer 1 is above the upper limit. |  |
|     | P0222 The output voltage of accelerator pedal potentiometer 2 is below the lower lin |                                                                                   |  |
|     | P0223                                                                                | The output voltage of accelerator pedal potentiometer 2 is above the upper limit. |  |



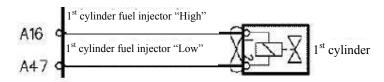
**Fault Description:** The accelerator pedal assembly consists of two accelerator pedal position (APP) sensor. The APP sensors are installed on the pedal assembly and are not repairable. The APP sensor shall supply a signal voltage that changes with the accelerator pedal position. The ECU shall supply an individual 5V reference voltage circuit and a low level reference voltage circuit to each APP sensor. With the pedal depressed, the signal voltage of APP sensor 1 shall increase, viz. increasing from about 0.7V (at the released position) to above 4V (at the fully depressed position). With the pedal depressed, the signal voltage of APP sensor 2 shall increase, viz. increasing from about 0.3V (at the released position) to above 2V (at the fully depressed position).

APP sensor 1 and 2 are installed in the accelerator pedal assembly. Each one consists of the following circuits:


- A 5V reference voltage circuit
- A low reference voltage circuit
- A signal circuit

With those circuits, the APP sensors can provide the signal voltage that is proportional to the displacement of accelerator pedal to the ECU. Two processors, located in the ECU, are adopted to monitor the data of throttle actuator control system. Each signal circuit shall provide the signal voltage that is proportional to the displacement of accelerator pedal to two processors. Those two processors shall monitor each other to verify whether the indicated value of pedal position is correct or not. The test method of ECU is: making the signal of APP sensor 2 lower instantaneously to see if the signal of APP 1 is also made lower.

**Diagnosis Hint:** During testing, if it is necessary to detect the ECU harness connector or component harness connector, a diagnostic connector should be adopted to test the adapter component.

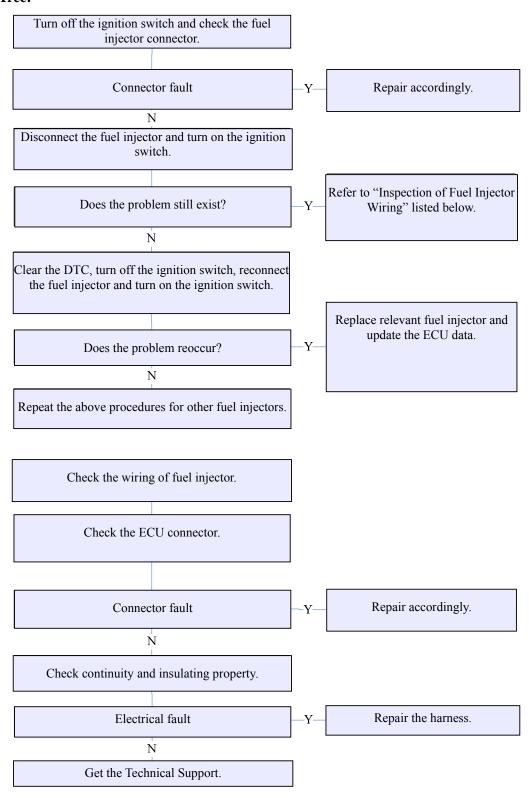

If several DTCs appear simultaneously, please check if the signal circuits for APP sensor 1 and 2 are short to each other.

| Terminal | ECU |                                       |
|----------|-----|---------------------------------------|
|          | K28 | Power supply terminal of APP sensor 1 |
|          | K81 | Signal terminal of APP sensor 1       |
|          | K67 | Ground terminal of APP sensor 1       |
|          | K22 | Power supply terminal of APP sensor 2 |
|          | K60 | Signal terminal of APP sensor 2       |
|          | K58 | Ground terminal of APP sensor 2       |



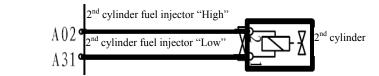
6.

| DTC | P0201 | The 1 <sup>st</sup> cylinder fuel injector circuit is open.                             |
|-----|-------|-----------------------------------------------------------------------------------------|
|     | P0263 | Other errors of the 1 <sup>st</sup> cylinder fuel injector                              |
|     | P1200 | The forward error correction of the 1 <sup>st</sup> fuel injector is too large.         |
|     | P1201 | The reverse error correction of the 1 <sup>st</sup> fuel injector is too large.         |
|     | P120C | The dynamic forward error correction of the 1 <sup>st</sup> fuel injector is too large. |
|     | P120D | The dynamic reverse error correction of the 1st fuel injector is too large.             |
|     | P1233 | Other errors of the 1 <sup>st</sup> cylinder fuel injector                              |
|     | P1234 | Other errors of the 1 <sup>st</sup> cylinder fuel injector                              |
|     | P1235 | Other errors of the 1 <sup>st</sup> cylinder fuel injector                              |
|     | P1613 | The electrifying time detected by galloping prevention monitor is too long.             |




**Fault Description:** The ECU controls the switching-on circuit of fuel injector directly. The ECU controls the time for switching on each fuel injector via adopting a device named "Driver" to supply PWM current to each fuel injector control circuit. The driver owns a feedback circuit, which is monitored by ECU to verify if the control circuit is open or short. If any failure in the fuel injector control circuit is detected by ECU, the fuel injector control circuit DTC shall be generated.

**Diagnosis Hint:** For the failure in wire connector shall trigger the setting of DTC, be sure to check the connectors relevant to this diagnostic procedure for short circuit of terminal or poor contact of wire, prior to replacement of any component. Observe the state parameter of relevant fuel injector on the diagnostic tool while shaking the wire and connector relevant to the test. If any intermittent failure is existed in the tested wire or connector, the relevant failure shall be displayed on the diagnostic tool.


Performing compression test is helpful for locating the intermittent failure.

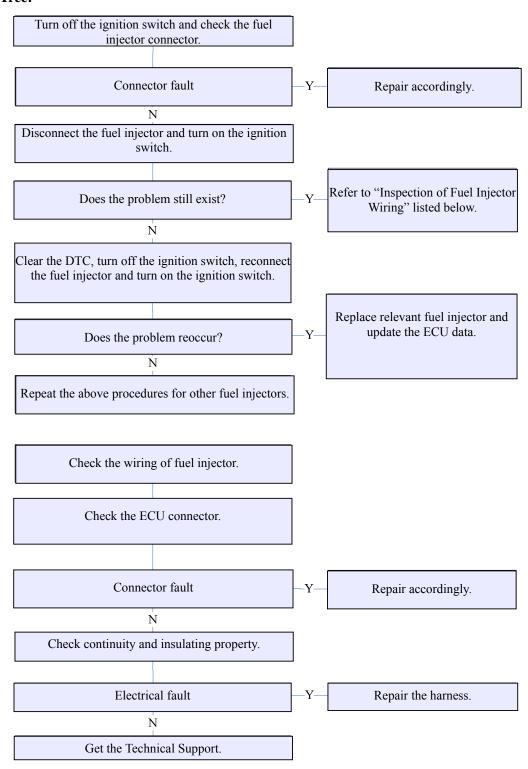
| Terminal | ECU |                                      |
|----------|-----|--------------------------------------|
|          | A16 | 1 <sup>st</sup> fuel injector "High" |
|          | A47 | 1 <sup>st</sup> fuel injector "Low"  |



7.

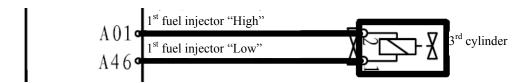
| DTC | P0202 | The 2 <sup>nd</sup> cylinder fuel injector circuit is open.                             |
|-----|-------|-----------------------------------------------------------------------------------------|
|     | P0264 | The low end of the 2 <sup>nd</sup> fuel injector is short to the high end.              |
|     | P0265 | The low end of the 2 <sup>nd</sup> fuel injector is short to the high level.            |
|     | P0266 | Other errors of the 2 <sup>nd</sup> cylinder fuel injector                              |
|     | P1202 | The forward error correction of the 2 <sup>nd</sup> fuel injector is too large.         |
|     | P1203 | The reverse error correction of the 2 <sup>nd</sup> fuel injector is too large.         |
|     | P120E | The dynamic forward error correction of the 2 <sup>nd</sup> fuel injector is too large. |
|     | P120F | The dynamic reverse error correction of the 2 <sup>nd</sup> fuel injector is too large. |
|     | P1236 | Other errors of the 2 <sup>nd</sup> cylinder fuel injector                              |
|     | P1237 | Other errors of the 2 <sup>nd</sup> cylinder fuel injector                              |
|     | P1238 | Other errors of the 2 <sup>nd</sup> cylinder fuel injector                              |




**Fault Description:** The ECU controls the switching-on circuit of fuel injector directly. The ECU controls the time for switching on each fuel injector via adopting a device named "Driver" to supply PWM current to each fuel injector control circuit. The driver owns a feedback circuit, which is monitored by ECU to verify if the control circuit is open or short. If any failure in the fuel injector control circuit is detected by ECU, the fuel injector control circuit DTC shall be generated.

### **Diagnosis Hint:**

For the failure in wire connector shall trigger the setting of DTC, be sure to check the connectors relevant to this diagnostic procedure for short circuit of terminal or poor contact of wire, prior to replacement of any component. Observe the state parameter of relevant fuel injector on the diagnostic tool while shaking the wire and connector relevant to the test. If any intermittent failure is existed in the tested wire or connector, the relevant failure shall be displayed on the diagnostic tool.

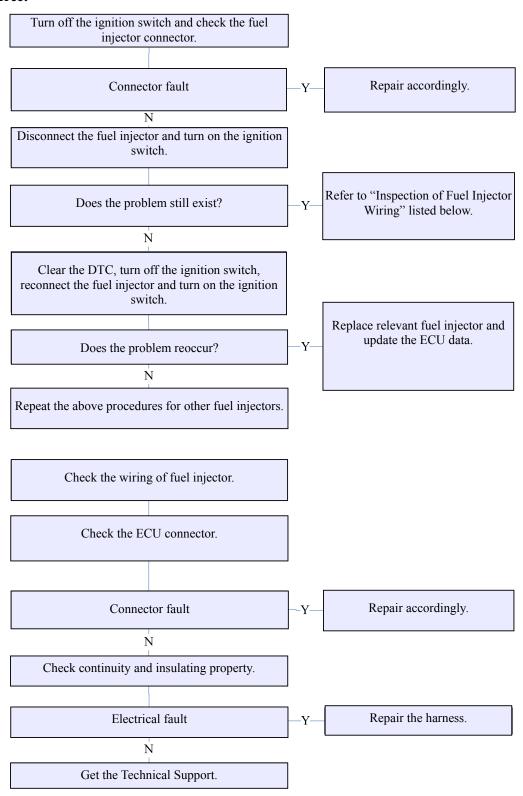

Performing compression test is helpful for locating the intermittent failure.

| Terminal | ECU |                                      |
|----------|-----|--------------------------------------|
|          | A02 | 2 <sup>nd</sup> fuel injector "High" |
|          | A31 | 2 <sup>nd</sup> fuel injector "Low"  |



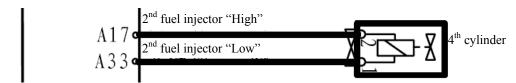
8.

| DTC | P0203 | The 3 <sup>rd</sup> cylinder fuel injector circuit is open.                             |
|-----|-------|-----------------------------------------------------------------------------------------|
|     | P0267 | The low end of the 3 <sup>rd</sup> fuel injector is short to the high end.              |
|     | P0268 | The low end of the 3 <sup>rd</sup> fuel injector is short to the high level.            |
|     | P0269 | Other errors of the 3 <sup>rd</sup> cylinder fuel injector                              |
|     | P1204 | The forward error correction of the 3 <sup>rd</sup> fuel injector is too large.         |
|     | P1205 | The reverse error correction of the 3 <sup>rd</sup> fuel injector is too large.         |
|     | P1210 | The dynamic forward error correction of the 3 <sup>rd</sup> fuel injector is too large. |
|     | P1211 | The dynamic reverse error correction of the 3 <sup>rd</sup> fuel injector is too large. |
|     | P1239 | Other errors of the 3 <sup>rd</sup> cylinder fuel injector                              |
|     | P123A | Other errors of the 3 <sup>rd</sup> cylinder fuel injector                              |
|     | P123B | Other errors of the 3 <sup>rd</sup> cylinder fuel injector                              |




**Fault Description:** The ECU controls the switching-on circuit of fuel injector directly. The ECU controls the time for switching on each fuel injector via adopting a device named "Driver" to supply PWM current to each fuel injector control circuit. The driver owns a feedback circuit, which is monitored by ECU to verify if the control circuit is open or short. If any failure in the fuel injector control circuit is detected by ECU, the fuel injector control circuit DTC shall be generated.

**Diagnosis Hint:** For the failure in wire connector shall trigger the setting of DTC, be sure to check the connectors relevant to this diagnostic procedure for short circuit of terminal or poor contact of wire, prior to replacement of any component. Observe the state parameter of relevant fuel injector on the diagnostic tool while shaking the wire and connector relevant to the test. If any intermittent failure is existed in the tested wire or connector, the relevant failure shall be displayed on the diagnostic tool.

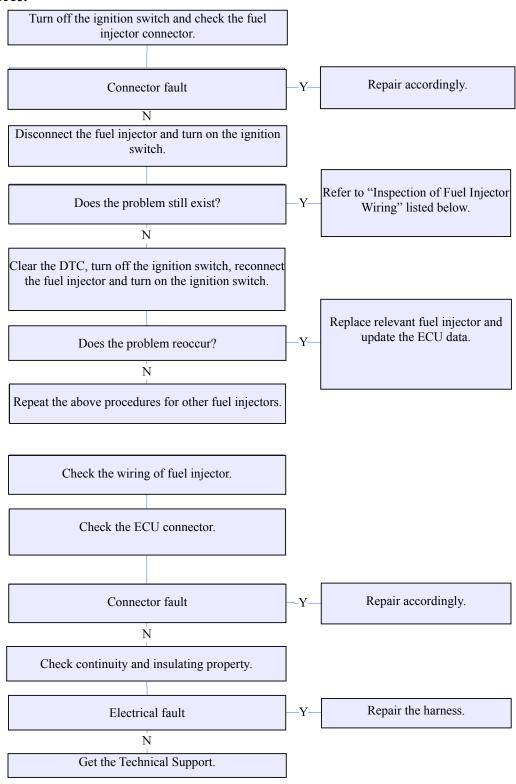

Performing compression test is helpful for locating the intermittent failure.

| Terminal | ECU |                                      |
|----------|-----|--------------------------------------|
|          | A01 | 1 <sup>st</sup> fuel injector "High" |
|          | A46 | 1 <sup>st</sup> fuel injector "Low"  |



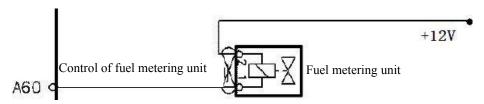
9.

| DTC | P0204 | The 4 <sup>th</sup> cylinder fuel injector circuit is open.                             |
|-----|-------|-----------------------------------------------------------------------------------------|
|     | P0270 | The low end of the 4 <sup>th</sup> fuel injector is short to the high end.              |
|     | P0271 | The low end of the 4 <sup>th</sup> fuel injector is short to the high level.            |
|     | P0272 | Other errors of the 4 <sup>th</sup> cylinder fuel injector                              |
|     | P1206 | The forward error correction of the 4 <sup>th</sup> fuel injector is too large.         |
|     | P1207 | The reverse error correction of the 4 <sup>th</sup> fuel injector is too large.         |
|     | P1212 | The dynamic forward error correction of the 4 <sup>th</sup> fuel injector is too large. |
|     | P1213 | The dynamic reverse error correction of the 4 <sup>th</sup> fuel injector is too large. |
|     | P123C | Other errors of the 4 <sup>th</sup> cylinder fuel injector                              |
|     | P123D | Other errors of the 4 <sup>th</sup> cylinder fuel injector                              |
|     | P123E | Other errors of the 4 <sup>th</sup> cylinder fuel injector                              |




**Fault Description:** The ECU controls the switching-on circuit of fuel injector directly. The ECU controls the time for switching on each fuel injector via adopting a device named "Driver" to supply PWM current to each fuel injector control circuit. The driver owns a feedback circuit, which is monitored by ECU to verify if the control circuit is open or short. If any failure in the fuel injector control circuit is detected by ECU, the fuel injector control circuit DTC shall be generated.

**Diagnosis Hint:** For the failure in wire connector shall trigger the setting of DTC, be sure to check the connectors relevant to this diagnostic procedure for short circuit of terminal or poor contact of wire, prior to replacement of any component. Observe the state parameter of relevant fuel injector on the diagnostic tool while shaking the wire and connector relevant to the test. If any intermittent failure is existed in the tested wire or connector, the relevant failure shall be displayed on the diagnostic tool.


Performing compression test is helpful for locating the intermittent failure.

| Terminal | ECU |                                      |
|----------|-----|--------------------------------------|
|          | A17 | 2 <sup>nd</sup> fuel injector "High" |
|          | A33 | 2 <sup>nd</sup> fuel injector "Low"  |

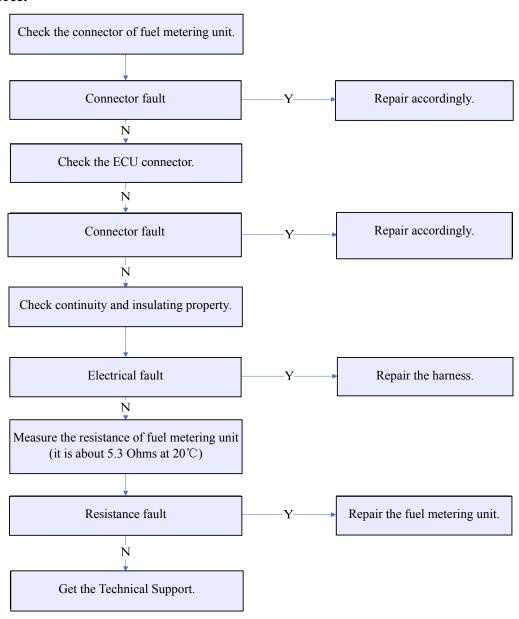


#### 10.

| DTC | P0251 | The control line of fuel level control unit is open.                      |
|-----|-------|---------------------------------------------------------------------------|
|     | P0252 | The ECU internal driver module of fuel level control unit is overheating. |
|     | P0253 | The control line of fuel level control unit is short to ground.           |
|     | P0254 | The control line of fuel level control unit is short to high level.       |

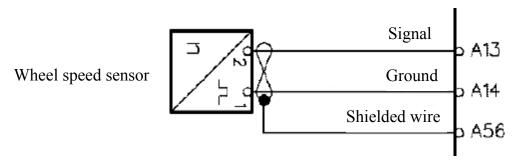


**Fault Description:** The fuel metering unit is for adjusting the fuel supply and the fuel pressure. When the control coil of metering unit is off, the inlet fuel metering proportional valve of the unit shall be closed, cutting off the fuel supplied to the high pressure fuel pump plunger component. When the control coil of metering unit is electrified, the ECU shall change the fuel inlet sectional area of metering component via pulse signal according to the actual demand, through which, the fuel supplied to the high pressure fuel pump plunger component shall be changed. If the fuel metering control signal voltage detected by ECU is abnormal, the DTC shall be generated.


**Diagnosis Hint:** The metering component is mounted at the fuel inlet of high pressure pump. The engine's fuel supply shall be affected directly by the opening sectional area of the fuel metering unit control valve. Provided that the fuel metering unit control line is normally connected, monitor the engine fuel supply amount and pressure while moving relevant connector and wire to check if any fault is triggered. If any, the indication of fault diagnostic unit shall change. This is help for locating the intermittent failure.

The intermittent failure may be caused by poor contact of control part. As for poor contact between ECU and fuel metering unit, please check the ECU harness connector for the following conditions:

- Loose terminal
- Poor matching and connection
- Breakage of keeper
- Distortion or damage of terminal
- Poor contact between terminal and wire


Check the harness for any damage. If the harness appears normal, observe the fuel pressure indicated on the diagnostic tool while moving relevant connector and harness of fuel metering unit. If the pressure indication changes, there must be failure in that part.

| Terminal | ECU |                                             |
|----------|-----|---------------------------------------------|
|          | A19 | Power supply terminal of fuel metering unit |
|          | A49 | Signal terminal of fuel metering unit       |



#### 11.

| DTC | P0335 | No signal from crankshaft sensor    |
|-----|-------|-------------------------------------|
|     | P0336 | False signal from crankshaft sensor |



**Diagnosis Hint:** The signal of crankshaft position (CKP) sensor is used for indicating the rotary speed and position of crankshaft. The CKP sensor shall generate an AC voltage of different amplitude and frequency. The frequency relies on the rotary speed of crankshaft and the output AC voltage relies on the crankshaft position. The CKP sensor shall coordinate with a 58X variable reluctance rotor fixed on the crankshaft. The ECU can synchronize the timing control for fuel injectors according to the input signals of CKP sensor and camshaft position sensor. The CKP sensor can also be applied for testing misfire and tachometer indication. The signal circuit and the low reference voltage circuit of CKP sensor are directly connected to ECU. The shielded and grounded circuit should be grounded. In addition, when the 1<sup>st</sup> and the 4<sup>th</sup> cylinders are at TDC, the CKP sensor shall also send a signal to ECU. The ECU shall monitor the signals of CKP sensor and camshaft position sensor to determine whether the 1<sup>st</sup> cylinder is in compression stroke or not. The circuits between CKP sensor and ECU include:

Signal circuit of CKP sensor

Low reference voltage circuit of CKP sensor

Shielded and grounded circuit

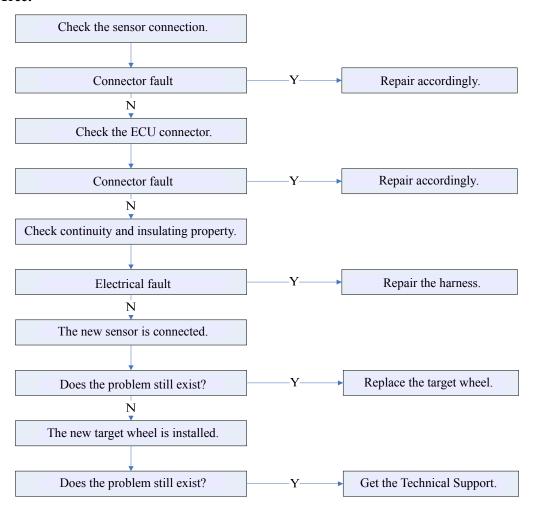
If the number of crankshaft position pulses sent out by the CKP sensor detected by the ECU is incorrect, the DTC shall be generated.

Diagnosis Hint: There is failure in camshaft position sensor circuit.

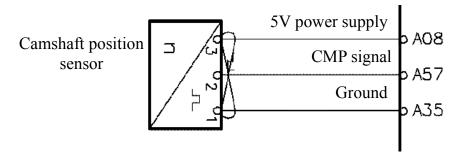
CKP sensor variable reluctance rotor is dislocated or incorrectly installed.

Large crankshaft end play leads to dislocation of variable reluctance rotor.

There is blockage between CKP sensor and variable reluctance rotor.


Check connectors of CKP sensor and ECU for any corrosion.

Prior to maintenance, all fragments should be removed from the connector surfaces. Prior to diagnosis or replacement, please check the connector gaskets to ensure they are properly installed to avoid ingress of any pollutant.


- Poor terminal connection Check the harness connector for any loose terminal, mismatching, damaged keeper, improper form or damage, poor contact between terminal and wire. Check if the matched terminal is adopted. Check if the test tension is appropriate.
- Harness damage Check the harness for any damage. If the harness appears normal, observe the indication on
  the diagnostic tool while moving relevant connector and harness of the sensor. If the indication changes, there
  must be failure in that part.

• Check if the ground and connection of ECU and engine is reliable and clean. If the DTC is determined to be intermittent failure, please refer to the fault records to find out when the previous DTC is set.

| Terminal | ECU |                                        |
|----------|-----|----------------------------------------|
|          | A13 | Signal terminal of CKP sensor          |
|          | A14 | Negative signal terminal of CKP sensor |
|          | A56 | Shielded terminal of CKP sensor        |



| DTC | P0340 | No signal from phase sensor    |
|-----|-------|--------------------------------|
|     | P0341 | False signal from phase sensor |



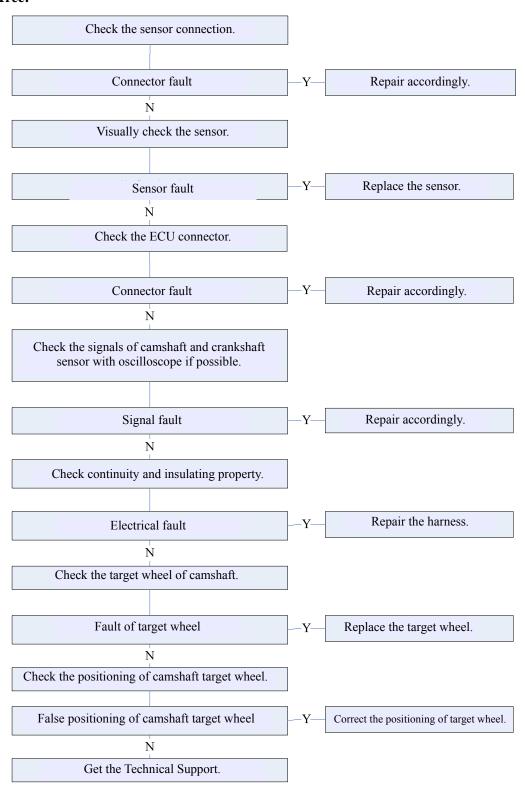
**Fault Description:** The camshaft position (CMP) sensor is a Hall Effect switch. The ECU shall supply 5V voltage to the 5V reference voltage circuit and also supply grounding for the low reference voltage circuit. The CMP sensor shall provide a signal voltage to ECU by coordinating with 1X variable reluctance rotor. The ECU shall make use of this signal voltage to determine the camshaft position. The CMP sensor links the crankshaft with the camshaft position to facilitate ECU to determine which cylinder the fuel should be injected to. During the rotation of camshaft, the variable reluctance rotor changes the magnetic field generated by the magnet in sensor and send a signal to ECU via the signal circuit. The CMP sensor circuit is directly connected to ECU. The CMP sensor can also be adopted to tell which cylinder has misfire. The circuits between CMP sensor and ECU include:

High reference voltage circuit of CMP sensor

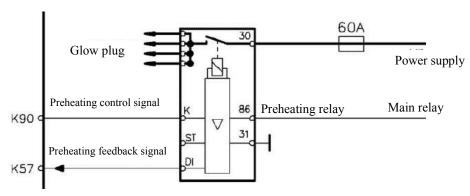
### Ground circuit

Camshaft position signal circuit

When no occurrence of minimum camshaft position synchronization is detected by ECU or there is failure in CMP sensor signal circuit, DTCs shall be generated.


**Diagnosis Hint:** Prior to maintenance, all fragments should be removed from the connector surfaces. Prior to diagnosis or replacement, please check the connector gaskets to ensure they are properly installed to avoid ingress of any pollutant.

Poor terminal connection – Check the harness connector for any loose terminal, mismatching, damaged keeper, improper form or damage, poor contact between terminal and wire. Check if the matched terminal is adopted. Check if the test tension is appropriate.


Harness damage – Check the harness for any damage. If the harness appears normal, observe the indication on the diagnostic tool while moving relevant connector and harness of the sensor. If the indication changes, there must be failure in that part.

Check if the ground and connection of ECU and engine is reliable and clean. If the DTC is determined to be intermittent failure, please refer to the fault records to find out when the previous DTC is set.

| Terminal | ECU |                                          |
|----------|-----|------------------------------------------|
|          | A08 | Signal terminal of phase sensor          |
|          | A57 | Negative signal terminal of phase sensor |
|          | A35 | Shielded terminal of phase sensor        |



| DTC | P0380 | The glow plug works without the command from ECU.                           |
|-----|-------|-----------------------------------------------------------------------------|
|     | P0382 | The glow plug doesn't work with the command from ECU.                       |
|     | P0383 | ECU control line for glow plug is short to ground.                          |
|     | P0384 | ECU control line for glow plug is short to high level.                      |
|     | P0670 | ECU control line for glow plug is open or its driver module is overheating. |



**Fault Description:** The main part of glow plug is tubular heating element, which is securely and tightly installed inside the glow plug shell, making it resistant to corrosion and thermal shock. The heating element is composed of two resistance elements connected in series; they are installed in the top of heat pipe forming respectively a heating coil and a control coil. The glow plug controller controls over the glow plug via a power relay and electrical switch group. It can control the heating time of glow plug and also serve as a protection and monitoring device. The higher level glow plug controller has diagnosis function, so it can distinguish an individual fault of glow plug and indicate it to the driver. A multilevel socket is equipped on the control input terminal of glow plug controller for connecting with ECU. To avoid voltage drop, screw pins or plugs should be equipped in the series circuit that is connected with the glow plug. The post-heating upon a success start can facilitate the uninterrupted speed increase and idling with little smoke in the process of heating, which can reduce the combustion noise in cold starting. If it fails, the glow plug protection circuit shall open to avoid overdischarging of battery. If no preheating control signal is detected by ECU or the detected control signal is inconsistent with the actual, relevant DTCs shall be generated.

**Diagnosis Hint:** The failure may be caused by poor contact of wire or loose connector. As for poor contact of ECU or preheating control unit, check the harness connector for the following conditions:

Loose terminal


Poor matching and connection

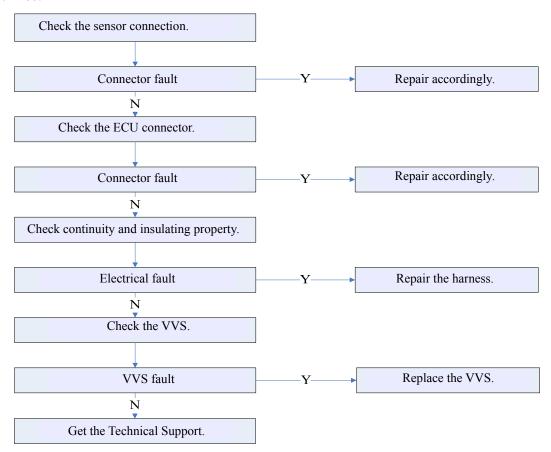
Distortion or damage of terminal

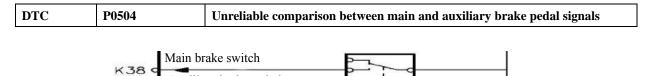
Poor contact between terminal and wire

Damage of harness – Check the harness for any damage

| Terminal | ECU |                                    |
|----------|-----|------------------------------------|
|          | K90 | Control signal of preheating relay |
|          | K57 | Preheating time feedback signal    |



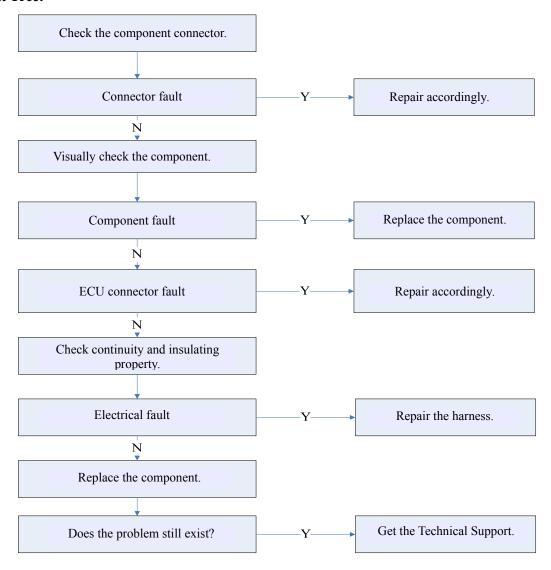

### 14.


| DTC | P0500 | Error of vehicle speed sensor acquisition hardware |
|-----|-------|----------------------------------------------------|
|     | P0501 | The vehicle speed sensor signal is unreliable.     |

**Fault Description:** Vehicle speed sensor (VSS) provides vehicle speed signals to ECU. It is a kind of Hall Effect sensor. When the rotor gear tooth of transmission output shaft passes through the magnetic field of sensor, the VSS shall generate a signal voltage, whose frequency shall increase with the vehicle speed. The ECU shall convert the signal voltage into vehicle speed and make use of the vehicle speed signal to determine the working status of vehicle. If this signal is lost or abnormal, relevant DTCs shall be generated.

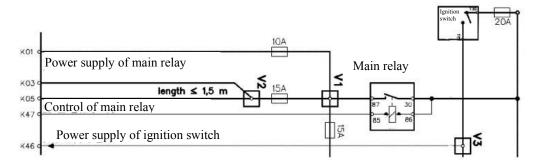
**Diagnosis Hint:** Check the harness for any damage. If the harness appears normal, observe the indication on the digital multimeter while moving relevant connector and harness of the actuator. If the indication changes in testing, there must be failure in that part. The intermittent failure may be caused by poor contact, abrasion of wire insulation or breakage of the wire inside insulation. Make sure the vehicle speed sensor is correctly fixed onto the transmission housing.

| Terminal | ECU |                  |
|----------|-----|------------------|
|          | K75 | VVS input signal |






**Fault Description:** The brake switch detects the brake pedal action and sends the signal to ECU. The brake switch is equipped with two switches, viz. main and auxiliary brake switches. When these two signals are input, these signals are determined by ECU to be normal brake signals. The switch signals are relevant to the accelerator pedal, for controlling the fuel amount during braking. There should be no failure when you operate the accelerator pedal at the point of depressing the brake pedal, but the fuel amount shall be reduced when you operate the accelerator pedal with the brake pedal depressed. If the voltage signal of brake switch is inconsistent with the actual, the DTC shall be generated.


**Diagnosis Hint:** Check the wiring connector for poor contact, distorted or damaged terminal.

| Terminal | ECU |                               |
|----------|-----|-------------------------------|
|          | K17 | Main brake switch signal      |
|          | K80 | Auxiliary brake switch signal |



# 16.

| DTC | P0562 | Too low battery voltage                                               |
|-----|-------|-----------------------------------------------------------------------|
|     | P0563 | Too high battery voltage                                              |
|     | P1617 | The engine cannot be shut down with too high internal supply voltage. |
|     | P1618 | The engine cannot be shut down with too low internal supply voltage.  |
|     | P1637 | Too high voltage in ECU internal power supply module                  |
|     | P1638 | Too low voltage in ECU internal power supply module                   |



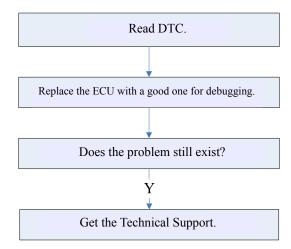

**Fault Description:** The ECU monitors the system voltage via the ignition voltage circuit. When the voltage exceeds the set range, the parts may be damaged and the input reading may be incorrect. When the system voltage detected by ECU is too low (below 11V) or too high (above 16V), relevant DTCs shall be generated.

**Diagnosis Hint:** Check if the diagnostic system is normal.

Check if the charging system is normal.

Perform relevant test for intermittent failure or poor contact.

| Terminal | ECU |                               |
|----------|-----|-------------------------------|
|          | K01 | Positive battery terminal +Ra |
|          | K03 | Positive battery terminal +Rb |
|          | K05 | Positive battery terminal +Rc |
|          | K47 | Main relay control            |
|          | K46 | Ignition switch power supply  |




| DTC | P060A | Communication failure of ECU internal chip CJ940 |
|-----|-------|--------------------------------------------------|
|-----|-------|--------------------------------------------------|

**Fault Description:** It is mainly used for monitoring the internal microprocessor integrity failure in ECU to determine whether the ECU program is executed. With engine OFF and ignition switch ON, the ECU shall perform self-diagnosis. If the self-diagnosis process is not finished, the control module shall record the corresponding operating condition and store this information into "Fault Records" to set DTC.

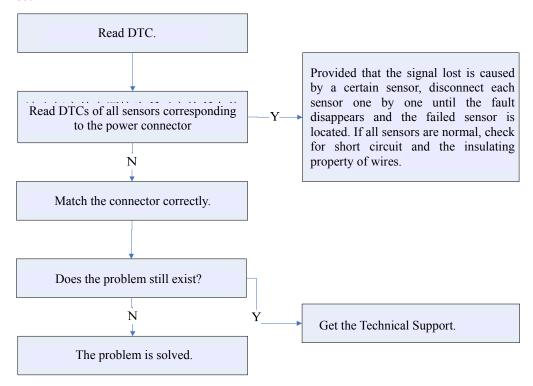
Diagnosis Hint: If the self-diagnosis process is finished smoothly, the current DTC shall be cleared.

If this diagnostic instrument and other diagnosis irrelevant to exhaust pass the test in 40 continuous preheating processes, the history DTC shall be cleared.



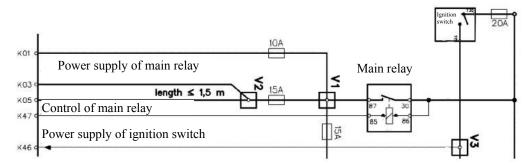
#### 18.

| DTC | P0642 | Sensor supply voltage 1 is too low.  |
|-----|-------|--------------------------------------|
|     | P0643 | Sensor supply voltage 1 is too high. |
|     | P0652 | Sensor supply voltage 2 is too low.  |
|     | P0653 | Sensor supply voltage 2 is too high. |


**Fault Description:** Due to the nature of sensor, some sensors require a voltage to finish the required function and operation. The supply voltage of sensor is supplied by ECU. The ECU shall calculate the required voltage of sensor according to its characteristic and supply the voltage to the sensor via control circuit. In the process of voltage signaling, DTCs may occur due to virtual connection or poor connection of control circuit, etc.

Sensor supply voltage 1: The power supply for accelerator pedal 1 and CMP sensor

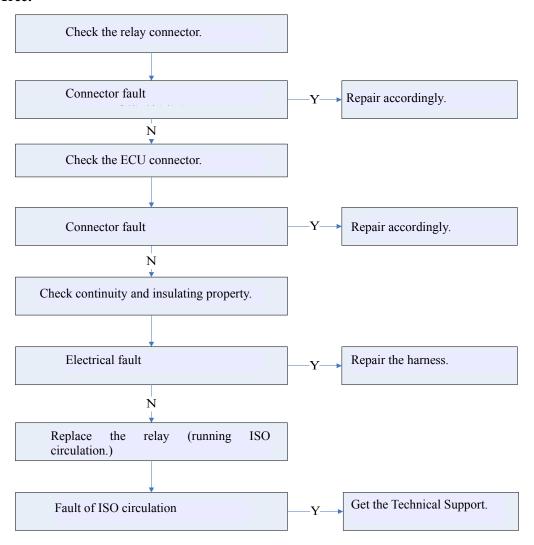
Sensor supply voltage 2: The power supply for accelerator pedal 2, absolute pressure sensor and common rail pressure sensor.


**Diagnosis Hint:** Check the ECU power voltage for any fault. The power voltage detected by multimeter should generally be 5V. Check the voltage signal supplied to relevant sensor. The fault may be caused by virtual connection, poor contact of wire, abrasion of insulation or damage of the wire in insulation. Check the circuit for the following conditions:

- Loose terminal
- Poor matching and connection
- Breakage of keeper
- Distortion or damage of terminal
- Poor contact between terminal and wire
- Damage of harness Check the harness for any damage

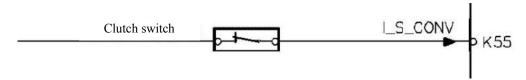


#### 19.


| DTC | P0686 | The main relay opens too early. |
|-----|-------|---------------------------------|
|     | P0687 | The main relay opens too late.  |



**Fault Description:** With the ignition switch OFF, the input circuit of main relay through K47 is actuated by V3 and ECU Pin K46 and the electromagnet picks up the contact of output circuit, so the output circuit of main relay is in continuity. Then, the power supply into the internal control module via ECU Pin K01, K03 and K05. If the ECU signal for relay control is distorted, DTC shall be generated.


**Diagnosis Hint:** The intermittent failure may be caused by poor contact, abrasion of wire insulation or breakage of the wire inside insulation. The ignition 1 relay fault shall lead to the failed starting of engine, for there is no voltage in the ignition coil or fuel injectors in electronic ignition system and they cannot work without being electrified.

| Terminal | ECU |                           |
|----------|-----|---------------------------|
|          | K47 | Main relay control signal |

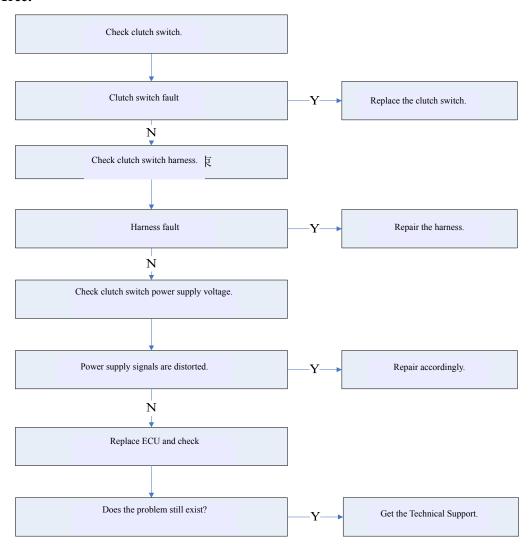


20.

| DTC | P0704 | Clutch signals are unreliable. |
|-----|-------|--------------------------------|
|-----|-------|--------------------------------|

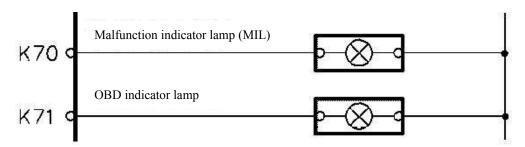


Fault Description: Transmission control unit (TCU) is integrated with engine control unit (ECU) and calculates optimal time and speed for clutch engagement according to feedback information from sensors of accelerator pedal, transmission gear position, transmission input/output shaft speed, engine speed, throttle opening and etc. Automatic transmission (AT) actuating mechanism consists of electric oil pump, solenoid valve and clutch cylinder. When ECU gives command to drive electric oil pump, high-pressure fluid generated in the pump goes through solenoid valve and gets into clutch cylinder. ECU controls magnitude of current of solenoid valve for the control of fluid flow and fluid passage change. Thus piston movement of clutch cylinder is realized in order to complete clutch operation during vehicle starting and shift. In the case of inconformity between clutch signal and actual condition, DTC occurs.


### Diagnosis Hint: clutch switch fault

Check switch wire harness (Check Terminal 58 of ECU for open circuit, short circuit and poor contact.)

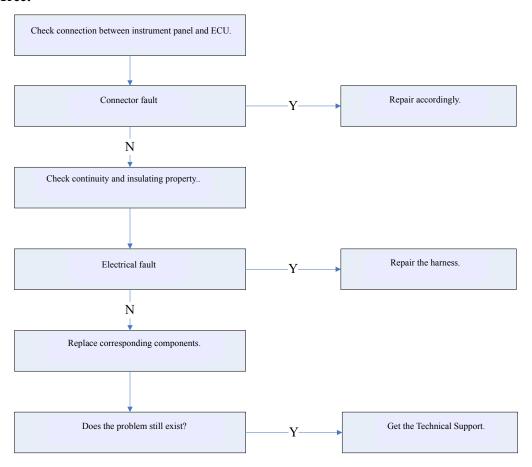
Check switch power supply voltage and operation condition.


Determine ECU replacement according to actual condition.

| Terminals | ECU |                      |
|-----------|-----|----------------------|
|           | K55 | Clutch switch signal |

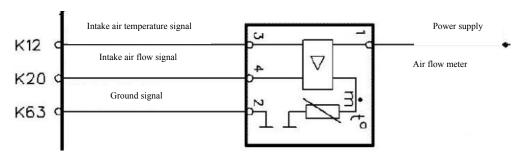


#### 21.


| DTC | P0650 | There are faults (short circuit or open circuit) in ECU OBD malfunction indicator lamp (MIL) output connecting wire. |
|-----|-------|----------------------------------------------------------------------------------------------------------------------|
|     | P1619 | Connection of ECU system MIL output connecting wire is short to high level.                                          |
|     | P161A | Connection of ECU system MIL output connecting wire is short to ground.                                              |
|     | P161B | ECU system MIL output connecting wire is open.                                                                       |
|     | P161C | ECU system MIL drive module is overheated.                                                                           |



Fault Description: Malfunction indicator lamps (MIL) are located on instrument panel cluster (IPC). MILs inform driver about fault generation and necessary maintenance for engine control system. Control module monitors MIL control circuit for inconformity of commands for MILs. For example, when MIL is disconnected by command, control module monitors low voltage or when MIL is connected by command, control module monitors high voltage. This is indicated that there are faults. When control module discovers incorrect voltage or overhigh temperature of MIL control circuit, DTC occurs. In the case of 20 samplings for output status of MIL drive, open circuit or overhigh temperature faults are detected in 15 samplings at least. There are 100msec for each sampling. ECU detects incorrect output status or overlarge current of MIL drive and such status lasts for more than 2sec; for every 10 samplings of MIL drive output status, there are short circuit faults in 5 samplings at least with time consumption for each sampling process as 12.5msec and ECU detects short circuit for more than 1sec under MIL drive output status. In the case of conditions above, DTCs occur.


**Diagnosis Hint:** When short circuit fault is detected, control module should stop starting MIL drive within remained travel. Control module records operation condition when diagnosis is failed. For the first diagnosis failure, control module will keep this information in fault record. If diagnosis failure occurs during the second continuous ignition cycle, control module records operation condition under diagnosis failure and writes the operation condition in frozen fault condition and updates fault record.

| Terminal | ECU |                          |
|----------|-----|--------------------------|
|          | K70 | System MIL output signal |
|          | K71 | OBD indicator lamp       |



#### 22.

| DTC | P0100 | Mass air flow (MAF) signals measured by air flow meter without correction are too strong or too weak (Connection is in open circuit or short circuit). |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | P0101 | Mass air flow (MAF) signals measured by air flow meter with correction are too strong or too weak (Connection is in open circuit or short circuit).    |
|     | P0102 | Mass air flow sensor negative drift                                                                                                                    |
|     | P0103 | Mass air flow sensor positive drift                                                                                                                    |
|     | P0104 | Mass air flow sensor zero drift                                                                                                                        |
|     | P1100 | Air mass flowmeter software correction is excessive.                                                                                                   |



**Fault Description:** Mass air flow (MAF) sensor is an air flow meter which is used in measurement of air inflow of engine. ECU correctly supplies fuel supply with the use of signals from mass air flow sensor for all engine speeds and loads. In the case of small air inflow of engine, it is indicated there is vehicle deceleration or engine idling. In the case of large air inflow of engine, it is indicated there is vehicle acceleration or high engine load. Mass air flow (MAF) sensor possesses circuits as follows:

One ignition 1 voltage circuit

One ground circuit

One signal circuit

ECU applies a voltage to sensor via signal circuit. The sensor uses the voltage to generate a corresponding frequency for air inflow which gets through the sensor. During idle running, the frequency changes in the range around 2000Hz. ECU calculates predicted air flow value with input signals from sensors as follows:

Atmosphere pressure in the case of ignition key connection

Intake manifold absolute pressure sensor

Intake air temperature sensor

Engine coolant temperature sensor

Engine speed

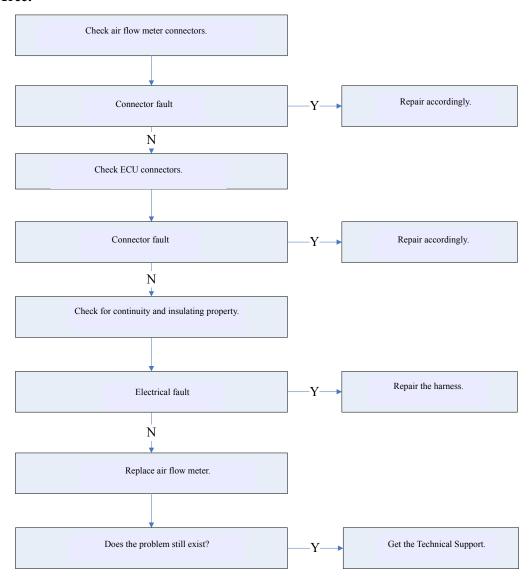
ECU compares mass air flow sensor frequency signal with predicted air flow valve and verify signal lag (lack of change), too low or too high signal level under given operation condition with the comparison. When D-value between actual mass air flow sensor frequency signal which is detected by ECU and air flow meter calculated value is not in preconcerted range, DTC occurs.

Diagnosis Hint: Check mass air flow sensor harness and verify whether harness arrangement is too close to components as follows:

| — Additional a | iccessories after sale |
|----------------|------------------------|
| — Secondary i  | gnition wires or coils |
| — Solenoid va  | lve                    |

- Relay

- Motor


In the case of idle running or deceleration, air flow goes through sensor may reach its minimum and this may lead to DTC occurrence. Check down stream of mass air flow sensor for vacuum leaks. Check mass air flow sensing elements for affixed dirt or scraps. Check intake system for water penetration. Once there is water in mass air flow sensor, it will lead to sensor deviation and DTC occurrence.

Wide open throttle during vehicle acceleration for starting may lead to rapid parameter increase of mass air flow sensor on fault diagnostic apparatus. In other words, 3-10g/sec during idle running will increase to 150g/sec for shift from the  $1^{\text{st}}$  gear to the  $2^{\text{nd}}$ . If parameters do not increase, check intake system and exhaust system for clogging.

Check engine coolant temperature sensor for deviation or lag.

In the case of too high resistance in ignition 1 voltage circuit (i.e. equals to or more than 15Ω), DTC occurs.

| Terminal | ECU |                               |
|----------|-----|-------------------------------|
|          | K12 | Intake air temperature signal |
|          | K20 | Intake air flow signal        |
|          | K63 | Ground signal                 |



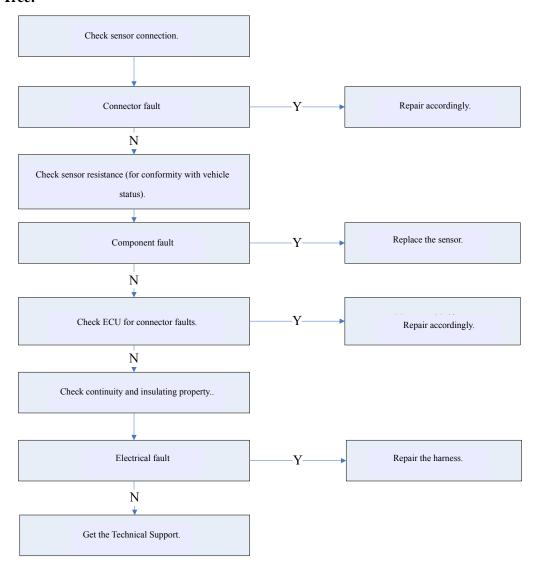
#### 23.

| DTC | P0110 | Connection for additional air temperature sensor of air mass flowmeter is short or open.                          |
|-----|-------|-------------------------------------------------------------------------------------------------------------------|
|     | P0112 | Temperature for additional air temperature sensor of air mass flowmeter is too low.                               |
|     | P0113 | Temperature for additional air temperature sensor of air mass flowmeter is too high.                              |
|     | P1101 | Analog output voltage for additional air temperature sensor of air mass flowmeter is too high or too low.         |
|     | P1102 | Output duty ratio signal level of additional air temperature sensor of air mass flowmeter is too high or too low. |
|     | P1106 | Output duty ratio signal cycle of additional air temperature sensor of air mass flowmeter is too long.            |
|     | P1107 | Output duty ratio signal cycle of additional air temperature sensor of air mass flowmeter is too short.           |

**Fault Description:** Intake air temperature (IAT) sensor is a variable resistance for measurement of engine intake air temperature. Air temperature sensor possesses a signal circuit and a low reference voltage circuit. ECU provides air temperature sensor signal circuit with 5V voltage and provides air temperature sensor reference voltage circuit with grounding. When air temperature sensor is under cold status, sensor resistance value is high. When air temperature increases, sensor resistance value decreases. In the case of high sensor resistance, voltage of air temperature sensor signal circuit detected by ECU is high. With decrease of sensor resistance, voltage of air temperature sensor signal circuit detected by ECU reduces. In the case of too low detected air temperature signal voltage by ECU (it is indicated that temperature is too high) or too high signal voltage (it is indicated that temperature is too low), DTC for this occurs.

Differences among temperature, resistance and voltage are shown as the table below:

| Temperature | Temperature Sensor Resistance | Temperature Sensor Signal Voltage |
|-------------|-------------------------------|-----------------------------------|
| Low         | High                          | High                              |
| High        | Low                           | Low                               |


**Diagnosis Hint:** Test air temperature sensor under different temperatures for evaluation of sensor errors. In the case of sensor error, there will be control performance fault. Lay the engine up for one night, D-value between air temperature sensor and engine coolant temperature sensor displayed values should be within 3°C (5°F). Please refer to "Temperature and Resistance". In the case of too high resistance of temperature sensor signal circuit or low reference voltage circuit, DTC may not occur.

Check for the following conditions:

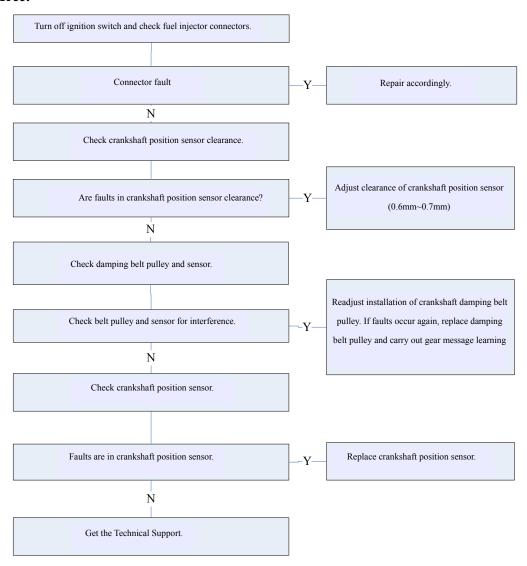
Check ECU harness connector for poor contact between ECU and temperature sensor

- Terminal looseness
- Poor fit of matching parts
- Locking plate fracture
- Terminal deformation or damage
- Poor contact between terminal and wire

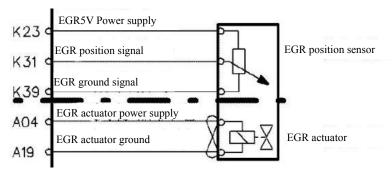
Check harness damage. If the harness seems to be normal, move relevant connector and harness for intake air temperature (IAT) sensor and check display about IAT on diagnostic tool. If display of IAT changes, it is indicated that there is fault in the part.



#### 24.


| DTC | P0300 | Multi-cylinder misfire               |
|-----|-------|--------------------------------------|
|     | P0301 | The 1 <sup>st</sup> cylinder misfire |
|     | P0302 | The 2 <sup>nd</sup> cylinder misfire |
|     | P0303 | The 3 <sup>rd</sup> cylinder misfire |
|     | P0304 | The 4 <sup>th</sup> cylinder misfire |

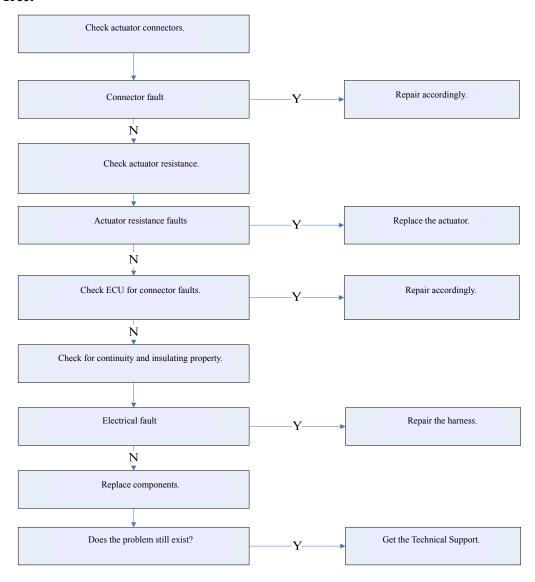
**Fault Description:** ECU determines when engine misfire occurs with the help of information from ignition control (IC) module and camshaft position (CMP) sensors. ECU can detect single misfire via crankshaft speed change for each cylinder. In the case of some vehicle running condition, too high misfire rate will lead to three way catalytic converter (TWC) overheating. In the case of three way catalytic converter overheating, MIL will flash. If misfire rate detected by ECU is enough to make emission level to exceed mandatory standard, DTC occurs. If diagnosis operation fails in two continuous ignition cycle, control module lightens MIL. Control module records operation condition when diagnosis is failed. For the first diagnosis failure, control module will keep this information in fault record. If diagnosis failure occurs during the successive ignition cycle, control module records operation condition under diagnosis failure and writes the operation condition in frozen fault condition and updates fault record.


**Diagnosis Hint: Influence factors for misfire diagnosis**—In the case of misfire diagnosis, it is required that all vehicle parts are under mass production or equivalent. All changes which may influence engine crankshaft speed will interfere with correct diagnosis for misfire.

In the case of faults in components as follows, misfire diagnosis will pause to avoid incorrect diagnostic results—intake pressure/throttle position rationality fault; low voltage or open circuit of intake pressure sensor circuit; high voltage of intake pressure sensor circuit; low voltage or open circuit of coolant temperature sensor circuit; high voltage of coolant temperature sensor circuit; high voltage of throttle position sensor; low voltage of throttle position sensor; signal interference of crankshaft position sensor circuit; no signals in crankshaft position sensor circuit; no signals in camshaft position sensor circuit; camshaft position sensor rationality fault; high voltage or open circuit of intake air temperature sensor circuit; low voltage of intake air temperature sensor circuit; no signals in vehicle speed sensor.

Severe vibration which is not caused by engine may lead to setting fault (vibration source may lead to wears or damages to brake discs with different thicknesses and additional drive belts).




| DTC | P0401 | Actual fresh air inflow is larger than target air inflow set by EGR system.                             |
|-----|-------|---------------------------------------------------------------------------------------------------------|
|     | P0402 | Actual fresh air inflow is smaller than target air inflow set by EGR system.                            |
|     | P0403 | ECU internal drive module of EGR valve actuator control wire is overheated.                             |
|     | P0404 | EGR valve actuator control wire is open.                                                                |
|     | P0405 | Voltage of EGR valve position sensor is below the lower limit (Connection is short to ground).          |
|     | P0406 | Voltage of EGR valve position sensor is above the upper limit (Connection is open short to high level). |
|     | P0489 | EGR valve actuator control wire is open.                                                                |
|     | P0490 | EGR valve actuator control wire is short to high level.                                                 |



Fault Description: Exhaust gas recirculation system is applied in reduction of Nitrogen oxides emission due to high temperature combustion. Main component of the system is electronic control exhaust gas recirculation valve. Exhaust gas recirculation valve delivers a small amount of exhaust gas into intake manifold to reduce combustion temperature. Recirculation gas flow is controlled by ECU according to changes in engine load. In the case of deceleration, gas flow test for exhaust gas recirculation (EGR) system is carried out by ECU. Therefore, ECU gives a transient command to open exhaust gas recirculation valve and simultaneously monitors signals of intake manifold air pressure (MAP) sensor and exhaust gas recirculation position sensor. In the case of inconformity of intake manifold absolute pressure signals with exhaust gas recirculation valve spool shaft position, ECU records measured D-value of intake manifold absolute pressure and adjust calibrated failure counter to failure technical threshold value. For error quantities of detected exhaust gas recirculation flow are different, required test times for exhaust gas recirculation flow concerned excessive failure technical threshold value of may be different, too. When ECU detects incorrect control signals, DTC occurs.

**Diagnosis Hint:** Carry out inspection to engine control system; check engine for historical faults; check exhaust gas recirculation system for faults as follows—vacuum leaks between exhaust gas recirculation valve and intake manifold. In the case of carbon deposition or exhaust gas noise around component faying surface, it is indicated there is external leakage. Check passage and exhaust gas recirculation valve for clogging; check exhaust system for relevant faults (such as leakage due to exhaust component damage, clogging due to excessive back pressure and too low engine vacuum and etc.); finally, carry out inspection to mechanical system.

| Terminal | ECU |                                     |
|----------|-----|-------------------------------------|
|          | K23 | EGR position sensor 5V power supply |
|          | K31 | EGR position sensor position signal |
|          | K39 | EGR position sensor ground          |
|          | A04 | EGR actuator power supply           |
|          | A19 | EGR actuator ground                 |



#### 26.

| DTC | P0480 | ECU Fan I control wire is open                               |
|-----|-------|--------------------------------------------------------------|
|     | P0481 | ECU Fan II control wire is open.                             |
|     | P0483 | ECU Fan I control wire internal drive module is overheated.  |
|     | P0484 | ECU Fan II control wire internal drive module is overheated. |
|     | P0691 | ECU Fan I control wire is short to ground.                   |
|     | P0692 | ECU Fan I control wire is short to high level.               |
|     | P0693 | ECU Fan II control wire is short to ground.                  |
|     | P0694 | ECU Fan II control wire is short to high level.              |

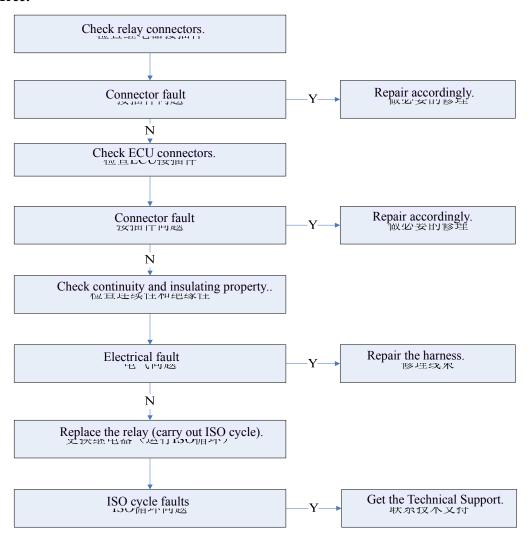
**Fault Description:** ECU provides low-speed relay with grounding via so-called "drive" internal solid component in order to control cooling fan low speed operation. For cooling fan high speed operation, ECU adopts the method of high speed and S/P replay control circuit grounding with simultaneous low-speed control circuit grounding. Battery positive voltage is provided to low-speed, high-speed and S/P fan relays. When ECU commands fan relay to be connected, control circuit voltage is low level which is close to 0V. When ECU commands fan relay to be disconnected, control circuit voltage should be high level which is close to battery voltage. ECU monitors relay control circuit for conditions as follows:

It is short to ground.

It is short to voltage.

It is open.

When ECU detects incorrect voltage in low-speed or high-speed drive circuit, DTC occurs and corresponding drive will stop operating.


Cooling Fan Relay I control circuit controls low-speed cooling fan relay.

Cooling Fan Relay II control circuit controls high-speed cooling fan relay.

**Diagnosis Hint:** Check harness for intermittency and good contact.

Prior to maintenance, remove all fragments from connector surface. Check connector pads for correct installation to prevent contamination from entering prior to diagnosis and component replacement.

- Poor terminal connection—Check harness connectors for looseness, mismatching, retainer damage, improper shape or damage and connection failure with wires. Apply corresponding matching terminals for test of proper tension.
- Harness damage—Check wire harness for damage. In the case of no harness faults, move relevant connectors and
  wire harness and observe display of fault diagnostic apparatus. Fault diagnostic apparatus displays changes to
  indicate fault positions.
- Check ECU and engine ground connection for reliability and cleanness. If it is determined that DTC is an intermittent fault, please refer to Fault Record to check the time of last DTC occurrence.



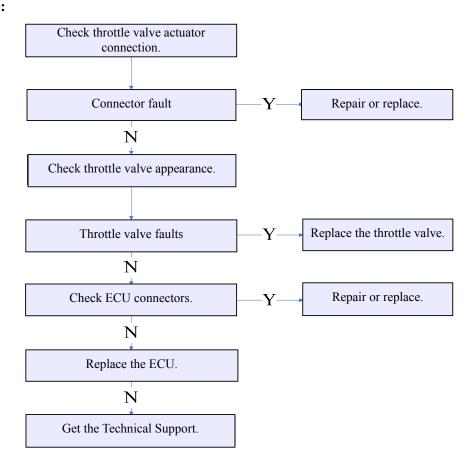
## 27.

| DTC | P0487 | Throttle valve actuator control wire is open.                       |
|-----|-------|---------------------------------------------------------------------|
|     | P0488 | ECU internal drive module of throttle valve actuator is overheated. |
|     | P2141 | Throttle valve actuator control wire is short to ground.            |
|     | P2142 | Throttle valve actuator control wire is short to high level.        |

**Fault Description:** ECU is the control center for throttle valve actuator control system. ECU can judge driver's intention and then calculate corresponding throttle valve response. ECU realizes throttle valve positioning via providing throttle valve actuator control motor with pulse width modulation (PWM) voltage. Throttle valve actuator control system adopts circuits as follows:

Motor control 1

Motor control 2


Besides, two processors are applied in throttle valve actuator control system data monitoring. These two processors are located in ECU, testing data of each other to prove correctness of throttle valve position.

**Diagnosis Hint:** Check for connection and disconnection faults or seizures due to temperature. Under extremely hot or cold condition, existed contaminations or freeze may lead to unsmooth component movement.

If it is an intermittent fault, the possible causes may be poor contact, worn wire insulating layer or damaged wire in insulating layer.

Check for the following conditions:

- Poor contact of ECU or exhaust brake valve—Check harness connectors.
- Terminal looseness
- Poor fit of matching parts
- -Locking plate fracture
- -Terminal deformation or damage
- -Poor contact between terminal and wire
- Harness damage—Check harness for damage.



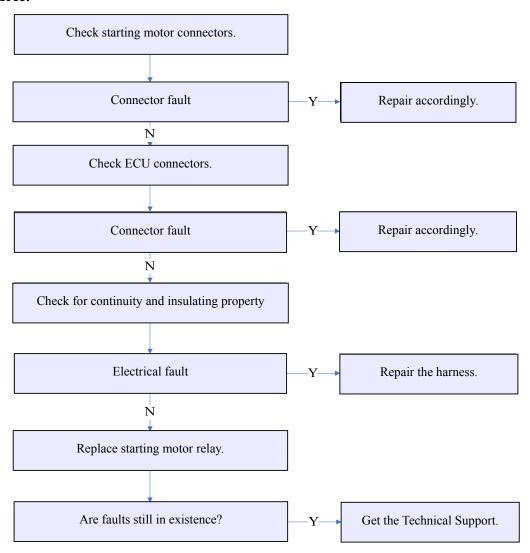
#### 28.

| DTC | P0615 | ECU starting motor control wire is open or drive module is overheated. |
|-----|-------|------------------------------------------------------------------------|
|     | P0616 | ECU starting motor control wire is short to ground.                    |
|     | P0617 | ECU starting motor control wire is short to high level.                |

**Fault Description:** ECU provides starting motor with grounding via so-called "drive" internal solid component in order to control starting motor operation. Under starting motor control circuit command, when fault diagnostic apparatus is connected, it is indicated that starting motor circuit is grounded via control module in order to provide starting motor with voltage; when fault diagnostic apparatus is disconnected, it is indicated that starting motor circuit is not connected via control module command currently. ECU monitors starting motor circuit for conditions as follows:

It is short to ground.

It is short to voltage.


It is open.

When ECU detects incorrect voltage signals, DTC occurs and corresponding drive will stop operating.

**Diagnosis Hint:** Check harness for intermittency and good contact.

Prior to component maintenance, remove all fragments from connector surface. Check connector pads for correct installation to prevent contamination from entering prior to diagnosis and component replacement.

- Poor terminal connection—Check harness connectors for looseness, mismatching, retainer damage, improper shape or damage and connection failure with wires. Apply corresponding matching terminals for test of proper tension.
- Harness damage—Check wire harness for damage. In the case of no harness faults, move relevant connectors and wire harness and observe display of fault diagnostic apparatus. Fault diagnostic apparatus displays changes to indicate fault positions.
- Check ECU and engine ground connection for reliability and cleanness. If it is determined that DTC is an intermittent fault, please refer to Fault Record to check the time of last DTC occurrence.



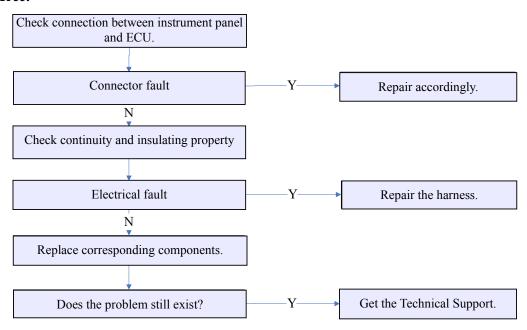
## 29.

| DTC | P1605 | ECU instrument panel engine speed output connecting wire is short to high level. |
|-----|-------|----------------------------------------------------------------------------------|
|     | P1606 | ECU instrument panel engine speed output connecting wire is short to ground.     |
|     | P1607 | ECU instrument panel engine speed output connecting wire is open.                |

**Fault Description:** Vehicle speed sensor (VSS) provides ECU with vehicle speed information. When rotor teeth on transmission output shaft go through sensor magnetic field, vehicle speed sensor generates signal voltage. Frequency of this signal voltage increases with vehicle speed increase. ECU transforms the signal voltage into vehicle speed and displays the speed on instrument panel via control circuit. ECU determines vehicle operation condition with vehicle speed signals in order to guide driver operation. ECU monitors the circuit between ECU and instrument panel for conditions as follows:

It is short to ground.

It is short to voltage.


It is open.

When ECU detects incorrect voltage signals, DTC occurs

**Diagnosis Hint:** Check harness for intermittency and good contact.

Prior to component maintenance, remove all fragments from connector surface. Check connector pads for correct installation to prevent contamination from entering prior to diagnosis and component replacement.

- Poor terminal connection—Check harness connectors for looseness, mismatching, retainer damage, improper shape or damage and connection failure with wires. Apply corresponding matching terminals for test of proper tension.
- Harness damage—Check wire harness for damage. In the case of no harness faults, move relevant connectors and wire harness and observe display of fault diagnostic apparatus. Fault diagnostic apparatus displays changes to indicate fault positions.
- Check ECU and engine ground connection for reliability and cleanness. If it is determined that DTC is an intermittent fault, please refer to Fault Record to check the time of last DTC occurrence.



## 30.

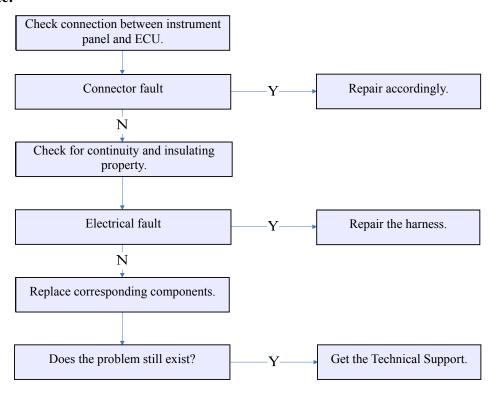
| DTC | P1608 | ECU instrument panel preheating indicator lamp output connecting wire is short to high level. |
|-----|-------|-----------------------------------------------------------------------------------------------|
|     | P1609 | ECU instrument panel preheating indicator lamp output connecting wire is short to ground.     |
|     | P160A | ECU instrument panel preheating indicator lamp output connecting wire is open.                |
|     | P160B | ECU instrument panel preheating indicator lamp output wire drive module is overheated.        |

**Fault Description: During** glow plug operation, preheater relay will send a signal to ECU. Then, ECU sends command to preheating indicator lamp on instrument panel via control circuit. Driver carries out the next operation via observing preheating indicator lamp status. ECU monitors the circuit between ECU and instrument panel for conditions as follows:

It is short to ground.

It is short to voltage.

It is open.


When ECU detects incorrect voltage signals, DTC occurs.

**Diagnosis Hint:** Check harness for intermittency and good contact.

Prior to component maintenance, remove all fragments from connector surface. Check connector pads for correct installation to prevent contamination from entering prior to diagnosis and component replacement.

- Poor terminal connection—Check harness connectors for looseness, mismatching, retainer damage, improper shape or damage and connection failure with wires. Apply corresponding matching terminals for test of proper tension.
- Harness damage—Check wire harness for damage. In the case of no harness faults, move relevant connectors and wire harness and observe display of fault diagnostic apparatus. Fault diagnostic apparatus displays changes to indicate fault positions.
- Check ECU and engine ground connection for reliability and cleanness. If it is determined that DTC is an intermittent fault, please refer to Fault Record to check the time of last DTC occurrence.

| Terminal | ECU |                                |
|----------|-----|--------------------------------|
|          | K92 | Preheating time indicator lamp |



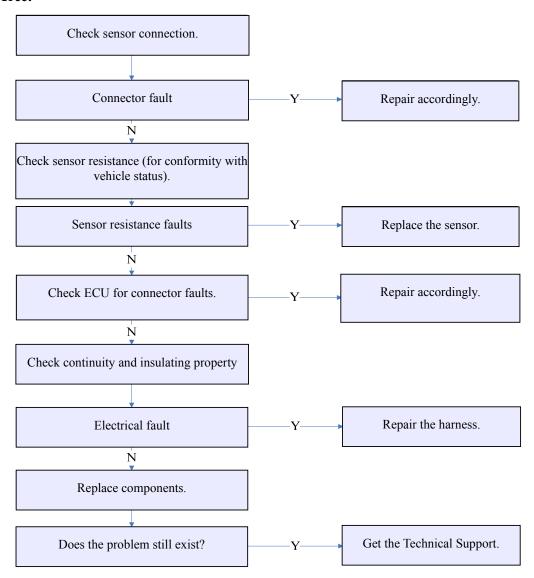
#### 31.

| DTC | P2228 | Atmosphere pressure sensor output voltage is too low.  |
|-----|-------|--------------------------------------------------------|
|     | P2229 | Atmosphere pressure sensor output voltage is too high. |

**Fault Description:** Atmosphere pressure indicates connection of ignition switch. When engine stops operation, control module calculates atmosphere pressure with signals sent by intake manifold absolute pressure sensor. Intake manifold absolute pressure sensor responses to internal pressure changes of intake manifold and the pressure changes according to different engine loads. Intake manifold absolute pressure sensor possesses circuits as follows:

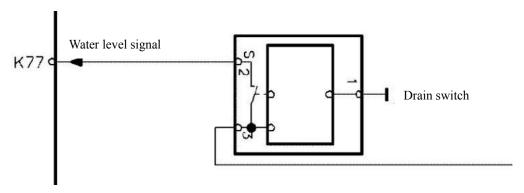
5V reference voltage circuit

Low reference voltage circuit


Intake manifold absolute pressure sensor signal circuit

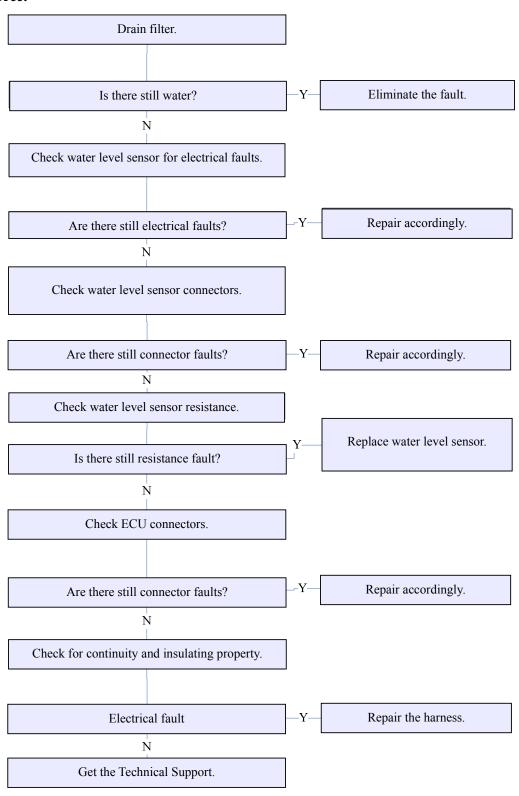
ECU provides intake manifold absolute pressure sensor with 5V voltage via 5V reference voltage circuit. ECU supplies grounding via low reference voltage circuit and intake manifold absolute pressure sensor provides ECU with a signal via signal circuit. This signal is related to intake manifold internal pressure changes. When ignition switch is connected and engine is shut down, intake manifold absolute pressure sensor displays signals of atmosphere pressure. In the case of engine running with wide open throttle, reading of atmosphere pressure will be renewed. ECU determines whether voltage exceeds normal range via detecting intake manifold absolute pressure sensor signals. When intake manifold absolute pressure sensor displays atmosphere pressure, if sensor signal voltage is not in specified range, DTC occurs.

**Diagnosis Hint:** When ignition switch is connected and engine is shut down, intake manifold pressure equals to atmosphere pressure and signal voltage is low level. ECU takes this information as vehicle elevation indication. Moreover, to make comparison between this reading with that of an intact vehicle which possesses the same sensor is a good method for sensor accuracy inspection. D-value of two readings should not exceed 0.4V. It is necessary to carry out comprehensive inspection to pressure source of supercharger pressure sensor in order to check intake system for clogging.


In the case of engine start, intake manifold absolute pressure sensor can detect any change of manifold pressure. This test is carried out to determine sensor lag at a certain value.

In the case of normal intake manifold absolute pressure sensor, it will make rapid response to changes of acceleration pedal positions and it should not be "lagged" or slower than changes of acceleration pedal position.



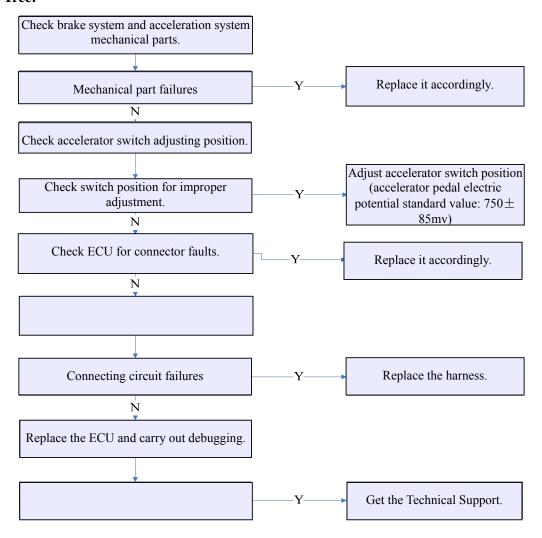

## 32.

| DTC | P2264 | There are faults in water level sensor of diesel filter oil-water separator. |
|-----|-------|------------------------------------------------------------------------------|
|     | P2267 | Water in diesel filter oil-water separator is overflowed.                    |



**Fault Description:** Main function of oil-water separator is to separate moisture from oil in fuel to ensure combustion quality of fuel. When fuel oil goes through oil-water separator, oil content and moisture content in the fuel are separated. For water density is larger than that of oil, separated water is stored in "water tank" under filter element. Fuel filter lower water level sensor is applied in water level detection in "water tank". When accumulated water reaches certain level, warning lamp on instrument panel will be lightened to remind driver to carry out draining. In the case of delayed water drainage, DTC occurs.

**Diagnosis Hint:** In the case of DTC existence, it is necessary to check water level first of all. Normally, carry out water drainage for every 8000-10000km engine running. For oil quality problems, water drainage should be carried out ahead of time for fuel which contains much moisture. Besides, test relevant connectors for this diagnostic procedure for short circuit of terminals or poor contact of wire, avoiding water level sensor signal distortions caused by short circuit or poor contact.

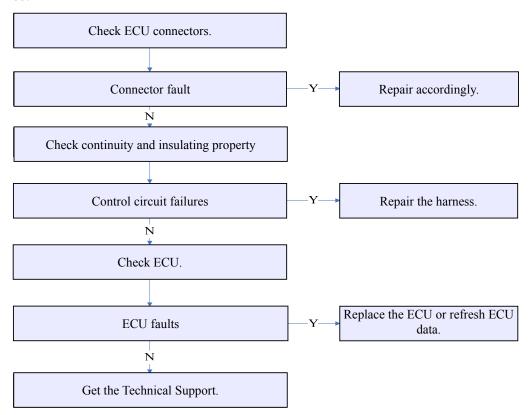



33.

| DTC P22 | 2299 | Depress accelerator pedal and brake pedal at the same time. |
|---------|------|-------------------------------------------------------------|
|---------|------|-------------------------------------------------------------|

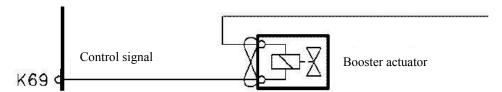
Fault Description: Accelerator pedal assembly consists of two accelerator pedal position (APP) sensors. Accelerator pedal position sensors are installed on pedal assembly and they are not maintainable. When driver depresses accelerator pedal, air inflow of cylinder is increased and ECU increases fuel injector pulse width in order to supply additional fuel during acceleration process for engine demand. Brake switch is a normally open one. When brake pedal is depressed, this switch is closed in order to provide TCU with voltage for brake application. In the case of misoperation of driver during driving, brake system will be locked after depressing brake pedal and brake pedal can not return to its original position. Under such condition, depressing accelerator pedal will lead to DTC occurrence due to conflict between acceleration and brake signals in the case of engine braking status. In addition, improper maintenance or ECU control circuit failures will lead to such faults.

**Diagnosis Hint:** Check brake system and acceleration system for stuck pedal position without pedal returns. Check the circuit between ECU and components for good contact of connection and good harness insulating property. For connection test for ECU and components, diagnostic connectors should be applied.




34.

| DTC |  | In the case of the maximum fault reading, there are EEPROM errors/ICM time-out communication failures. |
|-----|--|--------------------------------------------------------------------------------------------------------|
|-----|--|--------------------------------------------------------------------------------------------------------|


**Fault Description:** They are mainly taken as integrity failures for ECU internal microprocessor, being applied in determination of ECU programming procedure implementation. In the case of engine shutdown and ignition switch connection, ECU carries out self-diagnosis. In the case of diagnosis failure, control module records operation condition under diagnosis failure and stores this information in "Fault Record", DTC occurs. During engine operation, when there is deviation between ECU detected signals and standard signals, the fault will be stored and expressed as DTC via internal communication module of ECU. In the case of external signal intrusion, this will lead to system disorder and DTC occurs. When various faults occur at the same time under the same operation condition, there will be multiple DTCs. For there is a process for ECU response to each fault, ECU response time will be longer in the case of multiple simultaneous faults in existence. During response process, DTC may occur due to ECU internal communication errors or hardware faults.

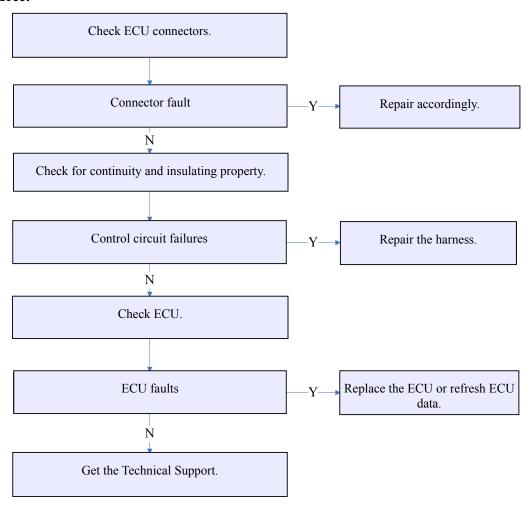
Diagnosis Hint: In the case of fault occurrence, relevant test can be carried out after ECU replacement for possible fault cause may be too long ECU internal response time. Check ECU circuit to verify whether it is circuit failure that leads to fault occurrence.



## 35.

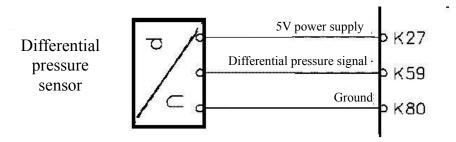
| DTC | P0045 | Supercharger actuator control wire is open.                                    |
|-----|-------|--------------------------------------------------------------------------------|
|     | P0046 | ECU internal drive module of supercharger actuator control wire is overheated. |
|     | P0047 | Supercharger actuator control wire is short to ground.                         |
|     | P0048 | Supercharger actuator control wire is short to high level.                     |




ECU is the control center fro supercharger actuator control system. ECU calculates corresponding supercharger actuator response according to engine operation condition. ECU realizes actuator positioning via providing supercharger actuator control motor with pulse width modulation voltage.

**Diagnosis Hint:** Check for connection and disconnection faults or seizures due to temperature. Under extremely hot or cold condition, existed contaminations or freeze may lead to unsmooth component movement.

If it is an intermittent fault, the possible causes may be poor contact, worn wire insulating layer or damaged wire in insulating layer.


Check for the following conditions:

- Poor contact of ECU or exhaust brake valve —Check harness connectors.
- Terminal looseness
- Poor fit of matching parts
- -Locking plate fracture
- -Terminal deformation or damage
- -Poor contact between terminal and wire
- Harness damage—Check harness for damage.



#### 36.

| DTC | P1070 | Catalytic converter is clogged.                                       |
|-----|-------|-----------------------------------------------------------------------|
|     | P2002 | Catalytic converter is removed.                                       |
|     | P2454 | Catalytic converter front and rear differential pressure is too low.  |
|     | P2455 | Catalytic converter front and rear differential pressure is too high. |

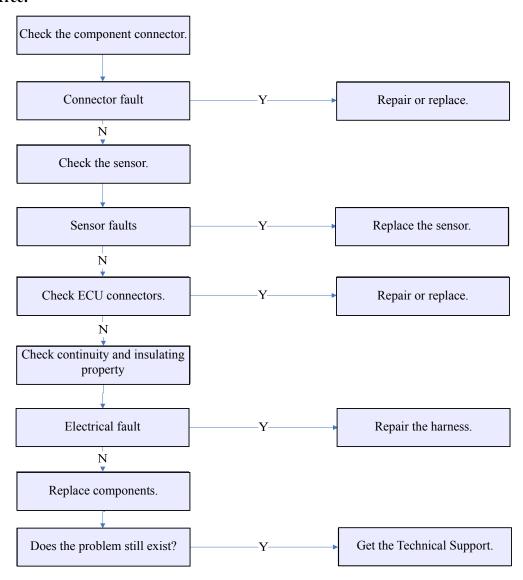


Differential pressure sensor is a Hall Effect switch. ECU provides differential pressure sensor with 5V voltage via 5V reference voltage circuit and provides the sensor with grounding via low reference voltage circuit. Differential pressure sensor provides ECU with signal voltage according to front and rear differential pressure changes of catalytic converter. ECU determines catalytic converter differential pressure with this signal voltage. Differential pressure sensor circuit is connected to ECU directly. Moreover, differential pressure sensor can be applied in determination of catalytic converter damages. Circuits between differential pressure sensor and ECU include the followings:

Differential pressure sensor high reference voltage circuit

Ground circuit

Differential pressure signal circuit


When ECU detects incorrect sensor signals or no signals, DTC occurs.

**Diagnosis Hint:** Poor terminal connection—Check harness connectors for looseness, mismatching, retainer damage, improper shape or damage and connection failure with wires. Apply corresponding matching terminals for test of proper tension.

Harness damage—Check wire harness for damage. In the case of no harness faults, move relevant connectors and wire harness and observe display of fault diagnostic apparatus. Fault diagnostic apparatus displays changes to indicate fault positions.

Check ECU and engine ground connection for reliability and cleanness. If it is determined that DTC is an intermittent fault, please refer to Fault Record to check the time of last DTC occurrence.

| Terminal | ECU |                                              |  |
|----------|-----|----------------------------------------------|--|
|          | K27 | Differential pressure sensor power supply    |  |
|          | K59 | Differential pressure sensor signal terminal |  |
|          | K80 | Ground                                       |  |



**Preface** 

This SUNRAY Service Manual is hereby compiled by the Customer Service

Department of JAC to help the technical service personnel correctly understand and

get familiar with SUNRAY products of JAC INTERNATIONAL better and to provide

them with the ability of quick repair and proper maintenance. This manual comprises

five volumes: Engine Control, Engine Mechanical, Chassis, Body Electrical, and

Body Accessories.

The Body Electrical Volume details the technical standards of electrical component

removal/installation, test, debugging and diagnosis for SUNRAY long-wheelbase

vehicles, including whole vehicle circuit diagrams, definitions of connectors and

locations of ground points for SUNRAY vehicles for quicker service and maintenance

of customer.

When replacement is necessary, only genuine spare parts recommended by JAC can

be adopted.

No part of this manual can be reproduced or used in any form or by any mean without

written permission. All Rights Reserved.

JAC INTERNATIONAL

March 2011

**Battery and Charging System** 

| Battery                       | SC 2  |
|-------------------------------|-------|
| Mounting Position             | SC 2  |
| Precautions                   | SC 3  |
| Generator                     | SC 4  |
| Overview                      | SC 4  |
| Battery                       | SC 5  |
| Maintenance                   | SC 5  |
| Fault diagnosis.              | SC 7  |
| Generator.                    | SC 11 |
| Fault determination           | SC 11 |
| Operating principle           | SC 12 |
| Battery                       | SC 14 |
| Removal of Battery            | SC 14 |
| Installation of Battery       | SC 16 |
| Generator.                    | SC 18 |
| Removal of Generator          | SC 18 |
| Installation of Generator     | SC 21 |
| Instrument and Warning System |       |
| Instrument                    | IP 24 |
| Mounting position.            |       |
| Performance characteristics   |       |
| Instrument                    | IP 26 |
| Function description          | IP 26 |
| Definitions of pins           | IP 32 |
| Instrument                    | IP 33 |
| Removal of Instrument         | IP 33 |
| Instrument                    | IP 35 |
| Basic parameters              | IP 35 |
| <b>ETACS Body Computer</b>    |       |
| ETACS                         | ET 38 |
| Mounting position.            |       |
| Information functions         |       |
| ETACS                         |       |
| System structure              |       |
| Introduction functions.       |       |
| Control strategy              |       |
| Diagnosis and Service         |       |
| ETACS Pin Definition          |       |
| ETACS                         |       |
| Removal of ETACS              |       |

| La 11 de CETA CO                                  |          |
|---------------------------------------------------|----------|
| Installation of ETACS.                            |          |
| ETACS                                             |          |
| Basic parameters                                  | E1 54    |
| Lighting System                                   |          |
| Lighting                                          | LT 56    |
| Overview                                          | LT 56    |
| Lighting configuration table                      | LT 58    |
| Introduction to functions                         | LT 59    |
| Fault diagnosis                                   | LT 62    |
| Removal of headlamp                               | LT 76    |
| Removal of clearance lamps                        | LT 77    |
| Removal of front fog lamps                        | LT 78    |
| Removal of ceiling lamps                          | LT 79    |
| Removal of rear tail lamps.                       | LT 80    |
| Removal of high-mounted brake lamp                | LT 81    |
| Removal of rear fog lamp                          | LT 82    |
| Lighting System.                                  | LT 83    |
| Basic parameters                                  | LT 83    |
| Wiper and Washer System                           |          |
| Wiper                                             | WW 86    |
| Mounting position                                 |          |
| Information functions.                            |          |
| Wiper                                             |          |
| Definitions of pins                               |          |
| Troubleshooting                                   |          |
| Wiper                                             |          |
| Removal of the wiper                              |          |
| Removal of the windshield washing fluid reservoir |          |
| Removal of the Wiper washing nozzle               |          |
| Wiper                                             |          |
| Basic parameters                                  |          |
| •                                                 |          |
| Reversing Radar                                   | P. 4 0 - |
| Reversing Radar                                   |          |
| Mounting position sensor                          |          |
| Operating principle                               |          |
| Reversing Radar                                   |          |
| Definitions of reversing radar computer pins      |          |
| Troubleshooting                                   |          |
| Reversing Radar                                   |          |
| Removal of the reversing radar computer           |          |
| Removal of the reversing radar sensor             |          |
| Reversing Radar                                   |          |
| Basic parameters                                  | PT 111   |

| Audio/Video System                 |        |
|------------------------------------|--------|
| Radio                              | AV 114 |
| Mounting position                  |        |
| Introduction functions.            | AV 115 |
| Precautions                        | AV 119 |
| Radio                              | AV 121 |
| Troubleshooting                    | AV 121 |
| Radio                              | AV 124 |
| Removal of Radio                   | AV 124 |
| Removal of loudspeakers            | AV 125 |
| Radio                              | AV 127 |
| Basic parameters                   | AV 127 |
| Seat Belt                          |        |
| Seat Belt                          | SB 130 |
| Overview                           | SB 130 |
| Seat Belt                          | SB 131 |
| Troubleshooting.                   | SB 131 |
| Seat Belt                          | SB 132 |
| Removal of seat belt               |        |
| Removal of seat belt buckle lock   | SB 134 |
| Power Window                       |        |
| Power Window                       | GW 136 |
| Installation position.             | GW 136 |
| Operation Instructions             | GW 137 |
| Power Window                       | GW 138 |
| Troubleshooting                    | GW 138 |
| Power Window                       | GW 142 |
| Removal of window regulator motor  | GW 142 |
| Removal of window regulator switch | GW 143 |
| Electric rear-view mirro           |        |
| Electric rear-view mirro           | EM 148 |
| Overview                           | EM 148 |
| Electric rear-view mirro           | EM 149 |
| Removal of rear view mirror        | EM 149 |
| Removal of rear view mirror switch | EM 150 |
| Horn                               |        |
| Horn                               | НО 152 |
| Mounting position                  | НО 152 |
| Horn                               |        |
| Troubleshooting                    | HO 153 |
| Horn                               | НО 156 |
| Removal of Horn                    | HO 156 |

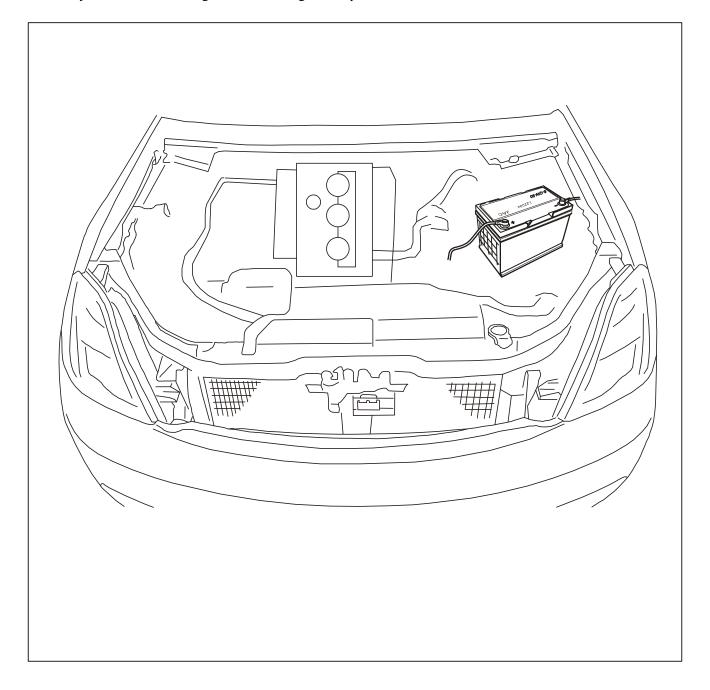
| Air Conditioner                      |        |
|--------------------------------------|--------|
| Air Conditioner                      | AT 158 |
| Overview                             | AT 158 |
| Precautions                          | AT 159 |
| Functional operation                 | AT 162 |
| Air Conditioner                      | AT 16  |
| Operating principle                  | AT 16  |
| Air distribution system introduction | AT 16  |
| Leak test                            | AT 168 |
| A/C system performance testing       | AT 169 |
| Refrigerant recovery                 | AT 172 |
| A/C System Performance Table         | AT 174 |
| System Testing.                      | AT 170 |
| Air Conditioner                      | AT 189 |
| Removal of front A/C                 | AT 189 |
| Removal of top evaporator tank       | AT 19  |
| Removal of front condenser.          | AT 193 |
| Removal of bottom condenser          | AT 19: |
| Removal of heater water tank         | AT 190 |
| Removal of after motor               | AT 198 |
| Removal of compressor                | AT 202 |
| Installation of compressor assembly  | AT 204 |
| Removal of front A/C panel           | AT 205 |
| Removal of rear A/C panel            | AT 200 |
| Air Conditioner                      | AT 20° |
| Basic parameters.                    | AT 20° |
| Circuit Diagram                      |        |
| Diagram specification                | EC 210 |
| Circuit Diagram                      | EC 218 |
| Interior fuse box                    | EC 218 |
| Exterior fuse box                    | EC 219 |
| Start charging system                | EC 220 |
| Engine ECU electronic control unit   | EC 222 |
| Horn                                 | EC 21  |
| ABS system.                          | EC 228 |
| Airbag system                        | EC 229 |
| Reversing system                     | EC 230 |
| Electric rear view mirror            | EC 23  |
| Audio system                         | EC 23  |
| Cigarette lighter and fuel heater    | EC 233 |
| Rear ceiling lamp and front fog lamp | EC 234 |
| Rear fog lamp                        | EC 23: |
| High beam and low beam               | EC 236 |

| Turn signal lamp and hazard warning lamp. | EC 237 |
|-------------------------------------------|--------|
| Small lamp                                |        |
| Central control                           |        |
| Wiper and washer                          |        |
| Power window                              |        |
| Front A/C system                          |        |
| Rear A/C system                           |        |
| ETACS                                     |        |
| Instrument                                | EC 247 |
| Self diagnosis                            | EC 250 |
| Harness layout                            |        |
| Main harness                              |        |
| Engine compartment harness                | EC 252 |
| Left front door harness                   |        |
| Right front door harness                  | EC 256 |
| Left tail lamp harness                    | EC 257 |
| Right tail lamp harness                   | EC 258 |
| Left back door harness                    | EC 259 |
| Rear loud speaker harness                 |        |
| ABS harness                               | EC 261 |
| Fuel tank harness.                        | EC 262 |
| Reversing radar harness                   | EC 263 |

# **Battery and Charging System**

Applied models: SUNRAY products manufactured by JAC

| Subject                   | Page |
|---------------------------|------|
| Instruction and Operation |      |
| Battery                   | 2    |
| Mounting Position.        | 2    |
| Precautions.              |      |
| Generator                 |      |
| Overview                  | 4    |
| Diagnosis and Testing     |      |
| Battery                   | 5    |
| Maintenance               | 5    |
| Fault diagnosis           | 7    |
| Generator                 | 11   |
| Fault determination       |      |
| Operating principle       | 12   |
| Removal and Installation  |      |
| Battery                   | 14   |
| Removal of Battery        |      |
| Installation of Battery   | 16   |
| Generator                 | 18   |
| Removal of Generator      |      |
| Installation of Generator | 21   |


# **Instruction and Operation**

# **Battery**

Maintenance-free battery is adopted by Sunray series with characteristics in low electrolyte consumption. In the service life of the battery, there is no need to replenish with distilled water. Moreover, other characteristics of the battery are shock resistance, high temperature resistance and low self discharge. Therefore, the service life of this battery is twice as long as that of general batteries.

# **Mounting Position of Battery**

The battery is mounted on the right side of the engine compartment.



# **Instruction and Operation**

## **Precautions of Battery**

Warning: Keep the battery out of the reach of children. Since there is sulfuric acid in the battery, the contact of the sulfuric acid with the skin, eyes or clothes should be avoided. In the case of working close to the battery, it is necessary to protect your eyes from being hurt by the spilled out acid solution. Once the acid solution comes into contact with skin or eyes, it is necessary to wash with clean water for 15 minutes at least and go to a doctor immediately. In the case of mistakenly swallow, it is necessary to go to a doctor immediately or it may lead to personal injury.

**Warning:** In general, explosive gas may be generated by the battery. In the case of misconduct of it, it may lead to personal injury. Therefore, keep the battery out of flames, sparks or burning objects. In the case of battery charging or working close to the battery, it is necessary to protect your face and eyes and maintain good ventilation. Please follow relevant instructions or it may lead to personal injury.

Warning: In the case of mistakenly short circuit between the positive and negative terminal posts with a metal conductor (eg.metal tools, metal wires, metal parts, etc.), in other word, the external short circuit of the battery occurs, the generated electric arc may result in electrode erosion and melted lead alloy splashing even the burning due to the generation of a lot of heat.

Precautionary measure: Prevent direct short circuit between the positive and negative terminal posts of the battery in battery assembly with metal

tools or fault diagnosis with metal wires.

Warning: It is necessary to connect the charger with the battery properly before turning on the charger or it may lead to personal injury.

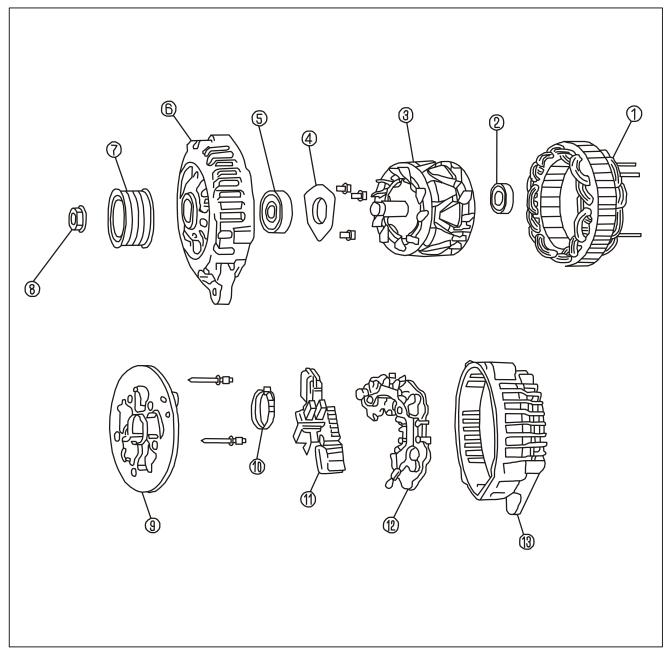
Warning: It is necessary to turn off the charger before disassembling the battery or it may lead to personal injury.

Attention: It is avoided to carry out battery charging onboard.

Attention: It is not allowed to get close to the battery being charged by the generator. If only generator is applied in battery charging, it is required continuous driving over 8 hours for complete charging without any extra load on the charging system.

Warning: In the process of charging equipment application, it is necessary to follow the instruction of the manufacture or it may lead to personal injury.

Protection: Please wear safety goggles and gloves.


Emergency treatment: In the case of battery burning, disconnect the external short-circuited metal wire with the battery, using a monkey spanner or other tools and it is not allowed to contact it with hands. At the same time, put out the fire with extinguisher.

# **Instruction and Operation**

## Generator

Air-cooled generator is adopted by Sunray series vehicle, conducting cooling via the air blowing from the fan behind the pulley into the generator shell. The generator is the main power of the vehicle with the function of power supplying to all electric equipments (except starter) in the normal operation of the starter (above the idle speed) as well as battery charging.

# **Explosive View of Generator**



- 1. Stator
- 5. Front bearing
- 9.Fan guider
- 13. Rear cover
- 2.Rear bearing
- 6.Front cover
- 10. Double labyrinth seal
- 3.Rotor assembly
- 7.Pulley
- 11.IC voltage regulator assembly
- 4.Retainer 8.Pulley nut
- 12.Diode assembly

# **Diagnosis and Testing**

# **Maintenance of Battery**

1. Battery status indicator (electric eye):

Green: There is sufficient electric quantity in the battery for starting the vehicle normally.

Black: There is no sufficient electric quantity in the battery and battery boost charge is needed.

White: The battery is scrapped and it is necessary to carry out replacement.

## 2. Boost charge of Battery

Under the condition of vehicle starting, in the case of abnormal applications like excessively long-term operation of electricals, the electric eye of the battery becomes darkened even the vehicle fails to start because of the power loss of battery due to the lack of normal battery charging caused by long-term parking and vehicle electric leakage or charging fault in vehicle generator. In this case, it is necessary to carry out external charging treatment to the battery.

• Appearance inspection of the battery prior to boost charge:

It is not allowed to charge the battery with a broken case or acid leakage. Please replace the battery after identifying the cause.

It is not allowed to carry out boost charge for the battery with a broken terminal post. Please replace the battery after identifying the cause.

It is not allowed to charge the battery with a white electric eye. Please replace the battery.

Prior to boost charge, please clean the terminal post, removing the oxide on the surface.

## • Precautions in charging:

Wear safety goggles.

Maintain ventilation in charging under normal temperature.

It is not allowed to smoke in charging to prevent the introduction of fire.

In the wire connection after charging, connect the positive connecting wire firstly; in the wire disconnection before charging, disconnect the negative connecting wire firstly.

## • Battery boost charge:

Confirm that battery terminals are clean and charging circuit is in good connection.

Connect the positive pole of the charger with that of the battery while the negative pole of the charger with that of the battery. Do not charge the series connected battery (24V).

As dual-purpose charger, one with constant voltage of 16.0V (maximum permitted voltage is equal or under 16.2V or large quantity of water shall be electrolyzed which may lead to liquid level decrease, white electric eye and scrapped battery) and rated current of 25 ampere shall be applied in battery charging until the electric eye becomes green. The green electric eye indicates the battery is charged completely. In the case of no constant voltage charger for battery charging, charge the battery with constant current according to following specifications:

- (1) Select the charging current with rated capacity of  $1/8 \sim 1/10$  ampere for battery charging and at the end of charging, the voltage of battery shall reach 16V without any exceedance (in the case of black electric eye of the battery with voltage under 16V at the end of battery charging, there is no influence to battery application.) When it can not guaranteed the charging voltage limit of the charger is under 16V, it is necessary to monitor the end voltage of battery to be charged, or there shall be battery water loss due to overvoltage charging even battery failure.
- (2) After charging completion, verify the color of battery electric eye. In the case of green electric eye, it indicated that the battery is charged completely. In the case of black electric eye, verify whether charging connecting wires are connected firmly, connection points are clean and charging voltage is 16V. Leave the battery as it is for 24 hours, measure its voltage and carry out boost charge according to charging interest.
- (3) In the case of white electric eye, it indicates that there are bubbles in the electric eye and shake the battery slightly to remove these bubbles. If the electric eye is still white after battery shaking (indicating electrolyte loss), replace the battery.

For battery with voltage lower than 11V, there may be incapable charging phenomenon at the beginning of battery charging. The proportion of sulfuric acid in the battery is close to pure water and battery internal resistance becomes very large due to serious battery power loss. In this case, reduce the charging current or use a charger with a higher power instead, with the battery charging goes on, the proportion of sulfuric acid in the battery increases and the

# **SC Battery and Charging System**

charging current for battery can return to normal gradually.

In the process of charging, if there is a large quantity of acid spraying out from battery vent, stop charging and identify the cause.

In the process of charging, when the battery temperature exceeds 45  $^{\circ}$ C, stop charging. When the battery is cooled down to room temperature, go on to charge it with half charging current.

In the process of battery boost charge, check the status of electric eye once an hour. In the case of green electric eye, it indicates that the battery is charged completely and stop charging.

After charging completion and relevant test, it is recommended to apply grease on battery terminals to avoid electrolytic corrosion.

- 3. Correct Application of Battery
- The discharging time of battery in large current should not be too long or pole plate shall be deformed due to overheating that may lead to short circuit or battery capacity reduction caused by active material shedding. In the case of vehicle start, each start time should not exceed 5 seconds and the interval between continuous starts should not less than 10~15 seconds:
- In capacity inspection with high rate discharging gauge (discharging meter), the discharging time should not exceed 5 seconds;
- In normal vehicle running, battery is in charging state generally; In the case of low power supply capacity of generator due to improper regulation of regulator, excessive battery power consumption due to frequent vehicle start or serious battery power loss due to short circuit in electric appliance, it is necessary to carry out battery boost charge.
- After 3 months of battery service time, when the battery capacity is lower than 50% or

- phenomenons like underpowered vehicle starting, dim lighting, abnormal honk etc., off-board boost charge for battery shall be carried out as well as normal maintenance. At the same time, pay attention to batteries in the process of charging for batteries with the same capacity and different voltages shall not be charged together. It is not allowed the mixed use of new and old batteries.
- The output voltage of vehicle voltage regulator shall be measured after battery loading and shall be regulated in the range of 13.8~14.8 V according to vehicle service condition. The recommended voltage is 14.4V. In the case of frequent vehicle application, it is easy to cause battery overcharge and the voltage should be regulated to a lower one. On the contrary, in the case of infrequent vehicle application or frequent vehicle start, the voltage should be regulated to a higher one. To avoid overcharge, the voltage should be heightened while in summer it should be lowered.
- In the case of long-term parking, the negative terminal should be disconnected with vehicle to avoid excessive self discharge and serious sulfating. Under the condition of no battery power loss, recharge the maintenance-free battery once every 3 months. In the case of instant power loss at the beginning of parking, it is necessary to recharge the battery timely according to the voltage. In general, when battery voltage is under 12.6V, it is necessary to recharge the battery.

It is not allowed for the battery discharging current to exceed that of the maximum battery of the manufacturer. In general, the discharging current is  $4\sim5$  times as large as that of  $4\sim5$ C20 battery capacity. It is not allows to test battery electrification with short-circuit method.

# **Diagnosis and Test**

1. Fault diagnosis of Battery

| Fault                         | Fault symptoms                                                                                                                                                                                                                                                               | Cause analysis                                                                                                                                                                                                                                                    | Troubleshooting                                                                                                                                                                                                                                          |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Insufficient<br>battery power | <ol> <li>Voltage is approximately 12V</li> <li>Density is under 1.220dt</li> <li>Underpowered vehicle starting, dim lighting, low honk</li> <li>The capacity test is in the yellow area.</li> </ol>                                                                          | Too low set value of vehicle regulator     Power consumption is larger than that of charging.     High start frequency and short driving distance     Insufficient power generation or circuit fault     Terminal corrosion or unfirm connection                  | Replace the regulator     Carry out the off-board charging     Eliminate generator or circuit faults     Clean corrosions on terminals.                                                                                                                  |
| Overcharge                    | <ol> <li>Perpetual reddish yellow of battery case inner wall (operating bolt)</li> <li>Separator carbonization or softening</li> <li>Red brown and thick electrolyte</li> <li>Pulpy shedding of positive active material</li> </ol>                                          | <ol> <li>Too high set valve of vehicle regulator</li> <li>Too large current in charging and too long charging time</li> <li>Closed operating bolt in charging</li> </ol>                                                                                          | <ol> <li>Regulate or replace the regulator</li> <li>Charge according to relevant regulations</li> <li>For mild overcharge, clean it with water and recharge it for application.</li> </ol>                                                               |
| Overdischarge                 | <ol> <li>Voltage is under 10V</li> <li>Density (proportion) is 1.100g/cm³</li> <li>Tattletale gray and thick electrolyte</li> </ol>                                                                                                                                          | <ol> <li>Apply the undercharged battery</li> <li>V ehicle undercharge and too long service time of battery</li> <li>Short circuit in vehicle circuit</li> <li>Forget to turn off electric switch</li> <li>Impure electrolyte or serious self discharge</li> </ol> | <ol> <li>Replace the circuit regulator</li> <li>Guarantee the quality and quantity of off-board charging</li> <li>Eliminate circuit faults</li> <li>Keep a clear head in parking (to turn off the switch)</li> <li>Replace with a new battery</li> </ol> |
| Short circuit                 | <ol> <li>Voltage is under 10V</li> <li>No voltage in faulted cell</li> <li>No proportion in faulted cell</li> <li>Smoking and bubbling in discharging</li> <li>No response from the faulted cell in charging</li> </ol>                                                      | <ol> <li>Lead leakage or foreign matter dropping in battery assembly</li> <li>Pole plate bending in battery assembly</li> <li>Burrs of cluster plate pins</li> <li>Holes or cracks in separators.</li> <li>Artificial damage</li> </ol>                           | Disassemble and analyze it     Replace with a new battery                                                                                                                                                                                                |
| Open circuit                  | <ol> <li>Unusually instability of voltage</li> <li>Lead leakage and cavities at the place 5mm upper than the terminal top</li> <li>Measure voltage is under 10V and discharging returns zero</li> <li>Unable current input in charging or there is abnormal noise</li> </ol> | <ol> <li>Poor welding of terminal posts</li> <li>Broken busbar</li> <li>Open welding of wall weld</li> <li>Broken intermediate terminal post</li> </ol>                                                                                                           | Repair     Replace with a new battery                                                                                                                                                                                                                    |

# **SC Battery and Charging System**

# **Diagnosis and Test**

1. Fault diagnosis of Battery

| Fault                                  | Fault symptoms                                                                                                                                                                                                                                                                                                                                                                                                                  | Cause analysis                                                                                                                                                                                                                                                                               | Troubleshooting                                                                                                 |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Improper                               | ① Peculiar smell of electrolyte                                                                                                                                                                                                                                                                                                                                                                                                 | ① Impure electrolyte                                                                                                                                                                                                                                                                         | ① Replace with a new battery                                                                                    |
| electrolyte filling                    | ② Density (proportion) is above 1.300dt                                                                                                                                                                                                                                                                                                                                                                                         | ② Too high ratio of electrolyte                                                                                                                                                                                                                                                              | ② Adjust the density and carry out boost charge                                                                 |
|                                        | <ul><li>3 Density is about 1.100dt after filling.</li><li>4 Liquid color is light and whitish.</li></ul>                                                                                                                                                                                                                                                                                                                        | <ul><li>③ Insufficient density</li><li>④ Do not fill pure water</li></ul>                                                                                                                                                                                                                    | After changing the electrolyte, adjust charging with acid of 1.400dt                                            |
| Sulphating of pole plate               | ① Excessively low battery capacity in discharging                                                                                                                                                                                                                                                                                                                                                                               | ① Insufficient charging time and too long service time                                                                                                                                                                                                                                       | ① Overcharge method                                                                                             |
|                                        | <ul> <li>② Too fast voltage descent speed in discharging</li> <li>③ Early bubble generation in charging</li> </ul>                                                                                                                                                                                                                                                                                                              | ② Too long storage of battery with electrolyte and no timely boost charge                                                                                                                                                                                                                    | <ul><li>2 Repetitive charging method</li><li>3 Washing treatment</li><li>4 Replace with a new battery</li></ul> |
|                                        | Too fast and high voltage rise in charging                                                                                                                                                                                                                                                                                                                                                                                      | ③ Battery is in the status of liquid loss and the exposure time of terminal cluster is too long.                                                                                                                                                                                             |                                                                                                                 |
|                                        | (5) There are white granules and spots on pole plate surface.                                                                                                                                                                                                                                                                                                                                                                   | <ul><li>4 Too high electrolyte density</li><li>5 Too high electrolyte temperature</li><li>6 Impure electrolyte</li></ul>                                                                                                                                                                     |                                                                                                                 |
| Battery cell<br>electrolyte<br>leakage | <ol> <li>Low voltage</li> <li>When connecting battery cells tilted, electrolyte flows.</li> <li>There is boiling in discharging.</li> </ol>                                                                                                                                                                                                                                                                                     | <ol> <li>Electrolyte flows among battery cells and cracks on battery case</li> <li>There is vibration in transportation.</li> <li>There is vibration in vehicle running.</li> <li>There are sparking and implosion.</li> <li>The heat seal is not firm.</li> </ol>                           | ① Repair or replace the case ② Replace with a new battery                                                       |
| Excessive shedding of active material  | <ol> <li>Excessive sediments at the battery bottom</li> <li>Excessive low battery capacity</li> <li>Perpetual red brown of cell wall and operating bolt</li> <li>Red brown electrolyte</li> <li>The electrolyte is reddish and there is pulpy shedding of pole plate active materials, separators are in softening state and negative pole plate active materials are softening expansion.</li> <li>Massive shedding</li> </ol> | Too high set valve of vehicle circuit regulator     Too large current in charging and too long charging time     Too large discharge capacity and too long discharge time     High temperature and long service time due to long-term vehicle running     Unqualified pole plate manufacture | Clean the sediments with washing method and charge it for reuse     Replace with a new battery                  |

1. Fault diagnosis of Battery

| Fault                                 | Fault symptoms                                                                                                                                                                                                                                                                                                                                                                                                                  | Cause analysis                                                                                                                                                                                                                                                                                                                | Troubleshooting                                                                                                                                                                                                                                        |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Excessive shedding of active material | <ol> <li>Excessive sediments at the battery bottom</li> <li>Excessive low battery capacity</li> <li>Perpetual red brown of cell wall and operating bolt</li> <li>Red brown electrolyte</li> <li>The electrolyte is reddish and there is pulpy shedding of pole plate active materials, separators are in softening state and negative pole plate active materials are softening expansion.</li> <li>Massive shedding</li> </ol> | Too high set valve of vehicle circuit regulator     Too large current in charging and too long charging time     Too large discharge capacity and too long discharge time     High temperature and long service time due to long-term vehicle running     Unqualified pole plate manufacture                                  | Clean the sediments with washing method and charge it for reuse     Replace with a new battery                                                                                                                                                         |
| Reverse installation of polarities    | <ol> <li>For one reversed cell, 8V</li> <li>For two reversed cells, 4V</li> <li>For the whole reversed cells-12V</li> </ol>                                                                                                                                                                                                                                                                                                     | Manufacturing quality                                                                                                                                                                                                                                                                                                         | <ul><li>① Replace with a new battery</li><li>② Disassemble and reinstall</li></ul>                                                                                                                                                                     |
| Reverse charging of polarities        | <ol> <li>The voltage is negative</li> <li>The colors of positive and negative terminal posts are reversed.</li> <li>The colors of pole plates are reversed.</li> </ol>                                                                                                                                                                                                                                                          | Misconnection of positive and negative polarities in charging                                                                                                                                                                                                                                                                 | Discharge the capacity of battery after its reverse charging of polarities completely      Charge the battery with small current and then with normal current in the case of response of every cell      For serious cases, replace with a new battery |
| Battery<br>explosion                  | Terminal post sparking     Broken positive circuit     Holes and cracks in battery case and cover                                                                                                                                                                                                                                                                                                                               | <ol> <li>Incorrect installation</li> <li>Aged and thin circuit</li> <li>Faulted operation of generator</li> <li>Interference of external sparks</li> <li>Insufficient solder for terminal post</li> <li>Broken busbar</li> <li>Dropped plate</li> <li>Broken intermediate terminal post</li> <li>Broken pole plate</li> </ol> | <ol> <li>Firmly install</li> <li>Replace the circuit</li> <li>Eliminate generator fault</li> <li>Keep the battery away from heat source</li> <li>Always keep vent unblocked.</li> <li>Replace with a new battery</li> </ol>                            |
| Low capacity in early stage           | ① Underpowered start ② Low voltage value ③ Slow response                                                                                                                                                                                                                                                                                                                                                                        | Unfirm connection or circuit fault     It exceeds the storage period.     Positive pole plate passivation     Negative pole plate oxidation     Slightly leaky separator                                                                                                                                                      | Inspect the circuit carefully     Carry out boost charge                                                                                                                                                                                               |

# **SC Battery and Charging System**

# **Diagnosis and Test**

# Fault determination of battery

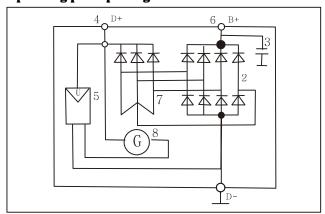
# 2. Appearance inspection

| Items of Inspection        |                      | Cause                                                                 | Troubleshooting        |
|----------------------------|----------------------|-----------------------------------------------------------------------|------------------------|
| D                          | ① Battery case crash | Replace with a new one                                                |                        |
|                            | Damage               | ② Incorrect installation                                              |                        |
|                            | D                    | ① Loose connection or poor contact of terminal post                   | Replace with a new one |
|                            | Burn                 | ② External short circuit                                              |                        |
| Case                       |                      | ① Internal short circuit                                              | Replace with a new one |
| Case                       |                      | ② In the case of low electrolyte level, there will be internal spark. |                        |
|                            |                      | ③ Blocked vent                                                        |                        |
|                            | Deformation 2        | ① Overcharge                                                          | Replace with a new one |
|                            |                      | ② Overcurrent charging                                                |                        |
|                            |                      | ③ Blocked vent                                                        |                        |
| Battery acid leakage       |                      | ① Damaged plastic case due to external impact                         | Replace with a new one |
|                            |                      | ② Inversion or too large tilt angle of battery                        |                        |
|                            |                      | ③ Unfirm heat seal                                                    |                        |
| Terminal post melting loss |                      | ① External short circuit                                              | Replace with a new one |
|                            |                      | ② Poor contact                                                        |                        |
|                            |                      | ③ Poor welding                                                        |                        |

# 3. Voltage inspection

| Voltage - | When it is above 12.5V,the electric eye is green              | Normal                                           | Load test              |
|-----------|---------------------------------------------------------------|--------------------------------------------------|------------------------|
|           | When it is between 12.4 $\sim$ 11V, the electric eye is black | Undercharge                                      | Boost charge           |
|           |                                                               | ① Overdischarge (Black electric)                 | Replace with a new one |
|           | When it is equal to or under 10.5V                            | ② Short circuit (in general, green electric eye) |                        |
|           |                                                               | ③ Open circuit                                   |                        |
|           | Green area                                                    | Normal                                           | _                      |
| Load test | Yellow area                                                   | Undercharge                                      | Boost charge           |
|           | Red area                                                      | ① Undercharge                                    | Replace with a new one |
|           |                                                               | ② Short circuit or open circuit                  |                        |

# Fault determination of Generator


Fault diagnosis of charging system

| Fault symptoms                                          | Fault diagnosis                                                                                                                                                                                            | Troubleshooting                                                                                                                                 |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| No lightened charging indicator lamp                    | ① Bulb fault                                                                                                                                                                                               | ① Install a new bulb.                                                                                                                           |
| when the ignition switch is at the 2 <sup>nd</sup> gear | ② Looseness or oxidation of generator connectors or battery terminals, poor connection of ground wire                                                                                                      | ② Clean and tighten cables of battery or generator and apply acid proof grease. Inspect ground wire connectors, clean and tighten if necessary. |
|                                                         | ③ Faults in voltage regulator, rotor or brush circuit                                                                                                                                                      | ③ Eliminate the open circuit fault                                                                                                              |
|                                                         | ④ Ignition switch fault                                                                                                                                                                                    | ④ Install a new ignition switch                                                                                                                 |
| Incorrect go-out of charging                            | ① Loose drive belt                                                                                                                                                                                         | ① Tension drive belt again                                                                                                                      |
| indicator lamp when the engine is in operation          | ② Loose or oxidized generator connector, poor connection of ground wire                                                                                                                                    | ② Clean and tighten connectors     ③ Inspect brush connector, clean/loosen                                                                      |
|                                                         | ③ Unable contact of brush with rotor ring,<br>stuck brush in conduction direction, wear<br>and oil stains of brush. Wear of bearing<br>and slip ring, faults in voltage regulator or<br>rectifier assembly | brush if necessary, install a new voltage regulator or replace the faulted generator                                                            |
| Undercharge                                             | ① Loose drive belt                                                                                                                                                                                         | ① Tension drive belt again                                                                                                                      |
|                                                         | ② Fault in welding points of generator connector                                                                                                                                                           | ② Install a new voltage regulator or replace the faulted generator if necessary                                                                 |
|                                                         | ③ Poor connection of ground wire between voltage regulator and generator housing                                                                                                                           | ③ Clean and tighten connectors                                                                                                                  |
| Overcharge                                              | ① Voltage regulator fault                                                                                                                                                                                  | ① Install a new voltage regulator or replace the faulted generator if necessary                                                                 |
| Noise in operation                                      | ① Bearing wear                                                                                                                                                                                             | ① Install a new generator                                                                                                                       |
|                                                         | ② Loose pulley                                                                                                                                                                                             | ② Tension the pulley according to                                                                                                               |
|                                                         | ③ Belt wear                                                                                                                                                                                                | specified torque. In the case of broken shaft, replace the generator                                                                            |
|                                                         |                                                                                                                                                                                                            | ③ Install a new belt                                                                                                                            |

### SC Battery and Charging System

## **Diagnosis and Test**

#### **Operating principle of generator**



The operating principle of generator: divide three-phase alternating currents (AC) generated by the three-phase windings into two paths: take one as field current to go through 3 excitation diodes 1 to D+ end and voltage regulator 5, then go through moving contacts and slip rings to field winding, finally, return to the voltage regulator through slip rings and sliding contacts; The other one goes through positive rectifier diode of three-phase full-wave velocity converter bridge to electric appliances in the vehicle and then returns through negative power diodes.

Terminal B+ is an output one and Terminal D+ is connected to charging indicator lamp and ignition switch in the external circuit and then is connected to battery positive pole. When starting the engine, contact points of the ignition switch are closed and form initial field current in field winding with the charging indicator lamps lightening simultaneously (lighting inspection). In the case of engine in idling operation condition, the indicator lamp goes out. During vehicle running, if the charging indicator lamp is lightened, it indicates faults in generator system.

The hybrid germanium transistor voltage regulator is adopted in this generator, consisting of a ceramic wafer with protective resistance and an integrated circuit enclosed in seal housing. It plays a role in: keeping a constant output current of AC generator in the case of wide engine speed range and large output current change.

#### Precautions of generator maintenance

For the output current of generator is generated by stators and rectified by rectifier diodes, please pay attention to following aspects in generator inspection and regulation:

- Pay attention to generator ground polarities and it is not allowed to connect reversely. In the case of reverse connection of generator and battery polarities, it leads to positive conduction of power diode and the diode is burnt by the large current goes through it. Therefore, correct polarities are necessary in battery replacement.
- It is not allowed to use screw drivers or wires to ground output terminal and housing of generator for live wire test. For instant large current or high voltage electromotive force generated by induction may puncture or burn down the power diode.
- 3. It is not allowed to connect two terminal posts for test with screw drivers or wires or there shall be fast rise of generator voltage which may lead to voltage regulator damage.
- 4. In the case of fast charging with large current from AC generator to battery, when the charging current is discovered getting smaller or ever being close to 0, please verify for the existence of faults in charging part. In the case of voltage regulator fault or excessively high voltage regulation, please carry out maintenance as soon as possible to avoid early damage in battery and electric appliance of generator field winding.

- 5. In the joint operation of generator and voltage regulator, the output voltage is very stable. However, in the case of their inspections and applications, they should be connected to on-board battery in parallel for application. When the generator is outputting a large current, sudden disconnection with battery may generate an excessively high peak voltage. In this case, even there is only a short-time existence of the peak voltage, it may lead to damage of other electronic parts. Therefore, pay attention to relevant inspection and application, do not disconnect the connection of generator in operation with battery at any case.
- 6. It is necessary to guarantee the reliable connection of the connecting ground wire between the generator and chassis.
- 7. It is not allowed to ground the power supply lead in the operation of generator or it may lead to harness burn.
- 8. In generator inspection, it is necessary to fill the generator sealed bearing with sufficient No.2 lithium base grease before the next maintenance.
- 9. It is not necessary to maintain the voltage regulator, In the case of its damage, replace the voltage regulator assembly.

### **Removal of Battery**



Warning: In general, explosive gas may be generated by the battery. In the case of misconduct of it, it may lead to personal injury. Therefore, keep the battery out of flames, sparks or burning objects. In the case of battery charging or working close to the battery, it is necessary to protect your face and eyes and maintain good ventilation. Please follow relevant instructions or it may lead to personal injury.



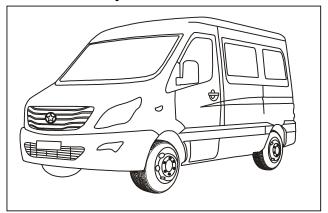
Warning: Since there is sulfuric acid in the battery, the contact of the sulfuric acid with the skin, eyes or clothes should be avoided. In the case of working close to the battery, it is necessary to protect your eyes from being hurt by the spilled out acid solution. Once the acid solution comes into contact with skin or eyes, it is necessary to wash with clean water for 15 minutes at least and go to a doctor immediately. In the case of mistakenly swallow, it is necessary to go to a doctor immediately or it may lead to personal injury.



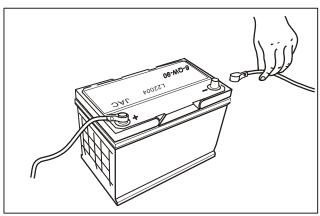
The sequence of battery disconnection: disconnect the negative connecting wire of the battery and then the positive one.



Warning: In the maintenance of auxiliary restraint system or fuel system, do not apply the audio hosting or the storage device of key password. For the applications of these devices at this moment, there is still a low current in vehicle system. Please follow relevant instructions or it may lead to personal injury.

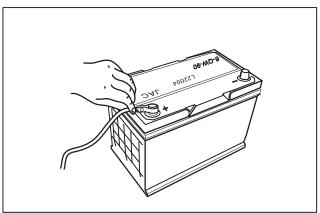



Notice: Prior to battery ground wire removal, it is necessary to confirm that the engine is stopped in order to avoid vehicle electric system damage.



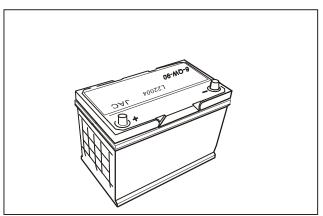

Notice: In the case of battery removal mentioned in maintenance manual, please follow the procedure for the removal.

## **Removal of Battery**




1. Open the engine hood.




2. Unscrew mounting bolts of battery negative pole.

Remove the negative connecting wire of battery.



3. Unscrew mounting bolts of battery positive pole.

Remove the positive connecting wire of battery.



4. Take down the battery from vehicle.

## **Installation of Battery**



Warning: In general, explosive gas may be generated by the battery. In the case of misconduct of it, it may lead to personal injury. Therefore, keep the battery out of flames, sparks or burning objects. In the case of battery charging or working close to the battery, it is necessary to protect your face and eyes and maintain good ventilation. Please follow relevant instructions or it may lead to personal injury.



Caution: Prior to connection of battery ground wire, it is necessary to confirm that all electric systems are turned off in order to avoid vehicle electric system damage.



Do not tilt the battery with an angle over 40°



It is not allowed to place the battery up side down or place it laterally.



It is not allowed to install the battery with electric leakage onto the vehicle.



Inspect the transportation tray for battery for the existence of screws and nuts and remove them in order to avoid secondary damage of the battery.



The sequence of battery connection: connect the positive connecting wire of the battery and then the negative one.



Warning: Since there is sulfuric acid in the battery, the contact of the sulfuric acid with the skin, eyes or clothes should be avoided. In the case of working close to the battery, it is necessary to protect your eyes from being hurt by the spilled out acid solution. Once the acid solution comes into contact with skin or eyes, it is necessary to wash with clean water for 15 minutes at least and go to a doctor immediately. In the case of mistakenly swallow, it is necessary to go to a doctor immediately or it may lead to personal injury.



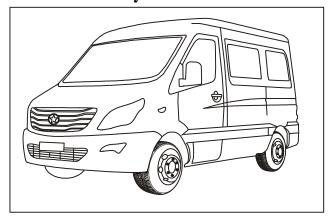
Notice: In the case of battery removal mentioned in maintenance manual, please follow the procedure for the removal.



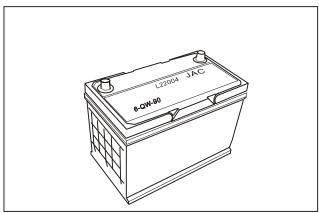
Prior to battery installation, it is necessary to confirm that the electric eye is green.



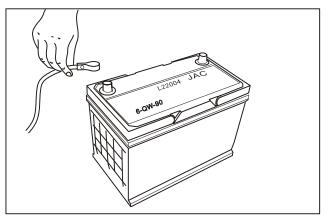
A It is not allowed to install the battery with a black electric eye onto the vehicle.




Tt is not allowed to knock or twist terminal posts in battery installation.

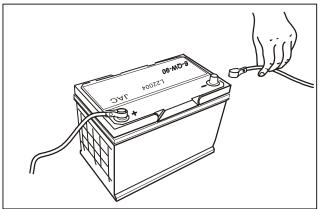



In battery installation, make sure that all electric appliances are "OFF".


# **Installation of Battery**



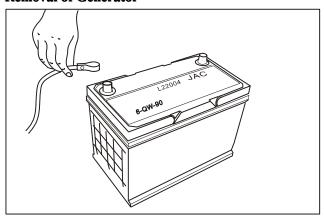
1. Open the engine hood.



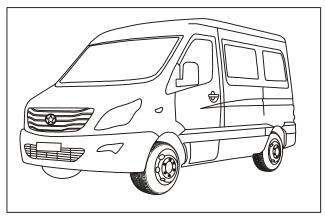

2. Place the battery on its support plate steady.



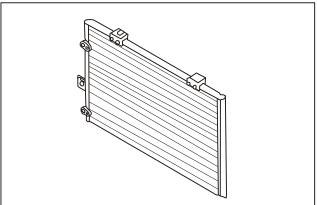
3. Install the positive connecting wire of battery.


Tighten mounting bolts of battery positive pole.

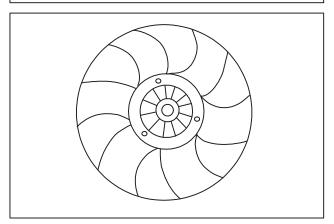



4. Install the negative connecting wire of battery.

Tighten mounting bolts of battery negative pole.

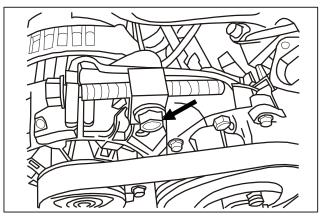

# **Removal of Generator**




1. Disconnect the battery connection.



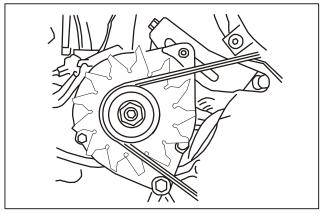
2. Remove the front bumper.



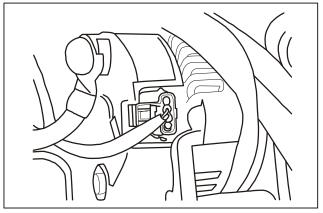

3. Remove the condenser, intercooler and water tank.



4. Remove the cooling fan.

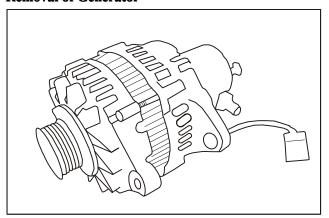

#### **Removal of Generator**




5. Unscrew tension bolts of generator.

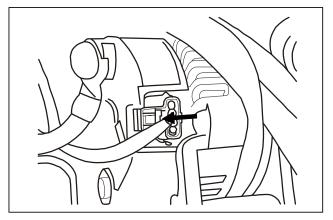


6. Remove the generator belt.

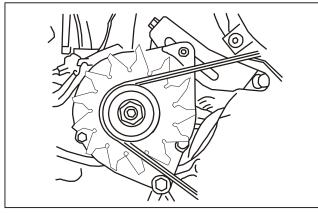



7. Remove the mounting bolts of generator.

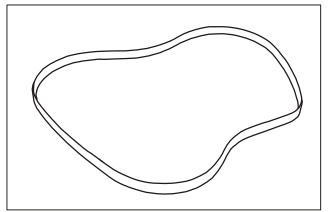



8. Disconnect the generator harness connectors.

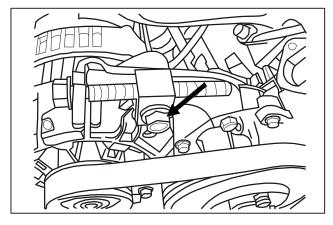
## **Removal of Generator**




9. Remove the generator.


## **Installation of Generator**




1. Connect the generator harness connectors.



2. Install mounting bolts of generator.



3. Install the generator belt.

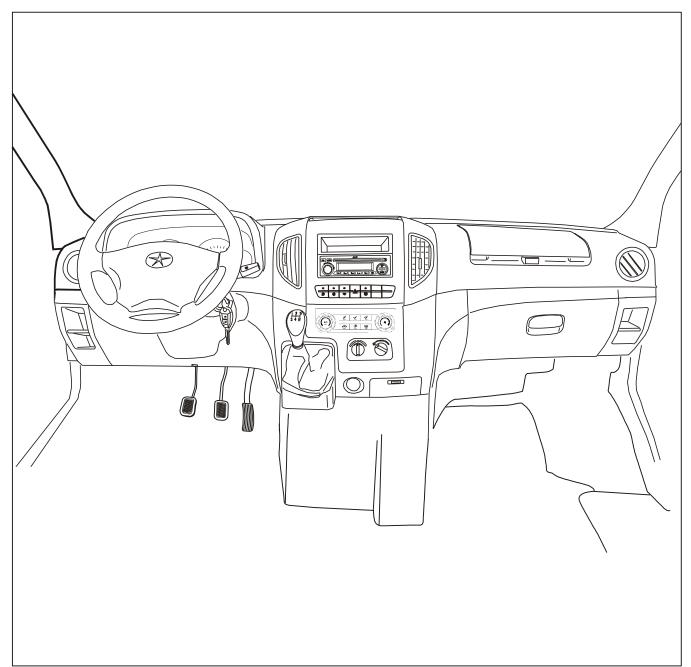


4. Tighten tension bolts of generator.

# **Instrument and Warning System**

Applied models: SUNRAY products manufactured by JAC

| Subject                     | Page |
|-----------------------------|------|
| Instruction and Operation   |      |
| Instrument                  | 24   |
| Mounting position           | 24   |
| Performance characteristics | 25   |
| Diagnosis and Testing       |      |
| Instrument                  | 26   |
| Function description        | 26   |
| Definitions of pins.        | 32   |
| Removal/Installation        |      |
| Instrument                  | 33   |
| Removal of Instrument       | 33   |
| Specification               |      |
| Instrument                  | 35   |
| Basic parameters            | 35   |


## **Instruction and Operation**

#### **Combination instrument**

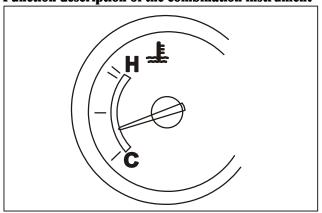
Sunray instruments are all-digital instruments which take stepping motors as the structural forms. Analog or digital signals of all sensors are converted into digital signals via processing of central processing units (CPU) to drive the stepping motors. After the processing, the drive signals are sent to respective indicating instruments of stepping motors and actuate their operations.

#### **Locations of combination instruments:**

Sunray combination instrument is in front of the driver.

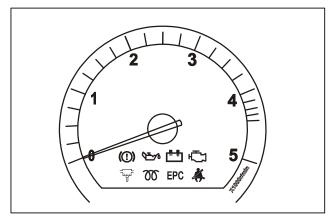


#### **Instruction and Operation**


#### Performance characteristics of the combination instrument:

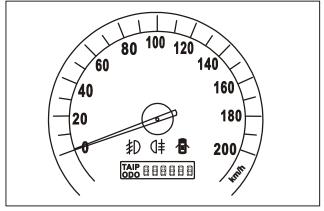
All-digital instruments are adopted in Sunray series, which do not only eliminate disadvantages of conventional analog display instruments, but also possess following advantages:

- 1. The indication accuracy may reach 1/12° as the highest.
- 2. It enables the stable indication without the application of damping oil and pointer balancer.
- 3. It enables easy installation and debugging without any hysteresis errors that the instrument possesses good reliability, good consistency and strong vibration resistance.
- 4. It enables long service life and wide operating range of -40°~+85°.
- 5. It enables low voltage (5V) and low current drive, all-digital control and low consumption.
- 6. It enables strong anti-interference.
- 7. It enables smaller thickness and weight of the instrument.
- LED is applied as indicator lamps and backlights which enables lower power consumption, longer service life and lower heat. And LED backlight technology is adopted for homogeneous and soft lighting.


- 9. LCD is applied for mileage display and mileage subtotal to avoid stuck phenomenon with the application of gear display and it is easily installed and debugged.
- 10. SMD parts and reflow soldering technology may prevent the instrument from faults caused by insufficient solder and void and enable lower weight of the instrument.
- 11. Software warning is adopted in fuel warning and the fuel warning switch in the sensor can be revocatory.
- 12. With proper modifications of instrument software parameters, the instrument can be applicable to vehicles with different gear ratios, speeds, fuels and temperature sensors and the applicable range is very wide.

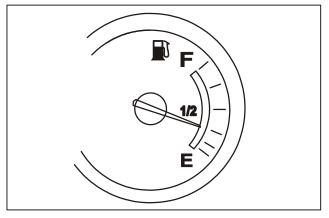
#### Function description of the combination instrument




#### 1. Water temperature gauge

It processes water temperature signals received by the instrument, converts these signals to voltage signals firstly then to digital signals via AD and controls the water temperature stepping motor for the indication of corresponding values.

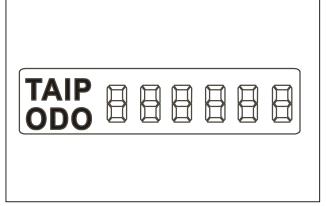



#### 2. Tachometer

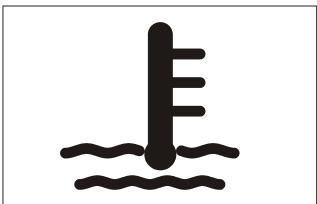
It carries out the algorithmic-processing for signals sent by the generator, controls the speed stepping motor for the indication of corresponding values. Corresponding speed signal frequency for every 1000R/MIN is 260HZ.



#### 3. Speedometer


It carries out the algorithmic-processing for signals sent by the vehicle speed sensor and controls the vehicle speed stepping motor for the indication of corresponding values.

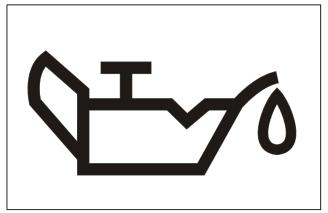



#### 4. Fuel gauge

It processes resistance signals sent by the fuel sensor, converts these signals to voltage signals firstly then to digital signals via AD and controls the fuel stepping motor for the indication of corresponding values.

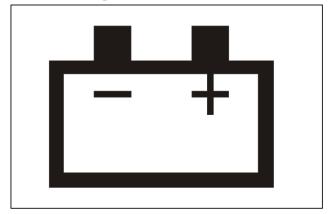
#### Function description of the combination instrument




5. Accumulative total and subtotal odometer
The LCD is applied for the indication of total
mileage and subtotal mileage. The display interface
can be switched via the application of the adjusting
lever at the right side. The subtotal odometer can
be reset via pressing the adjusting lever for 2S.

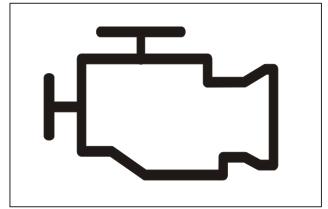


Water temperature warning lamp
 In the case of overhigh engine antifreeze
 temperature, the warning lamp lightens.

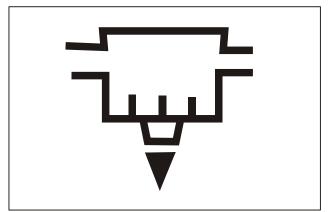



7. Brake shoe wear indicator lamp
In the case of friction lining wear with a certain
extent, the brake shoe wear indicator lamp will be
lit to remind you of brake lining replacement.

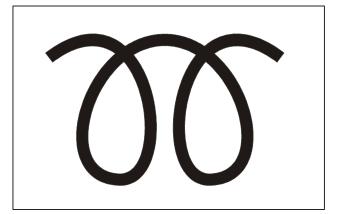



8. Engine oil pressure warning lamp
In the case of excessively low engine oil pressure,
the warning lamp will keep lit after engine start or
it will be lit during vehicle running, indicating
insufficient engine oil pressure.

#### Function description of the combination instrument




9. Charging warning lamp
If the indicator lamp keeps lit or it will be lit during vehicle running, it indicates that there may be


electrical faults in the charging system.



10. Exhaust fault indicator lamp
In the case of exhaust emission exceeding the standard value, this lamp will be lit.



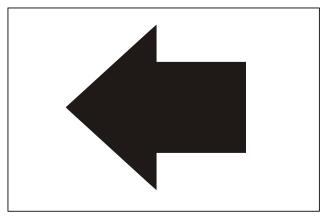
11. Fuel filter warning lamp
In the case of water level of oil-water separator reaching danger level, the oil-water separator water volume indicator lamp lightens.



12. Diesel oil preheating indicator lamp
The preheating indicator lamp may keep lit for a
while or go out immediately. The lit time varies
according to the engine and coolant temperatures.

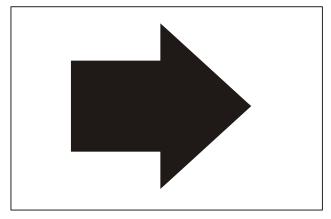
#### Function description of the combination instrument




## 13. EPC indicator lamp

If the indicator lamp is in the state of normally on, it indicates that there are electronic faults.

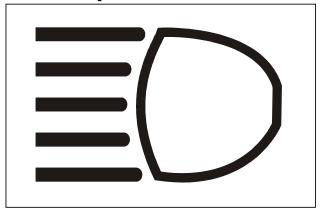



#### 14. Seat belt warning lamp

It will keep lit until the driver's seat belt has been fastened



#### 15. Left turn signal indicator lamp

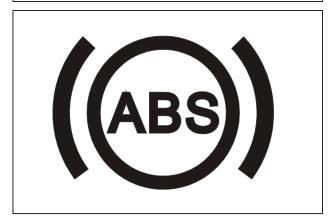

When the left turn signal lamp is lit, this indicator lamp will be lit together with a turn indicator lamp in the corresponding direction. When the turn signal lamp is turned off, this indicator lamp will go out automatically.



### 16. Right turn signal indicator lamp

When the right turn signal lamp is lit, this indicator lamp will be lit together with a turn indicator lamp. When the turn signal lamp is turned off, this indicator lamp will go out automatically.

### Function description of the combination instrument




17. Upper beam indicator lamp
When the upper beam headlamp is connected, this indicator lamp will be lit.

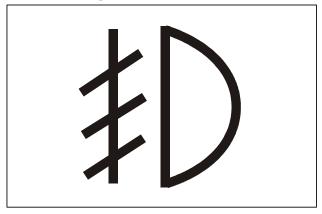


18. Airbag indicator lamp

If the airbag indicator lamp keeps lit or is lit during vehicle running, it indicates that there are abnormalities in airbag system.

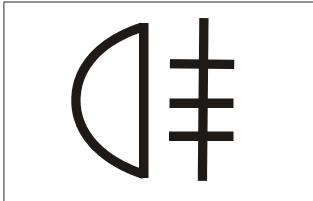


19. ABS signal lamp


In the case of opening door with key or vehicle self-inspection, the ABS lamp may keep lit for a few seconds then go out. If the lamp does not lighten or keep lit, it indicated that there are faults in ABS.



20. Parking brake indicator lamp


When the hand brake is pulled up, the indicator lamp lightens automatically and the lamp will go out with the hand brake down.

#### Function description of the combination instrument



21. Front fog lamp indicator lamp

When the front fog lamp is lit, corresponding mark of the indicator lamp will be lit. When the fog lamp is turned off, corresponding indicator lamp goes out.



22. Rear fog lamp indicator lamp

When the rear lamp is lit, corresponding mark of the indicator lamp will be lit. When the fog lamp is turned off, corresponding indicator lamp goes out.



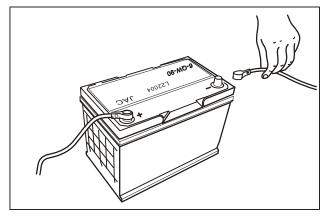
23. Door open warning lamp

When doors are not closed, the indicator lamp keeps lit until all doors are closed and locked completely.

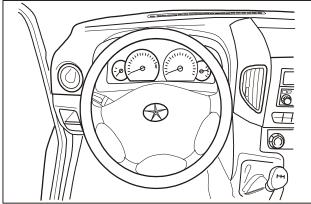


24. Fuel warning lamp

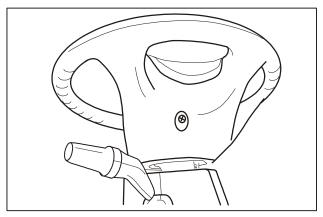
When the remaining fuel in the fuel tank is lower than the warning level, the fuel warning lamp lightens to remain the driver of fuel filling.


# $\operatorname{IP}$ Instrument and Warning System

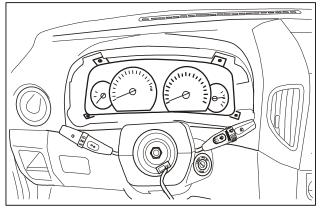
# **Diagnosis and Test**


# **Definitions of instrument pins**

| Terminal NO. | Terminal name              | Terminal NO. | Terminal name                |
|--------------|----------------------------|--------------|------------------------------|
| A1           | Back lighting(-)           | B1           | Right turn(+)                |
| A2           | Back lighting (+)          | B2           | Upper beam(+)                |
| A3           | Frequency division output  | В3           | NC                           |
| A4           | Main relay                 | B4           | Instrument LIN communication |
| A5           | Oil-water separator(+)     | В5           | NC                           |
| A6           | NC                         | В6           | NC                           |
| A7           | NC                         | В7           | NC                           |
| A8           | NC                         | B8           | NC                           |
| A9           | NC                         | В9           | NC                           |
| A10          | Engine fault(-)            | B10          | NC                           |
| A11          | Charging indicator lamp(-) | B11          | NC                           |
| A12          | Engine oil pressure(-)     | B12          | NC                           |
| A13          | Brake fault(-)             | B13          | NC                           |
| A14          | Engine inspection(EPC)(-)  | B14          | NC                           |
| A15          | NC                         | B15          | NC                           |
| A16          | Engine fault(-)            | B16          | NC                           |
| A17          | NC                         | B17          | Parking brake(-)             |
| A18          | Water temperature signal   | B18          | Preheating(-)                |
| A19          | Fuel signal                | B19          | Seat belt(-)                 |
| A20          | Vehicle speed signal       | B20          | Door open indicator lamp(-)  |
| A21          | Speed signal               | B21          | NC                           |
| A22          | Constant power supply      | B22          | Rear fog lamp(+)             |
| A23          | GROUND                     | B23          | Front fog lamp(+)            |
| A24          | Ignition                   | B24          | NC                           |
| A25          | GROUND                     | B25          | NC                           |
| A26          | NC                         | B26          | NC                           |
| A27          | ABS                        | B27          | NC                           |
| A28          | NC                         | B28          | NC                           |
| A29          | GROUND                     | B29          | NC                           |
| A30          | NC                         | B30          | NC                           |
| A31          | NC                         | B31          | NC                           |
| A32          | Left turn(+)               | B32          | NC                           |

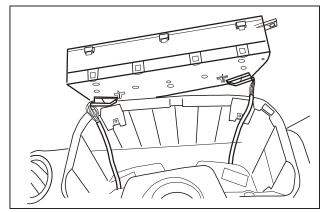

## Removal of the instrument



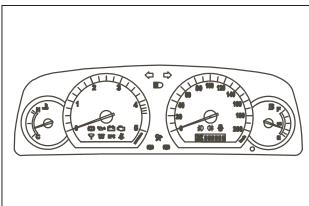

1. Disconnect the connecting wire of battery.



2. Remove the steering wheel.




3. Remove the protecting cover of the steering wheel.




4. Remove mounting bolts of the instrument.

## Removal of the instrument



5. Disconnect the connector plug of the instrument.



6. Take out the instrument.

# **Specification**

# Technical parameter of the instrument

| Item                                          | Technical parameter | Remark |
|-----------------------------------------------|---------------------|--------|
| Operating temperature range of the instrument | -30°C∼65°C          |        |
| Storage temperature range of the instrument   | -40°C ~75°C         |        |
| Operating voltage range of the instrument     | 10.8V~16V           |        |
| Static operating current of the instrument    | ⟨3mA                |        |

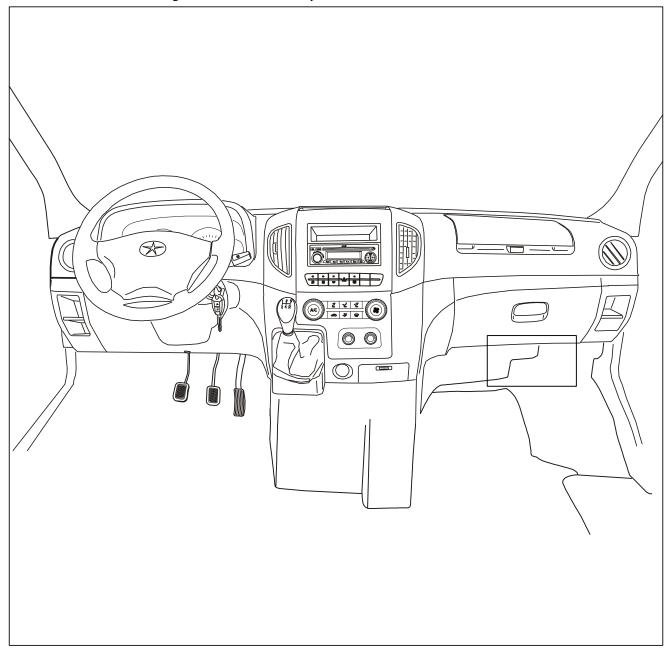
| Item                    | Technical parameter                                                                                                     | Remark                                                                                                                                                                                     |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                         | ①Elementary errors of speedometer under higher speed shall be according to the agreement of the customer and manufacture.                                                                  |
| Speedometer             | The tolerance of speedometer indication errors should be equal to or under ±2%.                                         | ②The error for upper limit shall not be reviewed.                                                                                                                                          |
|                         |                                                                                                                         | ③ In the case of special requirements of customers, the elementary errors shall be reviewed according to enterprise standard approved via specified procedures or customers' requirements. |
|                         |                                                                                                                         | ①Under low speed, the error shall be equal to or smaller than 30% of scale upper limit.                                                                                                    |
| Tachometer              | The elementary errors of the tachometer should be equal to or under ±10% under low speed and ±10% under medium and high | ②Under medium and high speed, the error shall be larger than 30% of scale upper limit.                                                                                                     |
|                         | speed.                                                                                                                  | ③In the case of special requirements of customers, the elementary errors shall be reviewed according to enterprise standard approved via specified procedures or customers' requirements.  |
| Fuel gauge              | The elementary errors of the fuel gauge should not exceed $\pm 8\%$ of scale full arc length.                           | In the case of special requirements of customers, the elementary errors shall be reviewed according to enterprise standard approved via specified procedures or customers' requirements.   |
| Water temperature gauge | The elementary errors of the water temperature gauge should not exceed $\pm 6\%$ of scale full arc length.              | In the case of special requirements of customers, the elementary errors shall be reviewed according to enterprise standard approved via specified procedures or customers' requirements.   |

# **ETACS Body Computer**

Applied models: SUNRAY products manufactured by JAC

| Subject                   | Page |
|---------------------------|------|
| Instruction and Operation |      |
| ETACS                     | 38   |
| Mounting position         |      |
| Information functions     |      |
| Diagnosis and Testing     |      |
| ETACS                     | 40   |
| System structure          |      |
| Introduction functions    |      |
| Control strategy          |      |
| Diagnosis and Service     |      |
| ETACS Pin Definition      | 50   |
| Removal/Installation      |      |
| ETACS                     |      |
| Removal of ETACS          | 52   |
| Installation of ETACS     | 53   |
| Specification             |      |
| ETACS                     | 54   |
| Basic parameters          | 54   |
|                           |      |

#### **ET ETACS Body Computer**


## **Instruction and Operation**

### **ETACS body computer**

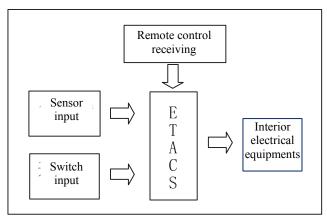
SUNRAY ETACS is for controlling a majority of electrical systems and equipments on vehicle, such as front water sprayer, front wiper, key hole lamp, interior ceiling lamp, anti-theft alarm bell, seat belt alarm, power window, rear fog lamp, rear defroster, front fog lamp, step lamp, small lamp, headlamp, hazard warning lamp, and locking device. ETACS control is achieved based on status of various equipments, including signals from driver side door and its locking device, front passenger door and its locking device, vehicle speed signal, rear fog lamp switch, front fog lamp switch, small lamp switch, headlamp switch, front water sprayer switch, front wiper switch, hand brake switch, rear defroster switch, key insertion, ignition switch, seat belt and so on.

#### **Mounting position of ETACS**

ETACS is installed below the glove box of instrument panel.

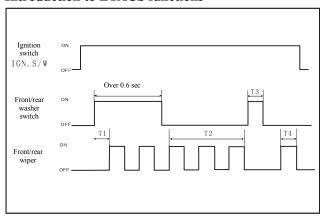


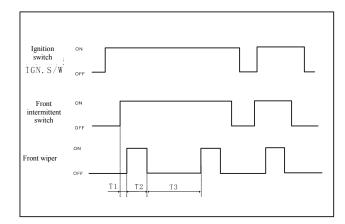
# **Instruction and Operation**

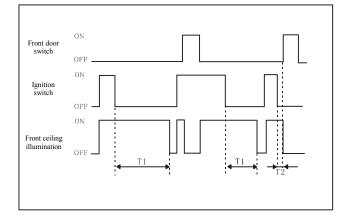

#### **Introduction to ETACS functions**

SUNRAY ETACS defines 17 kinds of function listed below:

- A. Washer & Wiper Control
- B. Variable Intermittent Wiper Control
- C. Ignition Key Hole Illumination Control
- D. Front Ceiling Lamp Illumination Control
- E. Parking Start Warning
- F. Seat Belt Warning Timer
- G. Power Window Timer
- H. Tail Lamp Auto Cut
- I. Rear Fog Lamp Control
- J. Power Door Latch Control
- K. Key Management Control
- L. Induction Conflict Control
- M. Auto Locking
- N. Key-Out Auto Door Unlock
- O. Step Lamp Control
- P. Middle Door Control
- Q. Password Input


## **System structure**


System structure chart:




- 1. SUNRAY ETACS is a centralized control module for body electrical equipments.
- 2. Body electrical control system mainly consists of ETACS, sensor input, switch input, remote control receiving input and interior electrical equipments.
- 3. Every parts of body electrical control system are connected through interior harnesses.
- 4. ETACS shall make the interior electrical equipments actuate after judgment based on various input quantities.

#### **Introduction to ETACS functions**







## 1. Washer & Wiper Control

Turn the ignition switch to "ON" position.

- If the washer is switched on over 0.6 sec, the wiper shall operate in T1 (0.6±0.1s) after the start of washer switch and it shall perform 3 T4 cycles (viz. 3 times) of wiping after the switch is off.
- If the washer is switched on within 0.2-0.6 sec (T3), the wiper shall perform one time of wiping.

T1: 0.6±0.1 sec

T2: 2.5—3.8 sec

T3: 0.2—0.6 sec (MAX)

T4: One cycle of wiping

#### 2. Variable intermittent wiper

Turn the ignition switch to "ON" position. The wiper shall operate after the intermittent switch is turned on in T1 (0.3S), each time of wiping for T2 (0.7 $\pm$ 0.1S) with interval adjustable within 2.6 $\pm$ 0.7S(VR=0K $\Omega$ )~18.0 $\pm$ 1S(VR=50K $\Omega$ ) when the vehicle speed is 0Km/h.

When the vehicle speed is over 100 Km/h, the wiping interval is adjustable within  $1.0\pm0.2S(VR=0K\Omega)\sim10.0\pm1S(VR=50K\Omega)$ .

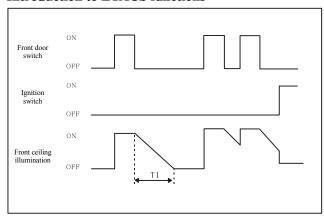
T1: 0.3 sec

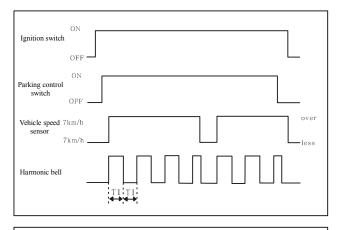
T2: 0.7±0.1 sec

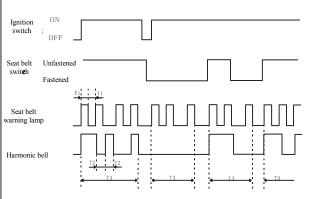
T3: When the vehicle speed is 0Km/h, the interval is adjustable within:

- 2.6±0.7S~8.0±1S(VR=50KΩ)
  When the vehicle speed is 100Km/h, the interval is adjustable within:
- $1.0\pm0.2S\sim10.0\pm1S(VR=50K\Omega)$

#### 3. Ignition Key Hole Illumination Control


Turn the ignition switch to "OFF" position. The ignition key hole lamp shall lighten when any of front doors open and shall go out in T1 (10±1S) after the front door is closed. With the front doors open, if your turn the ignition switch to "ON" position, the lamp shall go out.


T1: 10±1sec T2: 0~10sec


## **ET ETACS Body Computer**

## **Diagnosis and Testing**

#### **Introduction to ETACS functions**







# 4. Front Ceiling Lamp Illumination Control (Decayed Room Lamp)

With the front ceiling lamp set to "DOOR" position, the front ceiling lamp shall lighten when the front door is open. When the front door is closed, the lamp shall go out gradually in T1(5.5±0.5S) with the ignition switch turned to "ACC" position or shall go out directly with the ignition switch turned to "ON" position.

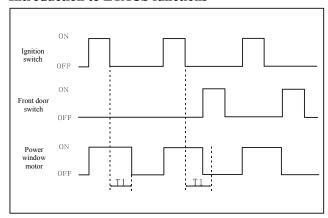
T1: 5.5±0.5 sec

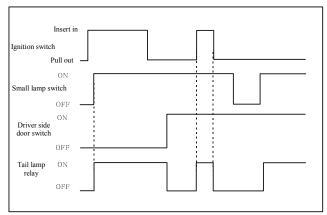
### 5. Parking Start Warning

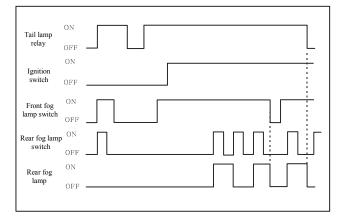
Turn the ignition switch to "ON" position. With the parking brake handle unreleased, when the vehicle speed is over 17Km/h, the door bell shall ring intermittently with interval of T1(0.3±0.1S) and it shall stop ringing with the handle released. If the vehicle speed is lower than 17Km/h, there is no alarm.

TI: 0.3±0.1 sec

#### 6. Seat Belt Warning Timer


Turn the ignition switch to "ON" position. If the driver's seat belt is unfastened, the seat belt warning lamp shall flicker with 50% duty cycle and time of T1(0.3±0.1sec), and the door bell shall ring for T3 (6±1sec) with an interval of T2(0.45±0.1sec). If the seat belt is fastened, the warning lamp shall flicker once without any alarm. If the seat belt is released, the warning lamp shall flicker with alarm and if the seat belt is fastened again, the alarm shall stop. Unfastening seat belt indicator shall be normally on after one cycle of flickering, but the the seat belt indicator shall go out after one cycle of flickering.


T1: 0.3±0.1 sec T2: 0.45±0.1 sec T3: 6±1 sec


#### 7. Power Window Auto Rising

Auto window rising shall be achieved after the vehicle is locked properly by remote control. Windows at both driver and front passenger sides shall rise simultaneously and the maximum rise time is 4.5 sec.

#### **Introduction to ETACS functions**







#### 8. Power Window Timer

When the ignition switch is turned to "ON" position, the power windows are operable with front doors closed. When the ignition switch is turned to "LOCK" or "ACC" position, the power windows are operable within T1 (30±3sec); however, if any of front doors opens within this period, the power windows are inoperable.

T1: 30±3 sec

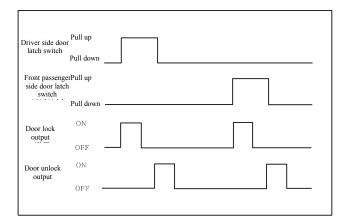
#### 9. Tail Lamp Auto Cut

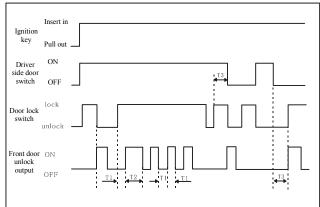
Tail lamps shall lighten in any case once the lighting switch (on the left of combination switch) is turned from OFF to ON.

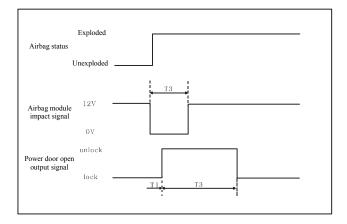
Tail lamp auto cut is controlled by the procedures below:

- Lighting switch (on the left of combination switch) is turned from ON to OFF.
- With the key pulled out, when the driver side door opens, the tail lamp shall go out.
- If you insert the key again, the tail lamp shall lighten.

Note: Tail lamps mentioned here refer to small lamps.


#### 10. Rear Fog Lamp Control


With the ignition switch turned to "OFF" position, the lighting switch (on the left of combination switch) and front fog lamp switch turned on, if you turn on the rear fog lamp switch, the rear fog lamps won't lighten. With the ignition switch turned to "ON" position, the lighting switch (on the left of combination switch) turned to small lamp position, and front fog lamp switch turned on, if you turn on the rear fog lamp switch, the rear fog lamps shall lighten and at this time if you turn off the front fog lamps, the rear fog lamps shall be turned off simultaneously. When the lighting switch is turned to lighting position, the operation of rear fog lamps won't be affected by the front fog lamps, viz. with front fog lamp switch off, the rear fog lamps can be separately controlled by the rear fog lamp switch.


## **ET ETACS Body Computer**

## **Diagnosis and Testing**

#### **Introduction to ETACS functions**







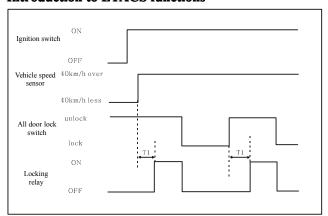
#### 11. Power Door Latch Control

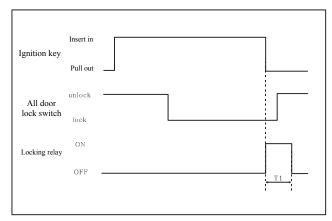
Four door locks can be controlled through doors at driver side and front passenger side. If you push down the driver side door latch, doors shall be locked with the door lock signal output by locking device; if you pull up the driver side door latch, doors shall be unlocked with the door unlock signal output by locking device. It is the same for the front passenger side door.

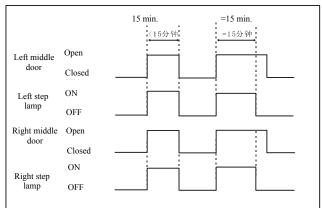
#### 12. Key Management Control

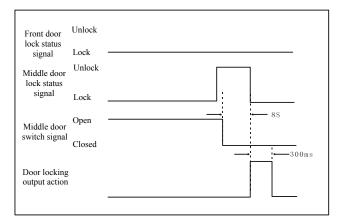
With the key in and driver side door open, if you push down the latch switch, doors cannot be locked after a door lock signal output by locking device. If you hold the latch switch, a door unlock signal is output by locking device and then 3 unlock signals are output. The driver side door is closed within T3 (0sec.<T3<0.5sec.) after the latch switch is pressed; at the same time, if latch switch is pulled up, doors won't be locked with an unlock signal output.

T1: 0.5±0.1 sec T2: 1±0.1 sec


T3: 0SEC.<T3<0.5 sec


#### 13. Induction Conflict Control


In case of collision, the airbag expands and the airbag controller outputs a 0V signal to ETACS, and then ETACS output an unlock signal to the locking device, which output an unlock action lasting for T3 (5sec) in T2 (40msec), so the doors are under unlocked status.


T1: 200 msec T2: 40 msec T3: 5 sec

#### **Introduction to ETACS functions**









#### 14. Auto Locking.

With the ignition switch turned to "ON" position and the doors unlocked, the doors shall be locked automatically in T1 (1±0.3sec) after the vehicle speed exceeds 40Km/h. If the doors are unlocked by locking device during travelling, they shall be locked automatically again in T1 (1±0.3sec).

T1: 1±0.3 sec

#### 15. Key-Out Auto Door Unlock

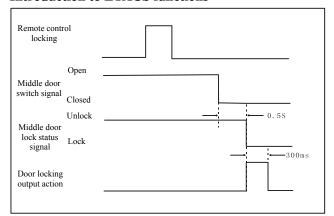
With the door locked, if the ignition key is pulled out, the doors shall be unlocked after an unlock signal of T1 (0.5±0.1 sec) is output by the locking relay.

T1: 0.5±0.1 sec

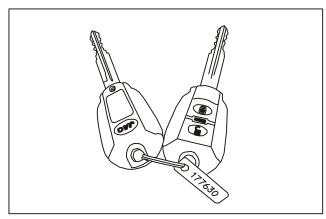
#### 16. Step Lamp Control

The left step lamp shall lighten with the left middle door open and go out with the door closed. The right step lamp shall lighten with the right middle door open and go out with the door closed. The step lamps shall go out automatically if the middle door open time exceeds 15 minutes.

## 17. Middle Door Control


Middle door auto locking

With the left and right front doors locked, if you open and then close the middle door, the middle door shall be locked automatically in 8 sec. (Please refer to the left figure.)


#### **ET ETACS Body Computer**

#### **Diagnosis and Testing**

#### **Introduction to ETACS functions**



• With the middle door open, if you press "Unlock" key on the remote control, the middle door shall be locked in 0.5 sec after the door is closed. (Please refer to the left figure.)



#### 18. Password Learning Input

- If you press the password learning switch, the fault lamp shall lighten entering into password learning mode. The learning time is 10 sec in total.
- Press every key of the remote controller once. The fault lamp shall go out after the first key is pressed. Four keys in total can be learned within 10 sec after starting the password learning key.
- Conduct detection for remote control password learning.
- Enter into password learning mode with the previous memory deleted automatically.

## Control strategy

| S/N | Item                                       | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Washer & Wiper<br>Control                  | Turn the ignition switch to "ON" position. 1. If the washer is switched on over $0.6$ sec, the wiper shall operate in T1 $(0.6\pm0.1s)$ after the start of washer switch and it shall perform 3 T4 cycles (viz. 3 times) of wiping after the switch is off; 2. If the washer is switched on within $0.2$ - $0.6$ sec (T3), the wiper shall perform one time of wiping.                                                                                                                                                                                                                                                                                                              |
| 2   | Variable intermittent wiper                | Turn the ignition switch to "ON" position. The wiper shall operate after the intermittent switch is turned on in T1 (0.3S), each time of wiping for T2 (0.7 $\pm$ 0.1S) with interval adjustable within (1 $\pm$ 0.5S $\sim$ 11 $\pm$ 1S). When the vehicle speed is over 40Km/h, the interval T3 shall shorten by 4 sec.                                                                                                                                                                                                                                                                                                                                                           |
| 3   | Back window defroster timer                | With the generator being charged, if you turn on the defroster switch, the defroster relay shall operate for T1 (20±2min). If the interval of pressing defroster switch is less than T1, the defrosting function is cancelled after the second time of pressing switch.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4   | Ignition Key Hole<br>Illumination Control  | Turn the ignition switch to "OFF" position. The ignition key hole lamp shall lighten when any of front doors open and shall go out in T1 ( $10\pm1S$ ) after the front door is closed. With the front doors open, if your insert the key in, the lamp shall go out. If the key is pulled out with the front door open, the lamp shall lighten and shall go out in T1 ( $10\pm1S$ ) after the front door is closed. With the key not inserted, if you open the front door, the lamp shall lighten. The lamp shall go out immediately if the key is inserted within T2 ( $0-10S$ ) after the front door is closed if the key is not inserted within T2 ( $0-10S$ ).                   |
| 5   | Front Ceiling Lamp<br>Illumination Control | With the front ceiling lamp set to "DOOR" position, the front ceiling lamp shall lighten when the front door is open. When the front door is closed, the lamp shall go out gradually in T1 (5.5±0.5S) with the ignition switch turned to "ACC" position or shall go out directly with the ignition switch turned to "ON" position.                                                                                                                                                                                                                                                                                                                                                  |
| 6   | Parking Start Warning                      | Turn the ignition switch to "ON" position. With the parking brake handle unreleased, when the vehicle speed is over 3 Km/h, the door bell shall ring intermittently with interval of T1 (0.3±0.1S) and it shall stop ringing with the handle released. If the vehicle speed is lower than 3 Km/h, there is no alarm.                                                                                                                                                                                                                                                                                                                                                                |
| 7   | Seat Belt Warning<br>Timer                 | Turn the ignition switch to "ON" position. If the driver's seat belt is unfastened, the seat belt warning lamp shall flicker with 50% duty cycle and time of $T1(0.3\pm0.1~\text{sec})$ , and the door bell shall ring for T3 (6 $\pm1~\text{sec}$ ) with an interval of T2(0.45 $\pm0.1~\text{sec}$ ). If the seat belt is fastened, the warning lamp shall flicker once without any alarm. If the seat belt is released, the warning lamp shall flicker with alarm and if the seat belt is fastened again, the alarm shall stop.                                                                                                                                                  |
| 8   | Power Window Timer                         | When the ignition switch is turned to "ON" position, the power windows are operable with front doors closed. When the ignition switch is turned to "LOCK" or "ACC" position, the power windows are operable within T1 (30±3 sec); however, if any of front doors opens within this period, the power windows are inoperable.                                                                                                                                                                                                                                                                                                                                                        |
| 9   | Tail Lamp Auto Cut                         | With the key inserted, the lighting switch (on the combination switch) turned on and the driver side door closed, the tail lamp shall lighten; with the key pulled out and the tail lamp switch still on, the tail lamp shall lighten but it shall go out if the driver side door opens; when the key is inserted again, the tail lamp shall lighten until the key is pulled out. Under normal condition, with the tail lamp switch on, the tail lamps shall lighten regardless of key insertion or not or the door status. (Tail lamps mentioned here refer to small lamps.)                                                                                                       |
| 10  | Rear Fog Lamp Control                      | With the ignition switch turned to "OFF" position, the lighting switch (on the left of combination switch) and front fog lamp switch turned on, if you turn on the rear fog lamp switch, the rear fog lamps won't lighten. With the ignition switch turned to "ON" position, the lighting switch (on the left of combination switch) turned to small lamp position, and front fog lamp switch turned on, if you turn on the rear fog lamp switch, the rear fog lamps shall lighten and at this time if you turn off the front fog lamps, the rear fog lamps shall be turned off simultaneously. If the lighting switch is turned off at this time, the rear fog lamps shall go out. |
| 11  | Power Door Latch<br>Control                | Four door locks can be controlled through doors at driver side and front passenger side. If you push down the driver side door latch, doors shall be locked with the door lock signal output by locking device; if you pull up the driver side door latch, doors shall be unlocked with the door unlock signal output by locking device. It is the same for the front passenger side door.                                                                                                                                                                                                                                                                                          |

## **ET ETACS Body Computer**

## **Diagnosis and Testing**

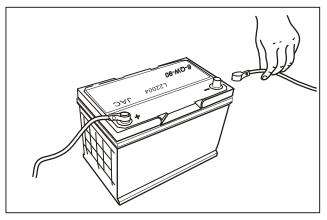
## Control strategy

| S/N | Item                            | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12  | Key Management Control          | With the key in and driver side door open, if you push down the latch switch, doors cannot be locked after a door lock signal output by locking device. If you hold the latch switch, a door unlock signal is output by locking device and then 3 unlock signals are output. The driver side door is closed within T3 (0 sec. <t3<0.5 after="" an="" at="" be="" doors="" if="" is="" latch="" locked="" output.<="" pressed;="" pulled="" same="" sec.)="" signal="" switch="" td="" the="" time,="" unlock="" up,="" with="" won't=""></t3<0.5> |
| 13  | Induction Conflict Control      | In case of collision, the airbag expands and the airbag controller outputs a 0V signal to ETACS, and then ETACS output an unlock signal to the locking device, which output an unlock action lasting for T3 (5 sec) in T2 (40 msec), so the doors are under unlocked status.                                                                                                                                                                                                                                                                      |
| 14  | Auto Locking                    | With the ignition switch turned to "ON" position and the doors unlocked, the doors shall be locked automatically in T1 ( $1\pm0.3$ sec) after the vehicle speed exceeds 40Km/h. If the doors are unlocked by locking device during travelling, they shall be locked automatically again in T1 ( $1\pm0.3$ sec).                                                                                                                                                                                                                                   |
| 15  | Key-Out Auto Door Unlock        | With the door locked, if the ignition key is pulled out, the doors shall be unlocked after an unlock signal of T1(0.5±0.1 sec) is output by the locking relay.                                                                                                                                                                                                                                                                                                                                                                                    |
| 16  | Warning Function                | With all doors and engine hood closed, if you use remote controller for locking, the vehicle shall be under warning status after the hazard warning lamp flickers T2 (1.0±0.2 sec); if you use remote controller for locking under all doors are not closed, the doors shall be locked but the vehicle is not under warning status and it shall be under warning status if all doors are closed.                                                                                                                                                  |
| 17  | Warning Off                     | If you use the remote controller to release warning status, the doors shall be unlocked, the hazard warning lamp shall flicker T1 (0.5 $\pm$ 0.1 sec) and flicker another T1 sec in T2 (0.5 $\pm$ 0.1 sec).                                                                                                                                                                                                                                                                                                                                       |
| 18  | Step Lamp Control               | The step lamp shall lighten with the middle door open and go out with the door closed. The step lamp shall go out automatically if the middle door open time exceeds 15 minutes. (Please refer to figure below.)                                                                                                                                                                                                                                                                                                                                  |
| 19  | Middle Door Control             | a. With the left and right front doors locked, if you open and then close the middle door, the middle door shall be locked automatically in 8 sec. b. With the middle door open, if you press "Unlock" key on the remote control, the middle door shall be locked in 0.5 sec after the door is closed.                                                                                                                                                                                                                                            |
| 20  | Remote Control Window<br>Rising | When using remote controller to set warning and perform locking, ETACS shall output left/right front window rising signal.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21  | Password Input                  | a. Start the decoder switch; b. Press any one of keys on the remote controller and press again after 3 sec of pause; c. Perform remote control detection; d. If more than one remote controller is in need of learning, please repeat steps a, b and c. One key can be learned each time. Two keys can be learned in total.                                                                                                                                                                                                                       |

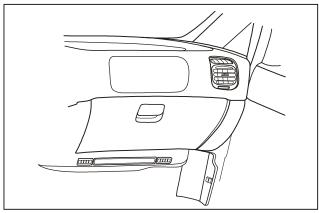
## **Diagnosis and Service**

| S/N | Function                                         | Service Methods and Phenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                  | a. Press "Learning" key on decoder and the fault lamp lightens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1   | Warning-off                                      | b. If you press the "Warning-off" switch on the remote control, the fault lamp shall go out; if you press "Unlock" switch in 8 sec, the fault lamp shall flicker twice and then go out with the door latch unlocked; if you press the "Lock" switch on the remote control, the fault lamp shall lighten and then go out with door latch locked and power window auto rising.  c. At this time, if you open the left door, the front ceiling lamp, ignition key hole lamp and anti-theft relay shall operate with intermittent flickering of fault lamp and alarm sound; if you close the left door and press the "Lock" key on the remote control, the interior lamp and ignition key hole lamp shall go out and the anti-theft relay shall stop operating, with fault lamp and alarm off, power                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                                  | window auto rising on, door latch locked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2   | Detection of ignition switch and power window    | With the ignition switch turned to "ON" position, the power windows are operable and the seat belt indicator flickers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3   | Back window defogging detection                  | With the generator turned on, the rear defogging device shall operate once the switch is pressed and shall stop operation once it is pressed again. With the generator turned off, the rear defogging shall stop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4   | Front washer detection                           | Press the front washer switch for 1 sec and release it. Check if the wiper stops after operating for 2 sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5   | Front wiper delay detection                      | With the ignition key in and front wiper intermittent switch pressed, check the operating cycle of front wiper. If you press the front wiper regulating switch, the front wiper operating cycle shall be lengthened. Release the wiper intermittent switch and wiper regulating switch, and then turn off the ignition switch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6   | Driver side door (left door) detection           | If you open the driver side door, the front ceiling lamp and ignition key hole lamp shall lighten; if you close the door, the front ceiling lamp shall go out gradually and the ignition key hole lamp shall go out in 6 sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7   | Front passenger side door (right door) detection | Same as the driver side door detection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8   | Middle door detection                            | If you open the middle door, the front ceiling lamp and step lamp shall lighten; if you close the door, the step lamp shall go out and the front ceiling lamp shall go out gradually.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9   | Seat belt detection                              | With the ignition switch turned to "ON" position, if the seat belt is unfastened, the seat belt indicator shall flicker 10 times with buzzer ringing 10 times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10  | Detection of lamps                               | With the driver side door open, small lamp switch on and key inserted, the small lamps and front ceiling lamp lighten; with key pulled out, the small lamps go out.  With ignition switch turned to "ON" position, small lamp switch and front fog lamp switch on, rear fog lamps lighten once the switch is pressed and they go out once the switch is pressed again. With rear fog lamps on, they go out once the front fog lamp switch is turned off. Then if the small lamp switch is turned off and headlamp switch is turned on, rear fog lamps are operable separately without the front fog lamp switch on. With lighting lamp reset, front fog lamps, rear fog lamps and small lamps go out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11  | Door latch detection                             | If the left front door latch is locked, all door latches inside shall be locked; if the left front door latch is unlocked, all door latches inside shall be unlocked. It is the same for the right front door latch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12  | Auto unlocking                                   | With door latch locked and ignition key pulled out, the door latch shall be unlocked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13  | 40Km auto locking                                | With the ignition switch turned to "ON" position, if the vehicle speed exceeds 40Km/h, the door latch shall be locked automatically.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14  | Warning detection                                | a. With ignition switch turned off and ignition key pulled out, if you open the middle door, the front ceiling lamp and step lamps shall lighten; if you press "Lock" key, the locking lamp shall lighten and then go out, with power window auto rising. If you close the middle door, the front ceiling lamp and step lamps shall go out and the fault lamp shall lighten and then go out.  b. If you open and then close the left door, the front ceiling lamp and ignition key hole lamp shall lighten and the anti-theft relay shall operate with intermittent flickering of fault lamp and alarm sound; if you press "Lock" key, door latch shall be locked, fault lamp shall lighten and then go out, and power window shall rise automatically.  c. It is the same for right door.  d. If you open the middle door, the front ceiling lamp and step lamps shall lighten and the anti-theft relay shall operate with intermittent flickering of fault lamp and alarm sound; if you close the middle door, the step lamps shall go out; if you press "Lock" key, door latch shall be locked, fault lamp shall lighten and then go out, and power window shall rise automatically. |

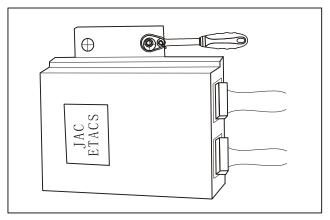
#### **ETACS Pin Definition**


#### ETACS A ETACS B 2 3 4 5 6 7 8 2 4 5 6 7 8 9 3 1 1 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 22 23 24 19 20 21 19 20 21 22 23 24 AMP316370-6 (Gray) AMP316370-6 (White)

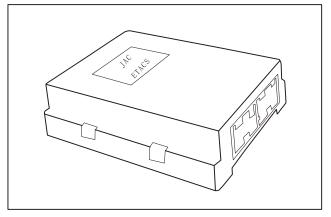
| Port No. | Port Name                        | Input/Output | Initial Status   | Operating Status      | Remark   |
|----------|----------------------------------|--------------|------------------|-----------------------|----------|
| A1       | Interior lamp                    | Output       | High level       | Low level             |          |
| A2       | Anti-theft relay                 | Output       | High level (NC)  | Low level             | Reserved |
| A3       | Front wiper relay                | Output       | High level       | Low level             |          |
| A4       | Rear defroster relay             | Output       | High level       | Low level             |          |
| A5       | Seat belt warning lamp           | Output       | High level       | Low level             |          |
| A6       | Rear fog lamp relay              | Output       | High level       | Low level             |          |
| A7       | Step lamps                       | Output       | NC               | Low level             |          |
| A8       | Door locking relay               | Output       | High level       | Low level             |          |
| A9       |                                  |              |                  |                       |          |
| A10      | B+                               |              |                  |                       |          |
| A11      | Door unlocking relay             | Output       | High level       | Low level             |          |
| A12      | Middle door switch               | Input        | NC (door closed) | Low level (door open) |          |
| A13      | Small lamp relay                 | Output       | High level       | Low level             |          |
| A14      | Anti-theft alarm bell            | Output       | High level       | Low level             | Reserved |
| A15      | Power window relay               | Output       | High level       | Low level             |          |
| A16      |                                  |              |                  |                       |          |
| A17      | Front passenger side door switch | Input        | NC               | Low level             |          |
| A18      | Hazard warning lamp relay        | Output       | High level       | Low level             |          |
| A19      | Ground                           |              |                  |                       |          |
| A20      | Key hole lamp                    | Output       | High level       | Low level             |          |
| A21      |                                  |              |                  |                       |          |
| A22      |                                  |              |                  |                       |          |
| A23      |                                  |              |                  |                       |          |


## **ETACS Pin Definition (Continued)**

| Port No. | Port Name                             | Input/Output | Initial Status | Operating Status     | Remark |
|----------|---------------------------------------|--------------|----------------|----------------------|--------|
| A24      | Vehicle speed signal                  | Input        | NC             | Pulse                |        |
| B1       | Driver side door switch               | Input        | NC             | Low level            |        |
| B2       | Rear fog lamp switch                  | Input        | NC             | Low level            |        |
| В3       | Left/right front window relay         | Output       | NC             | Low level            |        |
| B4       | Front water sprayer switch            | Input        | NC             | Low level            |        |
| В5       | Front passenger side door lock switch | Input        | NC             | Low level            |        |
| В6       | Hand brake switch                     | Input        | NC             | Low level            |        |
| В7       | Rear defroster switch                 | Input        | NC             | Low level            |        |
| В8       | Front fog lamp switch                 | Input        | NC             | Low level            |        |
| В9       | IG2                                   | Input        | NC             | High level           |        |
| B10      | Door switch                           | Input        | NC             | Low level            |        |
| B11      | Key insertion switch                  | Input        | NC             | High level           |        |
| B12      | Headlamp switch                       | Input        | NC             | Low level            |        |
| B13      | Small lamp switch                     | Input        | NC             | Low level            |        |
| B14      | Driver side door lock switch          | Input        | NC             | Low level            |        |
| B15      | Middle door locking device            | Input        | NC (locked)    | Low level (unlocked) |        |
| B16      | Seat belt switch                      | Input        | NC             | Low level            |        |
| B17      | Storage code                          | Input        | NC             | Pulse                |        |
| B18      | IG1                                   | Input        | NC             | High level           |        |
| B19      | Front wiper intermittent switch       | Input        | NC             | Low level            |        |
| B20      |                                       |              |                |                      |        |
| B21      | Airbag signal                         | Input        | NC             | Low level            |        |
| B22      | Front wiper interval adjustment       | Input        |                |                      |        |
| B23      | Generator L                           | Input        | NC             | High level           |        |
| B24      | External antenna                      |              |                |                      |        |

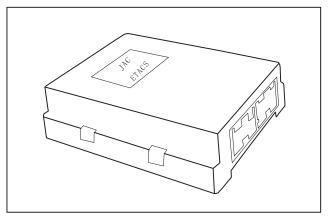

#### **Removal of ETACS**



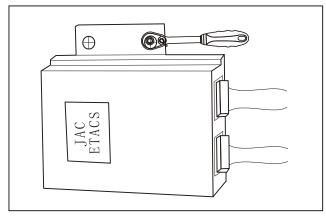

1. Disconnect the negative cable of battery.



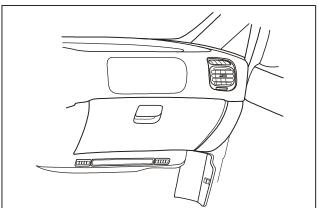
2. Remove the glove box.



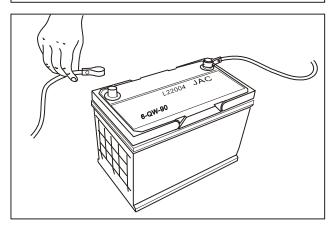

3. Remove the mounting bolts from body computer.




4. Disconnect the harness connector of controller and remove the body computer.


#### **Installation of ETACS**




1. Connect the harness connector of controller.



2. Tighten the mounting bolts of body computer.



3. Install the glove box.



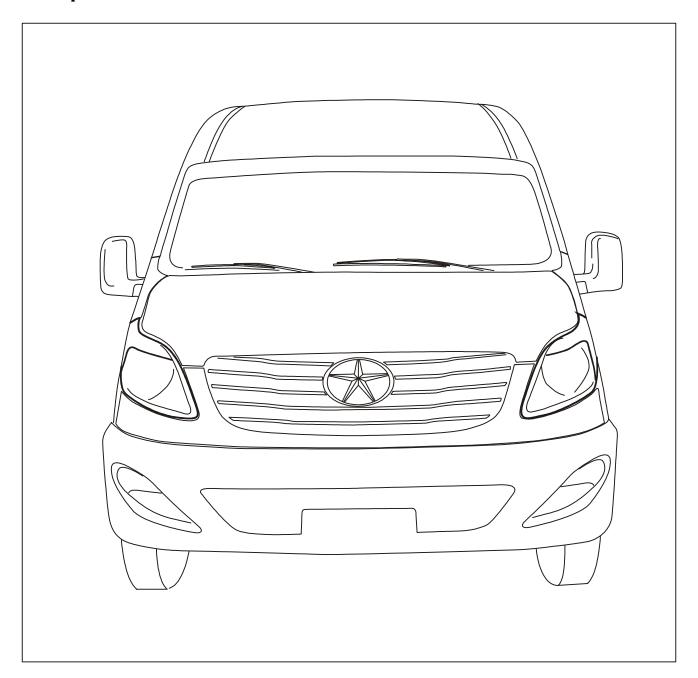
4. Connect the battery cable.

## **ET ETACS Body Computer**

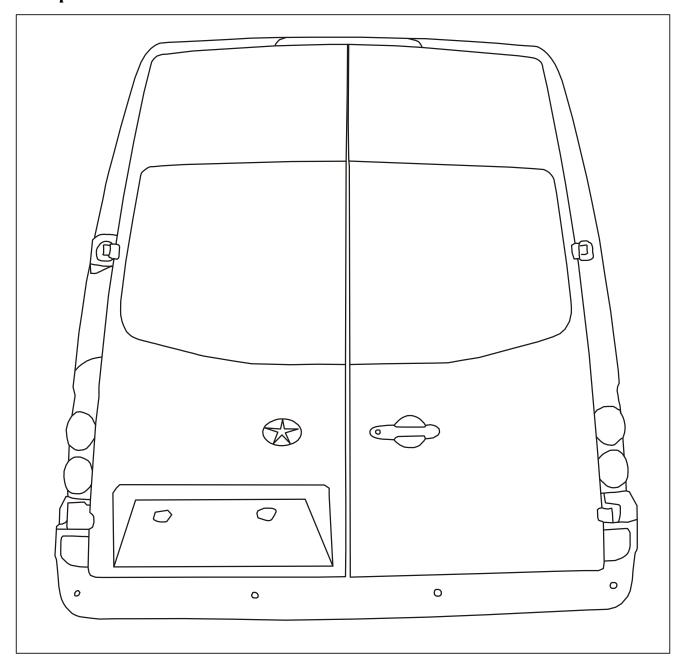
## **Specification**

#### **Parameters**

| Electrical Parameter                   | Requirement           |
|----------------------------------------|-----------------------|
| Operating voltage                      | DC12V                 |
| Operating voltage range                | DC9V~DC16V            |
| Quiescent current                      | <10mA                 |
| Insulating resistance                  | 100MΩ (DC500V megger) |
| Remote control transmitting frequency  | 315MHz±0.075MHz       |
| Receiving frequency of body controller | 315MHz±100KHz         |
| Remote control distance                | 20M dead zone free    |
| Operating temperature                  | at -30°C~+85°C        |
| Storage temperature                    | at -40°C~+90°C        |
| Relative humidity                      | ≤95%                  |


Applied models: SUNRAY products manufactured by JAC

| Subject                              | Page |
|--------------------------------------|------|
| Instruction and Operation            |      |
| OverviewLighting configuration table |      |
| Introduction to functions            |      |
| Diagnosis and Testing                |      |
| Fault diagnosis                      | 62   |
| Removal/Installation                 |      |
| Removal of headlamp                  | 76   |
| Removal of clearance lamps           |      |
| Removal of front fog lamps           |      |
| Removal of ceiling lamps.            |      |
| Removal of rear tail lamps           |      |
| Removal of high-mounted brake lamp.  |      |
| Removal of rear fog lamp.            | 82   |
| Specification                        |      |
| Lighting System                      | 83   |
| Basic parameters                     |      |

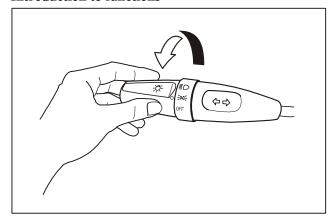

#### Lighting system

SUNRAY front lamps (headlamps) are installed on both sides of vehicle head, for lighting when driving at night. Fog lamps are installed on head positions lower than headlamps, for roadway lighting when driving in rainy or foggy days. Light color of fog lamp is required to be yellow or orange, for yellow is of longer optical wave and excellent fog penetrating capability.

#### Headlamps

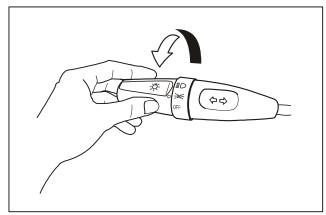


## Tail lamps




## **Instruction and Operation**

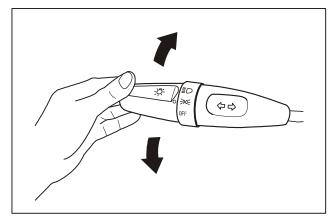
## Lighting configuration table


| S/N | Name                                  | Qty. (For single vehicle) |
|-----|---------------------------------------|---------------------------|
| 1   | Rear ceiling lamp assembly            | 2                         |
| 2   | Front ceiling lamp assembly           | 1                         |
| 3   | Left front courtesy lamp              | 1                         |
| 4   | Right front courtesy lamp             | 1                         |
| 5   | License plate lamp assembly           | 2                         |
| 6   | Left side turn signal lamp            | 1                         |
| 7   | Right side turn signal lamp           | 1                         |
| 8   | Left front fog lamp assembly          | 1                         |
| 9   | Right front fog lamp assembly         | 1                         |
| 10  | Left rear fog lamp assembly           | 1                         |
| 11  | Right rear fog lamp assembly          | 1                         |
| 12  | Left front combination lamp assembly  | 1                         |
| 13  | Right front combination lamp assembly | 1                         |
| 14  | Left rear combination lamp assembly   | 1                         |
| 15  | Right rear combination lamp assembly  | 1                         |
| 16  | High-mounted brake lamp assembly      | 1                         |

#### **Introduction to functions**



#### 1. Position switch.

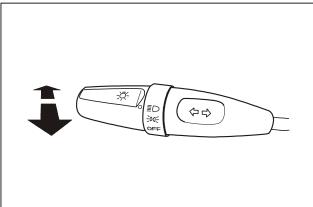

Rotate the cylinder at the end of multifunctional switch lever to the first position to turn on small lamps, tail lamps, license plate lamps and instrument panel lamp.



#### 2. Headlamp switch.

Rotate the cylinder at the end of multifunctional switch lever to the first position to turn on small lamps, tail lamps, license plate lamps and instrument panel lamp.

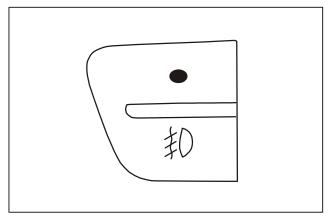
Rotate it to the second position to turn on headlamps.




#### 3. Turn signal lamp switch.

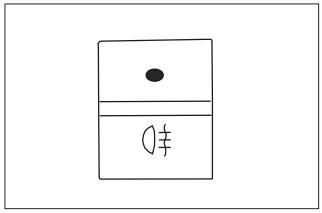
Turn signal lamps only operate when the ignition switch is turned on.

To turn right, pull up the turn signal lamp switch lever


To turn left, push down the turn signal lamp switch lever.

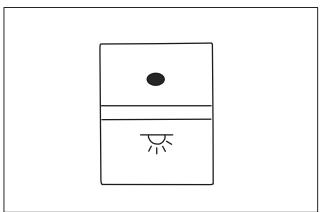


#### 4. High beam switch.


To turn on high beam of headlamp, push the control lever forward (direction away from yourself) with headlamp on, the high beam lightens with high beam indicator on the instrument on. To switch to low beam, pull the control lever backward.

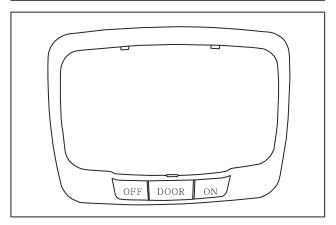
#### **Introduction to functions**




5. Front fog lamp switch.

Turn the headlamp switch knob to position lamp, press the front fog lamp switch knob, and the front fog lamp lightens.




6. Rear fog lamp switch.

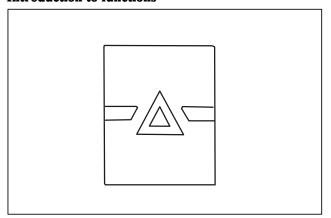
Turn the headlamp switch knob to position lamp, press the front fog lamp switch knob and then the rear fog lamp switch knob, and the rear fog lamp lightens.



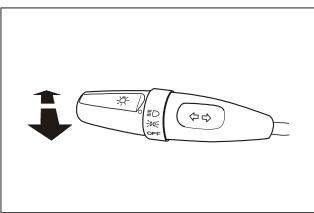
7. Rear ceiling lamp switch.

Press the rear ceiling lamp switch and the rear ceiling lamp lightens.




8. Front ceiling lamp switch.

OFF: Ceiling lamp off.


DOOR: Ceiling lamp on with door open.

ON: Ceiling lamp normally on.

#### **Introduction to functions**



9. Hazard warning lamp switch.
If you press the hazard warning lamp switch, turn signal lamps on both sides and instrument indicator



#### 10. Headlamp flickering.

shall lighten.

To make the headlamp flicker, pull the switch towards yourself and release it.

Even though the headlamp switch is located at "OFF" position, the headlamp flickering can still be achieved.

## **Diagnosis and Testing**

## Fault diagnosis

## 1. Front fog lamp diagnosis

| Step | Operation                                                                                                                                                                                                                                   | Yes                                   | No                       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|
| 1    | ①Turn on the ignition switch and set the headlamp to "position lamp" position. ②Does the front fog lamp lighten when it is turned on?                                                                                                       | Go to Step 2.                         | Check circuit.           |
| 2    | Does the front fog lamp indicator in combination instrument lighten?                                                                                                                                                                        | System is normal.                     | Go to Step 3.            |
| 3    | <ul> <li>①Turn off the fog lamps.</li> <li>②Turn off the ignition switch.</li> <li>③Remove the combination instrument.</li> <li>④Using the multimeter as a ohmmeter, measure the circuit resistance. Is the reading below 1 Ohm?</li> </ul> | Replace<br>combination<br>instrument. | Repair fault<br>circuit. |
| 4    | ①Check if the system operates normally. ②Does the system operate normally?                                                                                                                                                                  | System is normal.                     | Go to Step 1.            |

## Fault diagnosis

#### 2. Turn signal indicator diagnosis

| Step | Operation                                                                                                                                                                                | Yes                                    | No                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|
| 1    | Turn on the ignition switch and press the hazard warning lamp switch.  Are front/rear left/right turn signal lamps flickering continuously?                                              | Go to Step 2.                          | Go to Step 5.        |
| 2    | Are left/right turn signal indicators flickering continuously?                                                                                                                           | Go to Step 3.                          | Check circuit.       |
| 3    | Turn on the ignition switch and set the turn signal lamp switch to left/right turning position.  Does left/right turn signal indicator flicker as expected?                              | Go to Step 4.                          | Go to Step 6.        |
| 4    | Turn on the ignition switch and set the turn signal lamp switch to left/right turning position.  Does left/right turn signal indicator in combination instrument flicker as expected?    | System is normal.                      | Go to Step 8.        |
| 5    | Connect the temporary vehicle ground to body control module terminal.  Does the hazard warning lamp flicker as expected?                                                                 | Hazard warning lamp operates normally. | Check body computer. |
| 6    | Use multimeter to measure the voltage of flasher relay.  Does the multimeter indicate the battery voltage?                                                                               | Replace flasher relay.                 | Check circuit.       |
| 7    | Use multimeter to measure the circuit voltage of turn signal lamp.  Does the multimeter indicate the battery voltage?                                                                    | Check circuit.                         | Check circuit.       |
| 8    | ①Turn off the hazard warning lamp. ②Turn off the ignition switch. ③Remove the combination instrument. ④Use the multimeter to measure the circuit resistance. Is the reading below 1 Ohm? | Replace combination instrument.        | Repair circuit.      |
| 9    | ①Check if the system operates normally. ②Does the system operate normally?                                                                                                               | System is normal.                      | Go to Step 1.        |

## **Diagnosis and Testing**

## Fault diagnosis

#### 3. High-mounted brake lamp failed

| Step | Operation                                                                                         | Yes           | No            |
|------|---------------------------------------------------------------------------------------------------|---------------|---------------|
| 1    | Is the fuse blown out?                                                                            | Go to Step 4. | Go to Step 2. |
| 2    | Connect the test lamp with two terminals of brake signal lamp switch. Does the test lamp lighten? | Go to Step 5. | Go to Step 3. |
| 3    | ①Connect the test lamp with two terminals of high-mounted brake signal lamp.                      | Go to Step 6. | Go to Step 7. |
|      | ②Depress the brake pedal to check if the test lamp lightens?                                      |               |               |
| 4    | Replace fuse.                                                                                     |               |               |
| 5    | Replace brake signal lamp switch.                                                                 |               |               |
| 6    | Replace high-mounted brake signal lamp.                                                           |               |               |
| 7    | Repair the circuit of poor contact.                                                               |               |               |

## Fault diagnosis

#### 4. Ceiling lamp failed

| Step | Operation                                                                                                                                                                              | Yes           | No            |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|
| 1    | Check if the bulb filament of ceiling lamp is burnt out. Is the filament burnt out?                                                                                                    | Go to Step 4. | Go to Step 2. |
| 2    | Is the fuse blown out?                                                                                                                                                                 | Go to Step 5. | Go to Step 3. |
| 3    | Connect the test lamp respectively with two terminals of contact switch (left front, right front, left rear, right rear) and terminals of lighting switch. Does the test lamp lighten? | Go to Step 6. | Go to Step 7. |
| 4    | Replace bulb.                                                                                                                                                                          |               |               |
| 5    | Replace fuse.                                                                                                                                                                          |               |               |
| 6    | Replace contact switch or lighting switch.                                                                                                                                             |               |               |
| 7    | Repair the circuit of poor contact.                                                                                                                                                    |               |               |

## **Diagnosis and Testing**

## Fault diagnosis

#### 5. Glove box lamp failed

| Step | Operation                                                                        | Yes           | No            |
|------|----------------------------------------------------------------------------------|---------------|---------------|
| 1    | Is the fuse blown out?                                                           | Go to Step 3. | Go to Step 2. |
| 2    | Check if the bulb filament of glove box is burnt out. Is the filament burnt out? | Go to Step 4. | Go to Step 5. |
| 3    | Replace fuse.                                                                    |               |               |
| 4    | Replace bulb.                                                                    |               |               |
| 5    | Repair the circuit of poor contact.                                              |               |               |

## Fault diagnosis

#### 6. Both high and low beams failed

| Step | Operation                                                                                                              | Yes            | No             |
|------|------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| 1    | Set the switch to position and the high/low beam switch to high beam position. Is the fuse intact?                     | Go to Step 2.  | Go to Step 3.  |
| 2    | Measure the fuse voltage. Is the voltage normal?                                                                       | Go to Step 7.  | Go to Step 4.  |
| 3    | Please replace the damaged fuse. Does it still fail after replacement?                                                 | Go to Step 7.  | Go to Step 2.  |
| 4    | Check the high/low beam switch. Is it normal?                                                                          | Go to Step 5.  |                |
| 5    | Check switches. Are they normal?                                                                                       | Go to Step 6.  |                |
| 6    | Check wiring harness of instrument panel as per circuit diagram.                                                       | Go to Step 8.  |                |
| 7    | Check the high beam signaling device. Does it operate normally?                                                        | Go to Step 9.  |                |
| 8    | Check high/low beam and wiring harness connector. Are there intact?                                                    | Go to Step 9.  | -              |
| 9    | Check lamp connector pin. Is wire well-grounded?                                                                       | Go to Step 10. |                |
| 10   | Disconnect the connector between high/low beam and front body harness. Is the pin voltage normal?                      | Go to Step 11. | Go to Step 12. |
| 11   | Check connector for good contact and check the front body harness from connector to lamp as per circuit diagram.       |                |                |
| 12   | Check connector for good contact and check the instrument panel harness from fuse to connector as per circuit diagram. |                |                |

## **Diagnosis and Testing**

## Fault diagnosis

## 7. Only high beam failed

| Step | Operation                                                                                              | Yes            | No             |
|------|--------------------------------------------------------------------------------------------------------|----------------|----------------|
| 1    | Check if the high beam signaling device operates normally (only for high beam)?                        | Go to Step 2.  | Go to Step 3.  |
| 2    | Check lamps and harness connectors and ensure they are normal when the high beam position is selected. | Go to Step 3.  |                |
| 3    | Disconnect the connector between instrument panel and front body harness. Is the voltage normal?       | Go to Step 4.  | Go to Step 5.  |
| 4    | Check the front body harness from connector to high beam as per circuit diagram. Is it intact?         | Go to Step 5.  |                |
| 5    | Check the instrument panel harness from fuse to connector as per circuit diagram.                      |                |                |
| 6    | Is the fuse intact?                                                                                    | Go to Step 7.  | Go to Step 9.  |
| 7    | Measure the fuse voltage. Is it normal?                                                                | Go to Step 8.  | Go to Step 11. |
| 8    | Check the instrument panel harness from fuse to connector.                                             | Go to Step 10. |                |
| 9    | Replace the fuse. Does it still fail after replacement?                                                | Go to Step 8.  | Go to Step 7.  |
| 10   | Check connector and front body harness.                                                                | Go to Step 2.  |                |
| 11   | Check high/low beam switch and the instrument panel harness from switch to fuse.                       |                |                |

## Fault diagnosis

#### 8. Low beam failed

| Step | Operation                                                                                        | Yes           | No            |
|------|--------------------------------------------------------------------------------------------------|---------------|---------------|
| 1    | Check lamps and wiring harness connectors. Are they intact?                                      | Go to Step 2. |               |
| 2    | Is the fuse intact?                                                                              | Go to Step 3. | Go to Step 8. |
| 3    | Measure the fuse voltage. Is it normal?                                                          | Go to Step 4. | Go to Step 7. |
| 4    | Check connector between instrument panel and front body harness. Is the measured voltage normal? | Go to Step 5. |               |
| 5    | Check front body electric harness.                                                               |               |               |
| 6    | Check instrument panel harness.                                                                  |               |               |
| 7    | Check high/low beam switch and the instrument panel harness from switch to fuse.                 |               |               |
| 8    | Replace the fuse. Does it still fail after replacement?                                          | Go to Step 4. | Go to Step 3. |

## **Diagnosis and Testing**

## Fault diagnosis

## 9. Diagnostic program for front rear fog lamp

| Step | Operation                                                                                                                                  | Yes           | No            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|
| 1    | Set the lamp switch to " # position, turn on the front fog lamp switch and check whether the switch indicator is intact.                   | Go to Step 7. | Go to Step 2. |
| 2    | Is the Fuse 9 intact?                                                                                                                      | Go to Step 4. | Go to Step 3. |
| 3    | Replace the damaged fuse.                                                                                                                  | Go to Step 4. |               |
| 4    | Remove the front fog lamp relay and measure the relay voltage. Is the voltage normal?                                                      | Go to Step 6. | Go to Step 5. |
| 5    | Check whether the instrument panel harness and the front fog lamp switch circuit is normal as per circuit diagram. Replace when necessary. |               |               |
| 6    | Replace relay. Are fog lamps normal?                                                                                                       |               | Go to Step 7. |
| 7    | Check fog lamp connector. Are voltage and grounding normal?                                                                                | Go to Step 8. |               |
| 8    | Check instrument panel harness from relay to fog lamp as per circuit diagram.                                                              |               |               |

## Fault diagnosis

10. Rear fog lamp failed with front fog lamp and rear fog lamp turned on simultaneously

| Step | Operation                                                                                                              | Yes            | No             |
|------|------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| 1    | Turn on low beam and front fog lamp and then turn on rear fog lamp switch. Does the switch indicator operate normally? | Go to Step 2.  | Go to Step 6.  |
| 2    | Check rear fog lamp and wiring harness connector. Ensure voltage and grounding is normal.                              | Go to Step 3.  | Go to Step 11. |
| 3    | Check connector between instrument panel and rear body harness. Is the measured voltage normal?                        | Go to Step 4.  | Go to Step 5.  |
| 4    | Check rear body harness from connector and rear fog lamp. Repair when necessary.                                       |                |                |
| 5    | Check instrument panel harness from rear fog lamp switch to connector. Repair when necessary.                          |                |                |
| 6    | Remove the rear fog lamp switch. Measure the voltage of wiring harness. Is the voltage normal?                         | Go to Step 7.  | Go to Step 8.  |
| 7    | Replace the rear fog lamp switch. Is the rear fog lamp normal?                                                         |                | Go to Step 3.  |
| 8    | Replace the relay. Is the rear fog lamp normal?                                                                        |                | Go to Step 9.  |
| 9    | Check the instrument panel harness from relay to switch. Is it normal??                                                | Go to Step 10. |                |
| 10   | Check the instrument panel harness connected to rear fog lamp relay. Repair when necessary.                            |                |                |
| 11   | Replace rear fog lamp.                                                                                                 |                |                |

## **Diagnosis and Testing**

## Fault diagnosis

#### 11. Diagnostic program for reversing lamps

| Step | Operation                                                                                           | Yes            | No             |
|------|-----------------------------------------------------------------------------------------------------|----------------|----------------|
| 1    | Is the fuse intact?                                                                                 | Go to Step 3.  | Go to Step 2.  |
| 2    | Replace the damaged fuse. Are the reversing lamps intact?                                           |                | Go to Step 3.  |
| 3    | Check connector between instrument panel and rear body harness. Is the measured voltage normal?     | Go to Step 4.  | Go to Step 6.  |
| 4    | Check connector between reversing lamp and wiring harness. Is it normal??                           | Go to Step 5.  | Go to Step 10. |
| 5    | Check rear body harness from connector to reversing lamp.                                           |                |                |
| 6    | Disconnect the connector of reversing lamp switch. Is the measured voltage normal?                  | Go to Step 8.  | Go to Step 7.  |
| 7    | Check the instrument panel harness from fuse to reversing lamp switch.                              |                |                |
| 8    | Check the instrument panel harness from connector of reversing lamp switch to joint. Is it normal?? | Go to Step 9.  |                |
| 9    | Check connector between brake lamps and wiring harness.                                             | Go to Step 10. |                |
| 10   | Check the ground point of rear body harness. Is it well grounded?                                   |                |                |

## Fault diagnosis

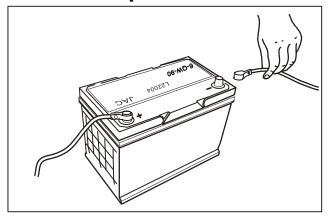
#### 12. Diagnostic program for brake lamps

| Step | Operation                                                                                                                            | Yes            | No            |
|------|--------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|
| 1    | Turn on the ignition switch to check fuse. Is the fuse intact?                                                                       | Go to Step 3.  | Go to Step 2. |
| 2    | Please replace the damaged fuse. Does it still fail after replacement?                                                               | Go to Step 5.  | Go to Step 3. |
| 3    | Measure the fuse voltage. Is it normal?                                                                                              | Go to Step 5.  | Go to Step 4. |
| 4    | Check the instrument panel harness.                                                                                                  |                |               |
| 5    | Disconnect the brake switch connector and check the brake switch. Ensure the brake switch is normal. Is the measured voltage normal? | Go to Step 7.  | Go to Step 6. |
| 6    | Check the instrument panel harness from brake switch to fuse.                                                                        |                |               |
| 7    | Check connector between instrument panel and rear body harness. Is it normal??                                                       | Go to Step 8.  |               |
| 8    | Check the rear body harness from connector to brake lamp.                                                                            | Go to Step 9.  |               |
| 9    | Check the connector between brake lamp and wiring harness.                                                                           | Go to Step 10. |               |
| 10   | Check the ground point of rear body harness. Is it well grounded?                                                                    |                |               |

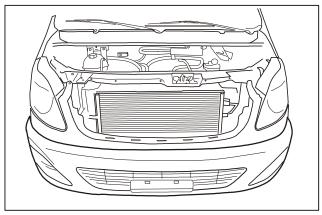
## **Diagnosis and Testing**

## Fault diagnosis

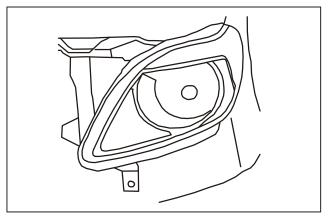
13. Hazard warning lamp failed but with normal operation of turn signal lamps


| Step | Operation                                                                   | Yes           | No            |
|------|-----------------------------------------------------------------------------|---------------|---------------|
| 1    | Is the fuse intact?                                                         | Go to Step 3. | Go to Step 2. |
| 2    | Replace the damaged fuse. Is the hazard warning lamp normal?                |               | Go to Step 3. |
| 3    | Remove the hazard warning switch and check if it is normal.                 | Go to Step 4. |               |
| 4    | Check if the voltage of hazard warning lamp switch is normal?               | Go to Step 6. | Go to Step 5. |
| 5    | Check the instrument panel harness from fuse to hazard warning lamp switch. |               |               |
| 6    | Check the ground wire of hazard warning lamp switch. Is it normal?          | Go to Step 8. | Go to Step 7. |
| 7    | Check the ground wire of instrument panel harness.                          |               |               |
| 8    | Check the lead from instrument panel harness to hazard warning lamp switch. |               |               |

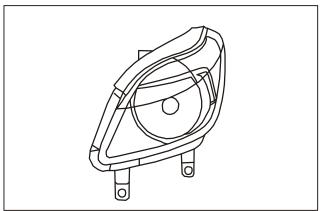
## Fault diagnosis


14. Turn signal lamp failed but with normal operation of hazard warning lamp

| Step | Operation                                                                                    | Yes           | No            |
|------|----------------------------------------------------------------------------------------------|---------------|---------------|
| 1    | Is the fuse intact?                                                                          | Go to Step 3. | Go to Step 2. |
| 2    | Replace the damaged fuse. Is the turn signal lamp normal?                                    |               | Go to Step 3. |
| 3    | Remove the hazard warning lamp switch and measure the switch voltage. Is the voltage normal? | Go to Step 5. |               |
| 4    | Check the instrument panel harness from fuse to hazard warning lamp switch.                  |               |               |
| 5    | Check if the hazard warning lamp switch is normal.                                           |               |               |

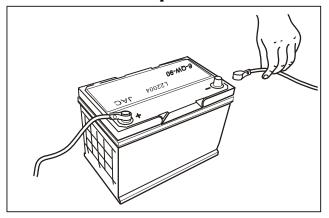

#### Removal of headlamp



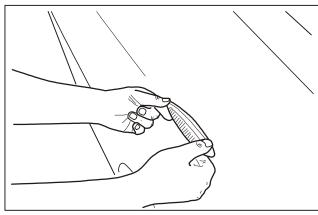

1. Disconnect the negative cable of battery.



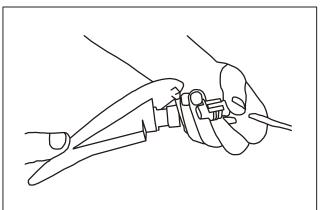
2. Remove the front grille, front compartment panel, and front bumper.



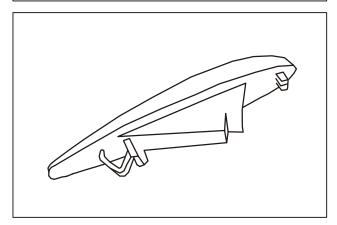

3. Remove mounting bolts from headlamps.




4. Disconnect the connecting wire to remove headlamps.

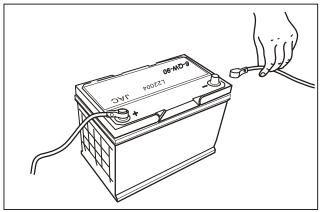

#### Removal of clearance lamps



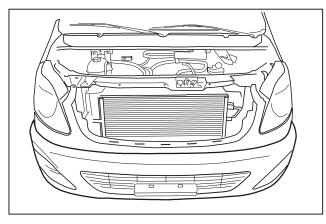

1. Disconnect the negative cable of battery.



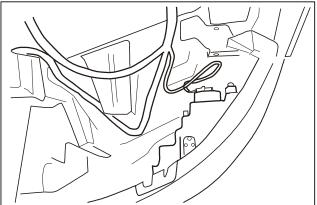
2. Hold the side turn signal lamp with hands and push it forwards, and then pull the lamp outwards with force



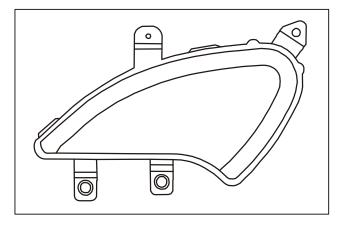

3. Disconnect the connecting wire of clearance lamp.




4. Remove the clearance lamp.

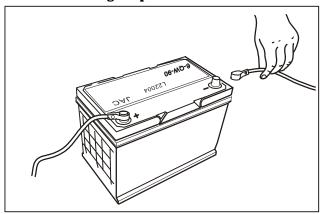

#### Removal of front fog lamps



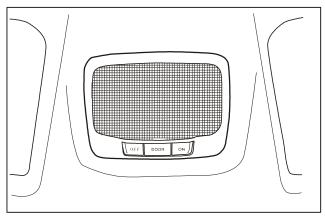

1. Disconnect the negative cable of battery.



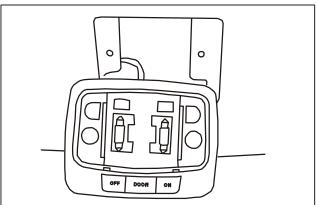
2. Remove the front bumper.



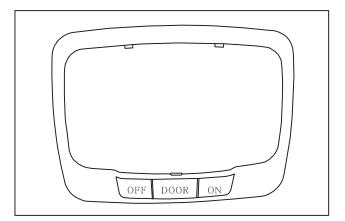

3. Disconnect the connecting wire of fog lamp.




4. Remove the front fog lamp.

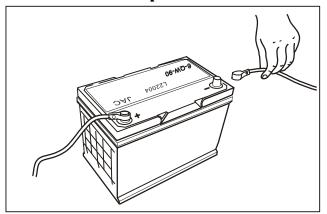

## Removal of ceiling lamps



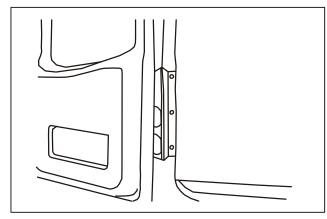

1. Disconnect the negative cable of battery.



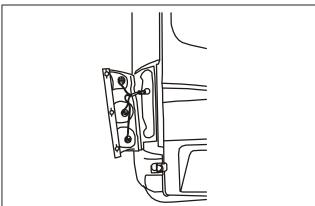
2. Remove the casing of ceiling lamp.



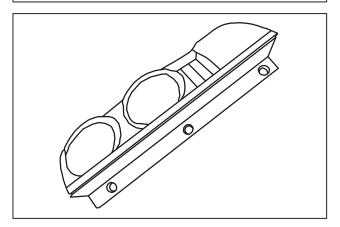

3. Remove the mounting bolts from ceiling lamp.




4. Remove the ceiling lamp.


#### Removal of rear tail lamps

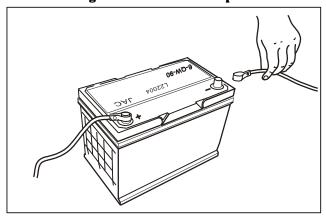



1. Disconnect the negative cable of battery.

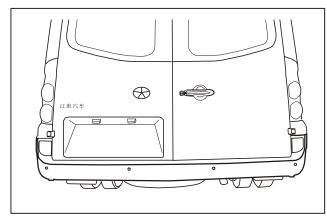


2. Remove the mounting bolts from tail lamp.




3. Disconnect the connecting wire of tail lamp.

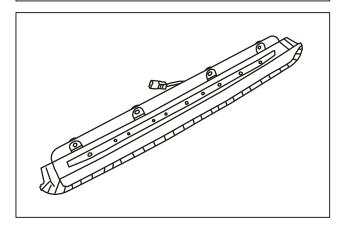



4. Remove the tail lamp.

#### Removal/Installation

## Removal of high-mounted brake lamp

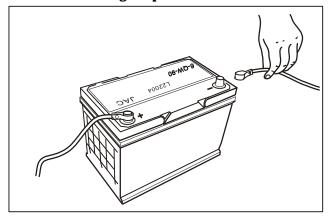



1. Disconnect the negative cable of battery.

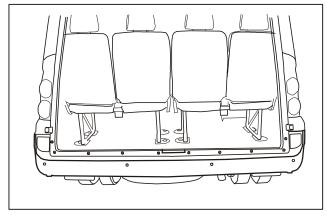


2. Open the back door.

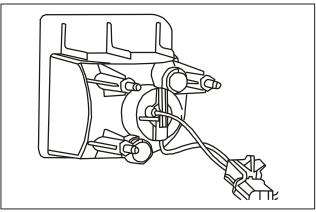



3. Remove the mounting bolts and disconnect the connecting wire of high-mounted brake lamp.

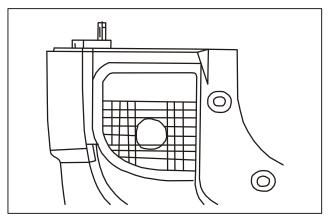



4. Remove the high-mounted brake lamp.

## Removal/Installation


## Removal of rear fog lamp




1. Disconnect the negative cable of battery.



2. Remove the rear bumper.



3. Disconnect the connecting wire of rear fog lamp.



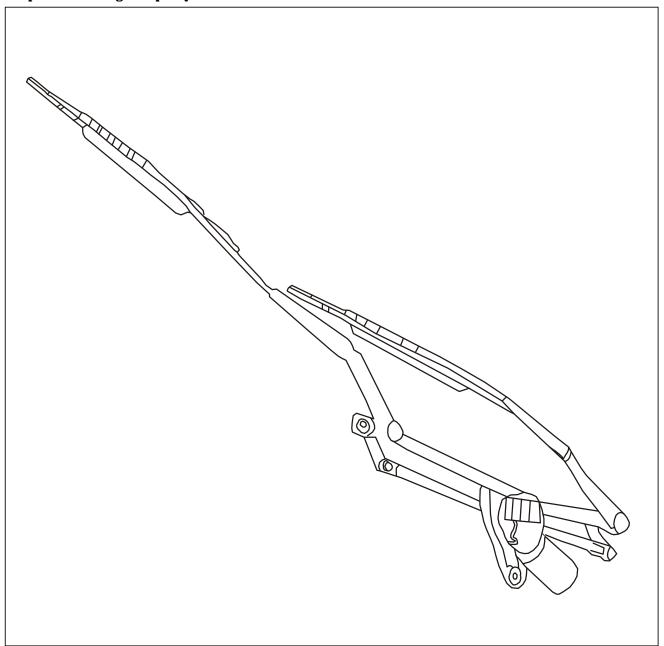
4. Remove the rear fog lamp.

## **Specification**

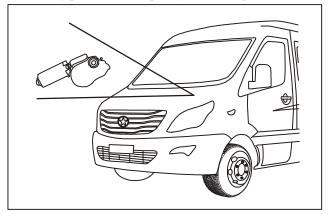
## **Basic parameters**

| S/N | ]                       | Name             | Bulb Type     | Power  |
|-----|-------------------------|------------------|---------------|--------|
|     | F 4 H;-h/lh             |                  | H4 12V 60/55W | 60/55W |
| 1   | Front combination       | High/low beam    | H4 12V 60/55W | 60/55W |
| 1   | lamp                    | Position lamp    | 12V 16W       | 16W    |
|     | lamp                    | Turn signal lamp | 12V 21W       | 21W    |
|     |                         | Turn signal lamp | 12V 21W       | 21W    |
|     | Rear                    | Brake lamp       | 12V 21W       | 21W    |
| 2   | combination             | Reversing lamp   | 12V 21W       | 21W    |
|     | lamp                    | Rear fog lamp    | 12V 21W       | 21W    |
|     |                         | Position lamp    | 12V 5W        | 5W     |
| 3   | Front                   | fog lamp         | 12V 55W       | 55W    |
| 4   | Side turn               | n signal lamp    | 12V 5W        | 5W     |
| 5   | High-mounted brake lamp |                  | LED module    | 1.5W   |
| 6   | License plate lamp      |                  | 12V 10W       | 10W    |
| 7   | Front ceilin            | g lamp assembly  | 12V 10W       | 10W    |
| 8   | Rear ceiling            | g lamp assembly  | 12V 10W       | 10W    |

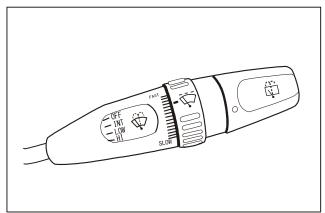
# Wiper and Washer System


Applied models: SUNRAY products manufactured by JAC

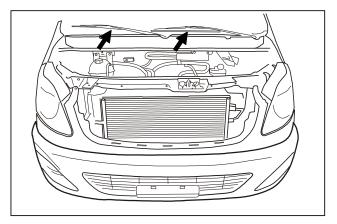
| Subject                                           | Page |
|---------------------------------------------------|------|
| Instruction and Operation                         |      |
| Wiper                                             | 86   |
| Mounting position                                 |      |
| Information functions                             |      |
| Diagnosis and Testing                             |      |
| Wiper                                             | 91   |
| Definitions of pins                               |      |
| Troubleshooting                                   | 92   |
| Removal/Installation                              |      |
| Wiper                                             | 95   |
| Removal of the wiper                              |      |
| Removal of the windshield washing fluid reservoir |      |
| Removal of the Wiper washing nozzle               | 98   |
| Specification                                     |      |
| Wiper                                             | 99   |
| Basic parameters                                  |      |


#### Wiper system

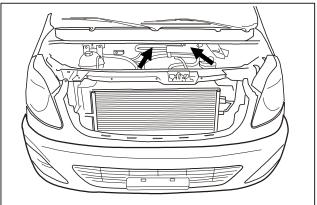
Wiper system is the system used for cleaning raindrops on windshield and rear window in order to maintain clear vision. The application of spray washer in the system is for dirt removal on the windshield. Therefore, it is a necessary system for driving safety.


## Component drawing of wiper system:



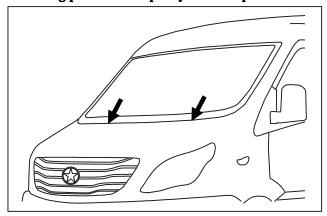

## Mounting position of wiper system components



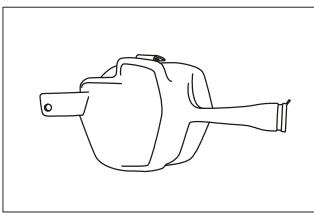

1. Wiper motor
Mounting position: in the engine compartment



Wiper switch
 Mounting position: on the combination switch
 under the steering wheel

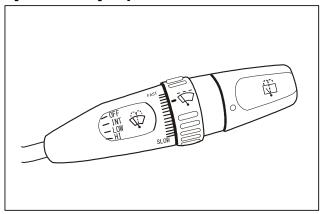



3. Wiper blade Mounting position: on the front windshield




Wiper linkage
 Mounting position: connecting with wiper blade at the front windshield

#### Mounting position of wiper system components



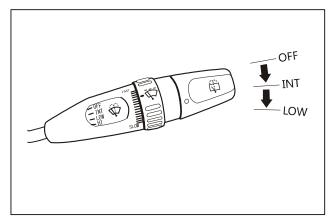

5. Washer nozzle Mounting position: on the wiper decorative panel




6. Washer motor and washing liquid reservoir Mounting position: at the right front lower part of engine compartment

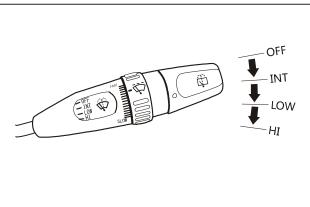
#### Operation of wiper system function




#### 1. OFF gear

When it is at this gear, the wiper is in off state and does not operate.




#### 2. INT gear

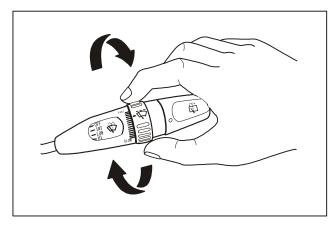
When it is at this gear, the wiper operates intermittently.



#### 3. LOW gear

When it is at this gear, the wiper operates with a low speed.

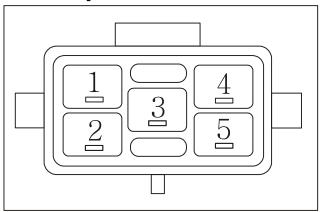



#### 4. HI gear

When it is at this gear, the wiper operates with a high speed.

#### Operation of wiper system function




In the case of windshield cleaning
In the case of windshield cleaning, pull up the wiper/washer lever. When the washer is turned on, water which is sprayed from the water sprayer cleans the windshield automatically and the wiper shall operate simultaneously. Loosen the lever and cleaning operation is stopped.



6. Wiper intermittent operation
Shift the wiper switch to "INT" and the wiper shall operate intermittently. Turn the adjustment knob of intermittence when the wiper switch is at "INT", there shall be corresponding intermittence change.
The swing interval of wiper controlled by the adjustable switch is in the range of 1~18 seconds.

## **Diagnostic Test**

## **Definitions of pins**



| No.      | 1             | 2            | 3          | 4      | 5             |
|----------|---------------|--------------|------------|--------|---------------|
| Color    | Red           | Green        | Blue       | Yellow | Black         |
| Function | Positive pole | Low<br>speed | High speed | Return | Negative pole |

#### WW Wiper and Washer System

## **Diagnostic Test**

#### **Troubleshooting**

1. Fault mode: No matter what gear is the wiper switch at, there are no operations of the wiper and washer.

| Step | Operation                                                                                                                                                                                                                                                                                                       | Yes          | No           |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| 1    | Inspect the wiper fuse for the existence of damage.                                                                                                                                                                                                                                                             | Go to Step 3 | Step 2       |
| 2    | Remove the wiper switch, inspect it and confirm that there are no faults in it. Then measure the wire harness with a digital multimeter.  Inspect the voltages from the connector to the wiper switch and verify whether they are normal.                                                                       | Go to Step 5 | Go to Step 4 |
| 3    | Replace the damaged fuse.                                                                                                                                                                                                                                                                                       | Go to Step 2 |              |
| 4    | Inspect the instrument panel wire harness between the fuse and the wiper switch and repair if necessary.                                                                                                                                                                                                        | Go to Step 5 |              |
| 5    | Verify the existence of good contact between the wiper switch and wire harness connector.  Disconnect the wire harness and wiper motor, inspect the instrument panel wire harness among the wiper switch, the fuse and the wiper motor according to relevant circuit diagrams. Repair the harness if necessary. | Go to Step 6 |              |
| 6    | Inspect the wiper motor and repair if necessary. Confirm that there are no faults in the wiper motor and verify the existence of good contact of the wiper motor connector.                                                                                                                                     | Go to Step 7 | _            |
| 7    | Inspect the ground wire of the wiper motor in the instrument panel wire harness and repair if necessary.                                                                                                                                                                                                        | Go to Step 8 |              |
| 8    | Verify whether the system is intact.                                                                                                                                                                                                                                                                            |              |              |

#### 2. Fault mode: No operation at HI gear

| Ste | Operation                                                                                                                                                                                                                | Yes          | No           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| 1   | Disconnect the wire harness from the wiper motor. Measure the voltage at v harness side with a digital multimeter and verify whether the voltage is normal                                                               | Go to Step 2 | Go to Step 3 |
| 2   | Inspect the internal structure of the wiper motor, replace or repair if necessary.                                                                                                                                       |              |              |
| 3   | Remove the wiper switch and inspect it to confirm that there are no faults ir Inspect the instrument panel wire harness between the wiper switch and the wimotor. Repair the instrument panel wire harness if necessary. |              |              |

## 3. Fault mode: No operation at LOW gear

| Step | Operation                                                                                                                                                                | Yes          | No           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| 1    | Disconnect the wire harness connector from the wiper motor. Measure the voltage at wire harness side with a digital multimeter and verify whether the voltage is normal. | Go to Step 2 | Go to Step 3 |
| 2    | Inspect the internal structure of the wiper motor, replace or repair if necessary.                                                                                       |              |              |
| 3    | Remove the wiper switch and inspect it to confirm that there are no faults in it. Replace or repair it if necessary.                                                     | Go to Step 4 |              |
| 4    | Inspect the instrument panel wire harness between the wiper switch and the wiper motor. Repair the instrument panel wire harness if necessary.                           |              |              |

## **Diagnostic Test**

## **Troubleshooting**

## 4. Fault mode: No operation at INT gear only

| Step | Operation                                                                                                                                                                                                     | Yes           | No            |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|
| 1    | Remove the wiper relay and shift the ignition switch to ON and shift the wiper switch to internal gear. Measure the voltage of relay pin with a digital multimeter and verify whether the voltage is normal.  | Go to Step 4  | Go to Step 2  |
| 2    | Remove the wiper switch and inspect it to confirm that there are no faults in it. Replace or repair it if necessary.                                                                                          | Go to Step 3  |               |
| 3    | Inspect the instrument panel wire harness between the wiper switch and the wiper relay, repair the harness if necessary.                                                                                      |               | Go to Step 7  |
| 4    | Inspect the ground wire at the relay for its good grounding.                                                                                                                                                  | Go to Step 6  | Go to Step 5  |
| 5    | Repair the ground wire and confirm whether it is in good grounding.                                                                                                                                           |               |               |
| 6    | Replace the wire relay and confirm whether the system is intact.                                                                                                                                              |               |               |
| 7    | Inspect the instrument panel wire harness between the wiper switch and the relay and confirm that there are no faults in it.                                                                                  | Go to Step 8  | Go to Step 10 |
| 8    | Remove the new wiper relay and measure the voltage of the relay with a digital multimeter to verify whether the voltage is normal.                                                                            | Go to Step 10 |               |
| 9    | Inspect the instrument panel wire harness and repair it if necessary. Confirm that there are no faults in it.                                                                                                 | Go to Step 10 |               |
| 10   | Inspect the instrument panel wire harness between the relay and the wiper motor and repair the instrument panel if necessary. Confirm that there are no faults in it and verify whether the system is intact. |               |               |

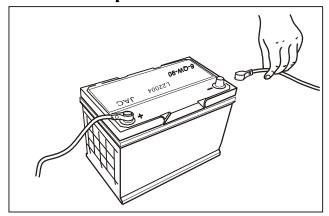
## 5. Fault mode: No operation of the washer

| Step | Operation                                                                                                                                                                                                                                                                       | Yes          | No           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| 1    | Remove the wiper/washer switch and shift the ignition switch to ON. Measure the pin voltage of the switch at its original position with a digital multimeter to verify whether the voltage is normal.                                                                           | Go to Step 3 | Go to Step 2 |
| 2    | Inspect the instrument panel wire harness between the fuse and the wiper/washer switch. Repair the instrument panel if necessary and confirm that there are no faults in it                                                                                                     | Go to Step 3 |              |
| 3    | Inspect the internal structure of the wiper switch, replace or repair if necessary. Confirm that there are no faults in the switch and verify whether the system is intact.                                                                                                     |              | Go to Step 4 |
| 4    | Install the wiper/washer switch. Disconnect the washer motor connector and shift the wiper/washer switch to WASHING. Measure the pin voltage of the washer motor at its connector (the side of wire harness) with a digital multimeter to verify whether the voltage is normal. | Go to Step 6 | Go to Step 5 |
| 5    | Inspect and repair the wire harness between the wiper/washer and the washer motor according to relevant circuit diagrams.                                                                                                                                                       | Go to Step 6 |              |
| 6    | Inspect the instrument panel wire harness between the wiper motor and the wiper/washer switch according to relevant circuit diagrams and verify whether it is intact.                                                                                                           | Go to Step 7 |              |
| 7    | Replace the washer motor and verify whether the system is intact.                                                                                                                                                                                                               |              |              |

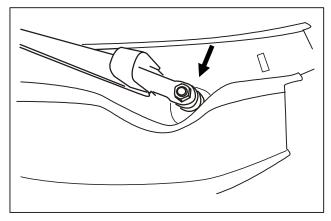
#### WW Wiper and Washer System

## **Diagnostic Test**

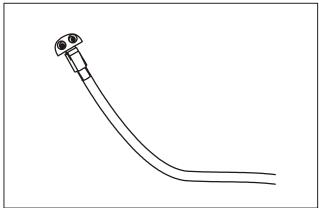
#### **Troubleshooting**


#### 6. Fault mode: Deviation of the wiper blade form its original position

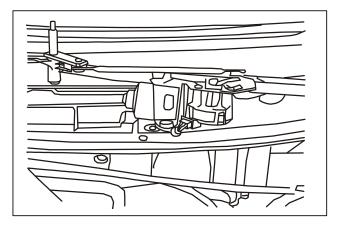
| Step | Operation                                                                                                                                                         | Yes          | No           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| 1    | Remove the wiper switch and inspect the internal structure of it. Repair or replace it if necessary and confirm that there are no faults in it.                   | Go to Step 2 |              |
| 2    | Disconnect the wiper motor connector. Measure the pin voltage at the wire harness side with a digital multimeter to verify whether the voltage is normal.         | Go to Step 4 | Go to Step 3 |
| 3    | Inspect the instrument panel wire harness between the fuse and the wiper motor according to relevant circuit diagrams and confirm that there are no faults in it. | Go to Step 4 |              |
| 4    | Remove the wiper motor and inspect its structure. Repair or replace it if necessary and verify whether the system is intact.                                      |              |              |


## 7. Fault mode: Nonstop operation of the wiper

| Step | Operation                                                                                                                                                                                                                                             | Yes          | No            |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|
| 1    | Inspect the fuse and verify whether it is intact.                                                                                                                                                                                                     | Go to Step 2 | Go to Step 3  |
| 2    | Replace the damaged fuse.                                                                                                                                                                                                                             | Go to Step 3 |               |
| 3    | Remove the wiper switch and measure the voltage of the switch with a digital multimeter to verify whether the voltage is normal.                                                                                                                      | Go to Step 5 | Go to Step 4  |
| 4    | Inspect the instrument panel wire harness between the fuse and the wiper switch and repair it if necessary.                                                                                                                                           | Go to Step 5 | Go to Step 6  |
| 5    | Inspect the internal structure of the wiper switch and replace or repair it if necessary. Confirm that there are no faults in it and verify whether the system is intact.                                                                             |              | Go to Step 10 |
| 6    | Disconnect the connector from the wiper motor, shift the ignition switch to ON and shift the wiper switch to HI gear. Measure the pin voltage at the connector (wire harness side) with a digital multimeter to verify whether the voltage is normal. | Go to Step 7 | Go to Step 10 |
| 7    | Inspect the instrument panel wire harness between the wiper switch and the relay. Confirm that there are no faults in it.                                                                                                                             | Go to Step 8 | Go to Step 9  |
| 8    | Verify the existence of good grounding of the ground wire with a digital multimeter.                                                                                                                                                                  |              |               |
| 9    | Remove the wiper motor and replace or repair it if necessary. Verify whether the system is intact.                                                                                                                                                    |              | Go to Step 10 |
| 10   | Inspect the instrument panel wire harness between the wiper switch and the wiper motor according to relevant circuit diagrams. Repair it if necessary. Confirm that there are no faults in it and verify whether the system is intact.                |              |               |

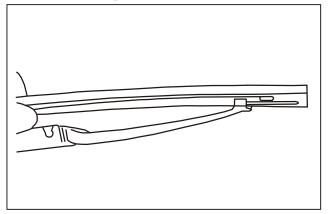

#### Removal of the wiper



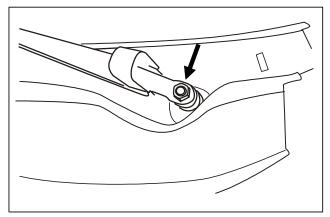

1. Disconnect the connecting wire of battery.



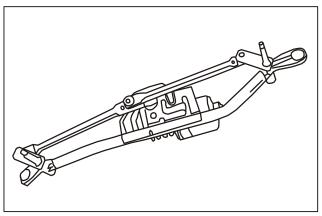
2. Remove mounting bolts of the wiper.




3. Disconnect the connecting pipe of the windshield washing fluid nozzle.

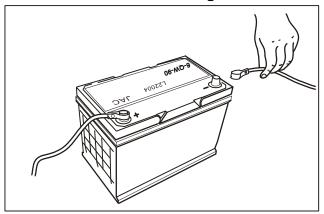



4. Remove sealing rubber strips and fixing clamps of the wiper decorative panel.

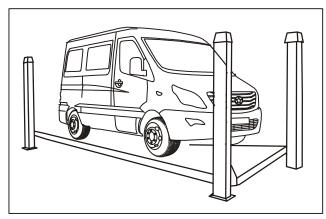

#### Removal of the wiper



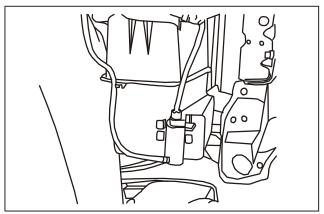
5. Take down the wiper blade and wiper decorative panel.



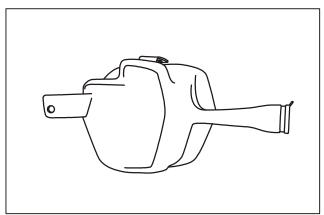

6. Remove connecting bolts of the wiper linkage.




7. Take down the wiper linkage and wiper motor.

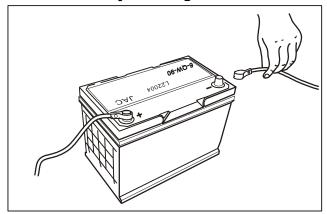

## Removal of the windshield washing fluid reservoir



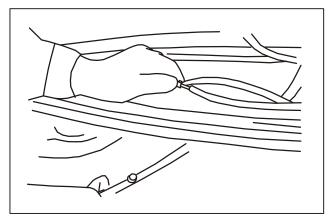

1. Disconnect the connecting wire of battery.



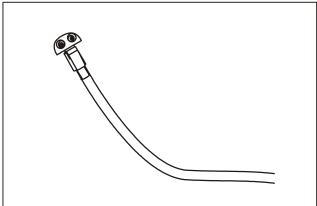
2. Lift the vehicle.



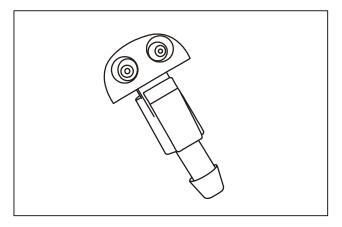

3. Remove mounting bolts of the windshield washing fluid reservoir.




4. Take out the windshield washing fluid reservoir.


#### Removal of the Wiper washing nozzle




1. Disconnect the connecting wire of battery.



2. Pull up the washing nozzle with hand.



3. Disconnect the water pipe of nozzle.



4. Take down the washing nozzle.

## **Specification**

## Technical parameter

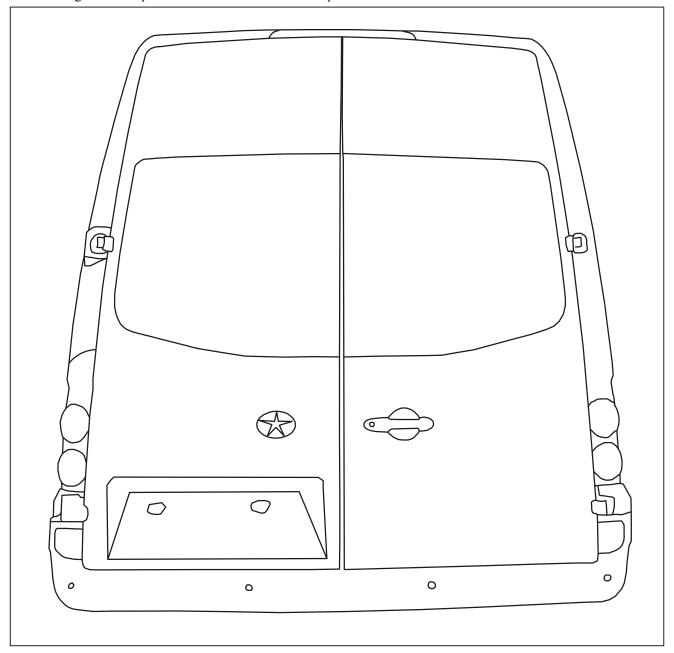
| No load     |           |             |           |             | Loaded    | 4.4N.m      |           |
|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| Low s       | peed      | High        | speed     | Low sp      | peed      | High s      | peed      |
| Speed r/min | Current A |
| 45±5        | ≤2        | 65±8        | ≤3.5      | ≥20         | ≤5.5      | ≥45         | ≤6.8      |

| High spee  | ed braking | Low spee   | d braking |
|------------|------------|------------|-----------|
| Torque N.m | Current A  | Torque N.m | Current A |
| 19.6       | ≤32        | 27         | ≤26       |

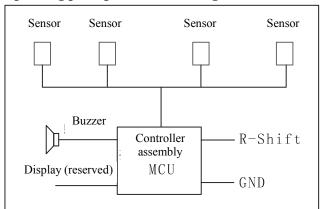
| NI_:   |                        | I 1<50 JD(A)      |
|--------|------------------------|-------------------|
| Noise  | High speed<60dB(A)     | Low speed≤50dB(A) |
| 110150 | 111811 5  000 000 (11) |                   |

# **Reversing Radar**

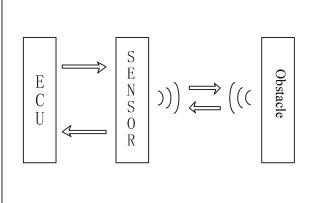
Applied models: SUNRAY products manufactured by JAC


| Subject                                                                        | Page |
|--------------------------------------------------------------------------------|------|
| Instruction and Operation                                                      |      |
| Reversing Radar                                                                |      |
| Diagnosis and Testing                                                          |      |
| Reversing Radar  Definitions of reversing radar computer pins  Troubleshooting |      |
| Removal/Installation                                                           |      |
| Reversing Radar                                                                | 108  |
| Specification                                                                  |      |
| Reversing Radar                                                                |      |

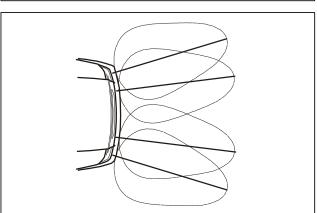
#### Reversing radar sensor


There are 4 sensor probes for Sunray reversing radar. With the application of ultrasonic sensor, the distance measurement of the obstacle and the vehicle can be carried out. In the process of reversing, the buzzer plays a role in supporting reminding for the driver via beeps with different frequencies.

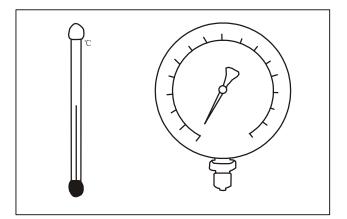
#### Mounting position of the reversing radar sensor:


The reversing radar computer is mounted on the rear bumper.




#### Operating principle of the reversing radar




1. Schematic diagram of reversing radar system



2. Schematic diagram of ultrasonic distance measurement



3. The reversing radar controller sends ultrasonic signals to the sensor in order to drive the sensor for ultrasonic wave generation; Ultrasonic signals are received by the sensor via obstacle reflection and the internal circuit of the sensor amplifies the reflected signals and sends them to the controller. After analysis and calculation of the controller, the distance information of obstacle is processed by the controller and the buzzer is driven to beep. For obstacles at different distances from the vehicle, the buzzer is controlled by the controller to beep in different frequencies thus to remind the driver of obstacles.



- 4. Factors which may affect the operation of reversing radar.
  - Temperature
  - Air pressure
  - Humidity

#### PT Reversing parking assistance system

#### **Diagnosis and Test**

## **Definitions of reversing radar computer pins**

#### 1. Control logic

In the case of no fault in sensor, the buzzer 2HZ beeps once; in the case of one or more faulted sensors, the buzzer 2HZ beeps twice and then turns into normal distance measurement.

| Distance                        | 0-30 | > 30-60 | > 60-90 | > 90-180 | > 180 |
|---------------------------------|------|---------|---------|----------|-------|
| Beeping frequency of the buzzer | ON   | 8HZ     | 4 HZ    | 2 HZ     | OFF   |

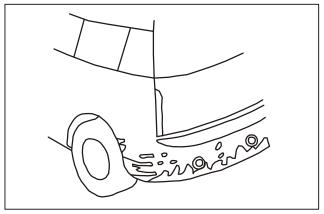
#### 2. Definitions of control module interfaces

| Connector figure  | Pin | Signal name | Function                 |
|-------------------|-----|-------------|--------------------------|
| <u></u> -8  1  -7 | 1   | R-SHIFT     | Reversing signal         |
|                   | 2   | NC          |                          |
|                   | 3   | NC          |                          |
|                   | 4   | S-CR        | Right intermediate probe |
|                   | 5   | NC          |                          |
|                   | 6   | NC          |                          |
|                   | 7   | S-L         | Left probe               |
|                   | 8   | S-CL        | Left intermediate probe  |
|                   | 9   | NC          |                          |
|                   | 10  | NC          |                          |
|                   | 11  | NC          |                          |
|                   | 12  | NC          |                          |
|                   | 13  | DATA        | Data display             |
|                   | 14  | Buzzer      | Control signal of buzzer |
|                   | 15  | S-R         | Right probe              |
|                   | 16  | GND         | Ground                   |

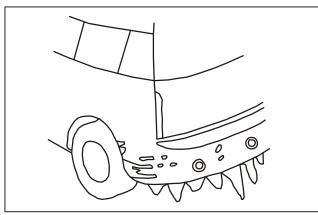
#### 3. Probe interfaces

| Connector figure | Pin | Current | Function     |
|------------------|-----|---------|--------------|
|                  | 1   | 0.1     | Power supply |
|                  | 2   | 0.1     | Ground       |
|                  |     |         |              |

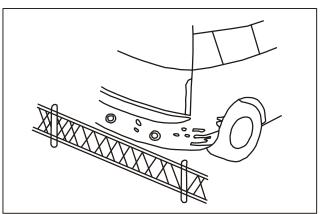
## **Diagnosis and Test**


## Definitions of reversing radar computer pins (continued)

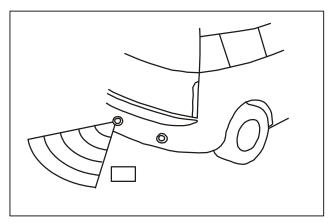
#### 4. Buzzer connectors


| Connector figure | Pin | Current | Function     |
|------------------|-----|---------|--------------|
|                  | 1   | 0.1     | Ground       |
|                  | 2   | 0.1     | Power supply |
|                  |     |         |              |
|                  |     |         |              |
|                  |     |         |              |
|                  |     |         |              |
|                  |     |         |              |

### **Diagnosis and Test**


## Possible conditions for the out of operation reversing radar

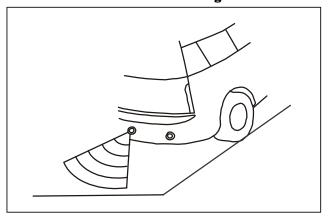



1. Verify whether there is snow or mud on radar probes.

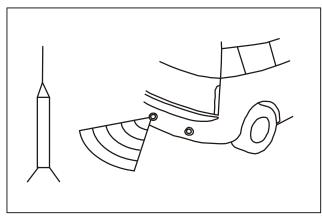


2. Verify whether the surface of the radar probe is frozen.

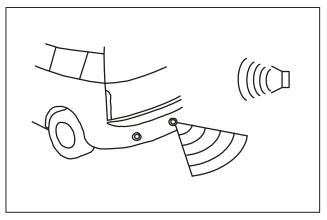



3. Verify whether the obstacles approaching are thin objects like iron wires, ropes and mesh walls.

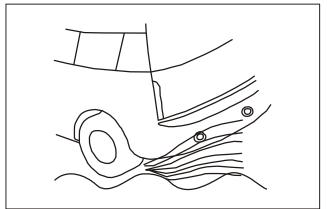



4. Verify whether the obstacles approaching are too low.

## **Diagnosis and Test**

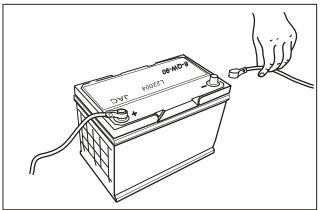

## Possible conditions for the reversing radar false alarms



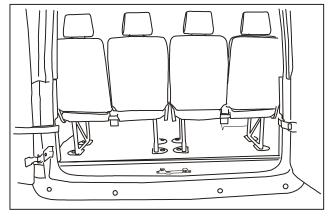

1. The vehicle is running downward from steep hills.



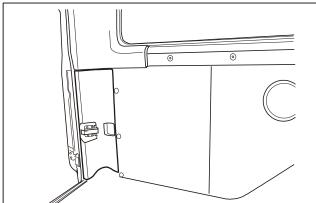
2. The vehicle is equipped with the radio or antenna with high output and these equipments are in operation.



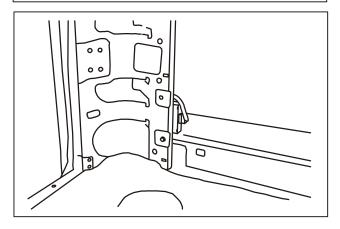

3. Other vehicles with honk, motorcycles with engine noise and objects with noise of exhaust brake are approaching the vehicle.




4. The vehicle is running in jelly snow or rain.


## Removal of the reversing radar computer

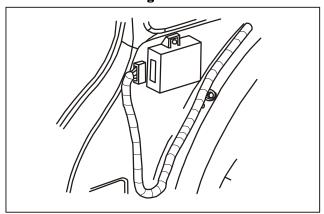



1. Disconnect the negative cable of battery.

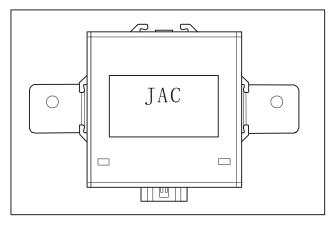


2. Remove the rear seat.



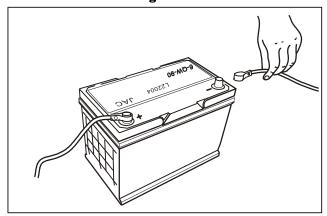

3. Remove the trim panel at the left rear side of the vehicle.



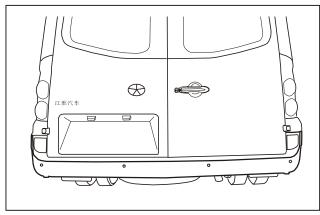

4. Remove mounting bolts of the reversing radar.

## Removal and Installation (continued)

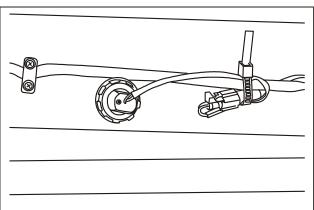
## Removal of the reversing radar




5. Disconnect the connecting wire of the reversing radar computer.




6. Take out the reversing radar.


## Removal of the reversing radar sensor



1. Disconnect the connecting wire of battery.



2. Remove the rear bumper.



3. Disconnect the connecting wire of probe.



4. Screw out the probe.

## **Specification**

## Basic parameter of the reversing radar:

## Technical parameter of the control module:

| Rated operating voltage    | DC12V                                                  |
|----------------------------|--------------------------------------------------------|
| Range of operating voltage | DC9V~16V                                               |
| Operating temperature      | -30∼+80°C                                              |
| Storage temperature        | -40∼+85°C                                              |
| Operating frequency        | 58KHz                                                  |
| Max.detection distance     | For intermediate probe180cm; For left/right probe 60cm |

## **Technical parameter of the probe:**

| Rated operating voltage    | DC12V                       |
|----------------------------|-----------------------------|
| Range of operating voltage | DC9V~16V                    |
| Operating temperature      | -30∼+80°C                   |
| Storage temperature        | -40∼+85°C                   |
| Operating frequency        | 58KHz                       |
| Detection angle            | Horzontal 80°, vertical 34° |

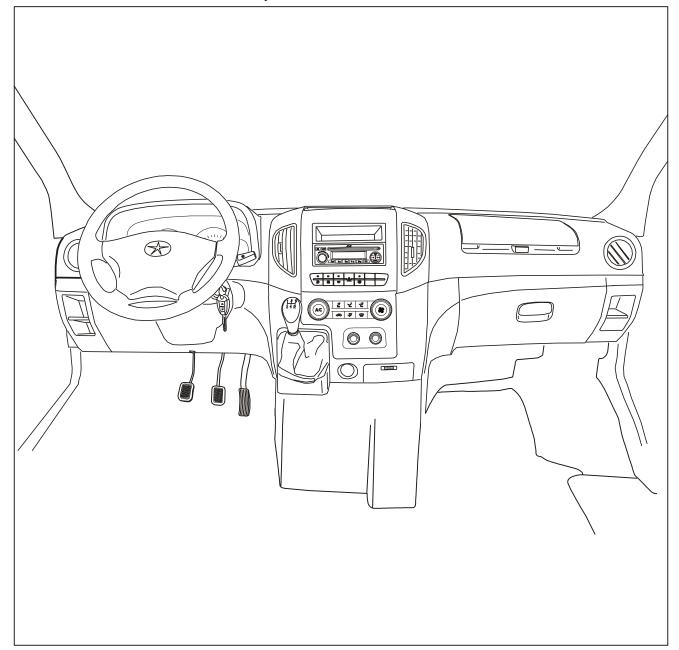
## Technical parameter of the buzzer:

| Rated voltage             | DC12V                     |
|---------------------------|---------------------------|
| Operating voltage         | DC9V~16V                  |
| Operating temperature     | -30°C ~+80°C              |
| Storage temperature       | -40°C ~+85°C              |
| Sound level of the buzzer | ≥90dB~105dB/10cm/12V(min) |
| Frequency of the buzzer   | 2.9±0.3kHz                |

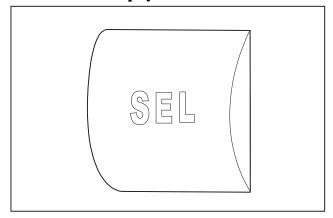
# **Audio/Video System**

Applied models: SUNRAY products manufactured by JAC

| Subject                   | Page |
|---------------------------|------|
| Instruction and Operation |      |
| Radio                     | 114  |
| Mounting position         | 114  |
| Introduction functions    |      |
| Precautions               | 119  |
| Diagnosis and Testing     |      |
| Radio                     | 121  |
| Troubleshooting           | 121  |
| Removal/Installation      |      |
| Radio                     | 124  |
| Removal of Radio          |      |
| Removal of loudspeakers   | 125  |
| Specification             |      |
| Radio                     | 127  |
| Basic parameters          | 127  |

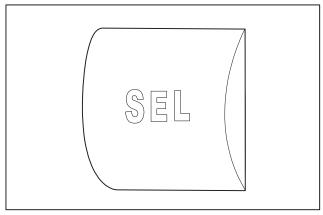

#### Audio system

SUNRAY audio control system, powered by 12V DC power supply, is composed of CD module, radio module and MP3 module, which features with 10 seconds electronic anti-vibration reliability, USB data reading function and FM/AM radio, and can supports play formats of CD, MP3 and WMA.


The host, featuring with four-way audio output function, can be connected with four-way loudspeaker; therefore, vehicle occupants can adjust proper voice and select play format freely based on actual road condition, as well as adjust various output volume by audio balance setting.

#### Mounting position of audio host:

In the middle of center console of instrument panel.



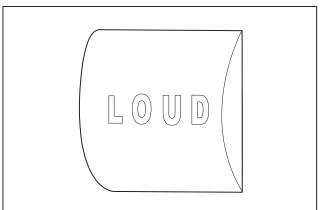

#### Introduction to CD player function



1. Press it shortly.

BASS: Low pitch
TREBLE: High pitch
BAL: Left/right balance
FADER: Front/rear balance
CUSTOM: Set by customer



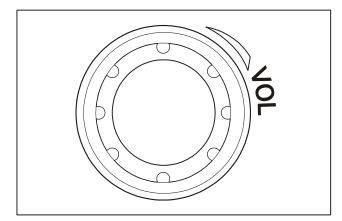

2. Press it shortly.

Under "CUSTOM" mode, sound effect can be achieved by adjusting volume up or down.

JAZZ: Jazz music VOCAL: Vocal

POP: Popular music ROCK: Rock and roll CLASSIC: Classic music

FLAT: Flat voice




3. Press it shortly.

Loudness enhancement ON;

Press and hold it.

Loudness enhancement OFF.

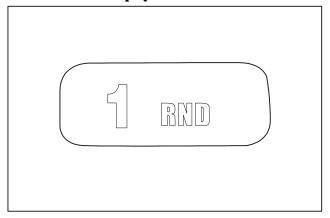


4. Press it shortly.

The machine is turned on if it is under OFF status.

Press and hold it.

Mute mode is turned on if it is under ON status.

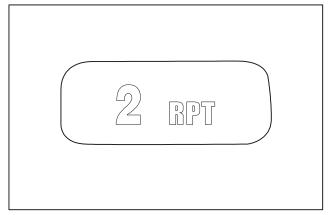

Turn counterclockwise.

To decrease volume.

Turn clockwise.

To increase volume.

#### Introduction to CD player function

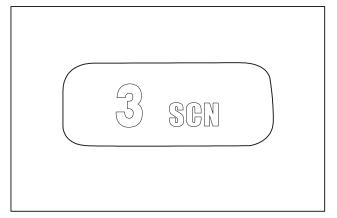



#### 5. Press it shortly.

Under radio mode, the first radio station is selected; under playback mode, random play starts.

Press and hold it.

The current radio station is stored onto No.1 position.

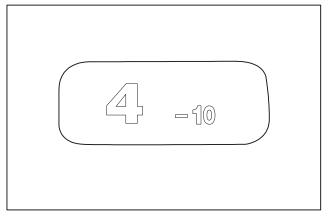



#### 6. Press it shortly.

Under radio mode, the second radio station is selected; under playback mode, repeat play starts.

Press and hold it.

The current radio station is stored onto No.2 position.



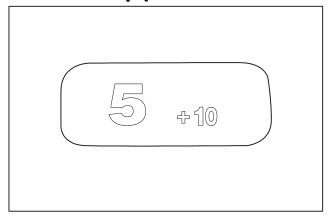

#### 7. Press it shortly.

Under radio mode, the third radio station is selected; under playback mode, scan play starts.

Press and hold it.

The current radio station is stored onto No.3 position.



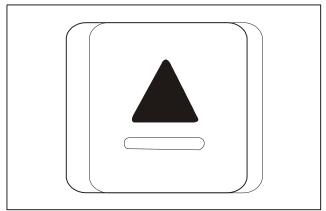

#### 8. Press it shortly.

Under radio mode, the fourth radio station is selected; under playback mode, it starts to play from the last 10th songs.

Press and hold it.

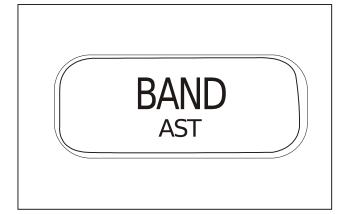
The current radio station is stored onto No.4 position.

#### Introduction to CD player function




#### 9. Press it shortly.

Under radio mode, the fifth radio station is selected; under playback mode, it skips the first 10 songs to play.

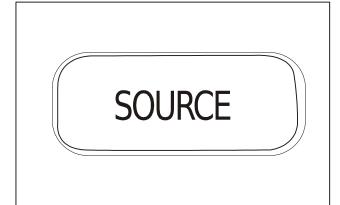

Press and hold it.

The current radio station is stored onto No.5 position.



#### 10. Press it shortly.

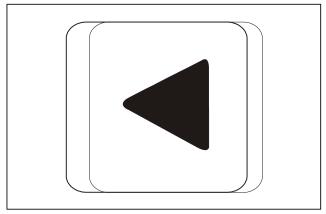
CD quit if it is inside.




#### 11. Press it shortly.

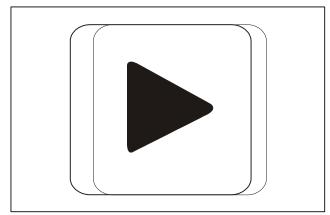
Cycle selection of band from FM1, FM2, FM3, AM and AM2.

Press and hold it.


Under FM mode, maximum 15 radio stations can be searched automatically and stored onto FM1, FM2 and FM3; under AM mode, maximum 10 radio stations can be searched automatically and stored onto AM1 and AM2.

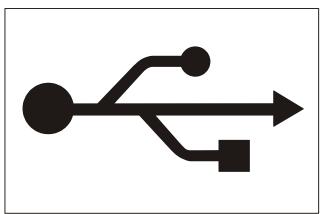


#### 12. Press it shortly.


Cycle selection of radio/playback sound source.

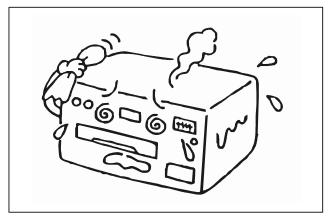
## **Introduction to CD player function**



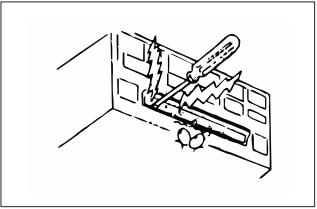

13. Press it shortly.
Auto searching to low end.

Press and hold it. Manual searching to low end.




14. Press it shortly.
Auto searching to high end.

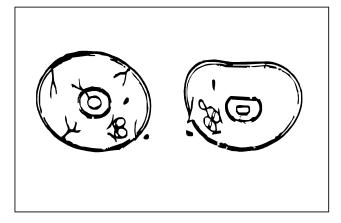
Press and hold it. Manual searching to high end.




15. With U disk inserted, MP3/WMA format play can be achieved.

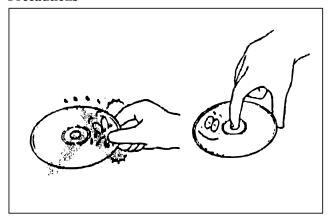
#### **Precautions**



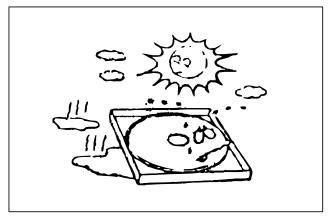

1. Don't place CD player under hot environment.



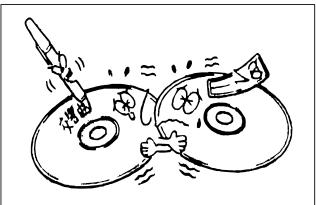
2. Don't remove the CD player violently.



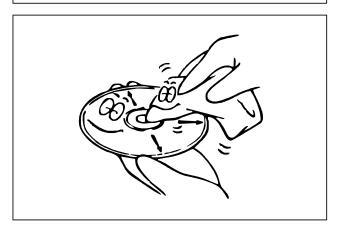

3. Don't use the CD player when driving on bumpy road surface.




4. The deformed CD cannot be applied.


#### **Precautions**




5. Handle the CD properly.



6. The CD is not allowed to be exposed under strong sunlight.



7. Don't write or stick label on the CD.



8. Keep the CD clean.

## **Diagnosis and Testing**

## **Troubleshooting**

## 1. Poor reception of antenna.

| Step | Operation                                                                                                       | Yes                 | No             |
|------|-----------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| 1    | Does the reception effect decrease or are there more than one radio stations cannot be received?                | Go to Step 3.       | Go to Step 2.  |
|      | Check if there are specific frequencies interfered by the electrical system of vehicle as per procedures below: |                     |                |
|      | ①Turn the ignition switch to ON position.                                                                       |                     |                |
| 2    | ②Select the influenced radio station.                                                                           | Check radio system. | _              |
|      | ③Remove one fuse each time until the failed one is found out.                                                   |                     |                |
|      | Perform necessary maintenance for the failed circuit.      The second of the failed circuit.                    |                     |                |
|      | Is the maintenance finished?                                                                                    |                     |                |
|      | ①Disconnect the negative cable of battery.                                                                      |                     |                |
| 3    | ②Disconnect the antenna lead connector from the radio receiver.                                                 | Go to Step 4.       | Go to Step 5.  |
|      | ③Measure the resistance between antenna lead connector and battery ground cable.                                |                     |                |
|      | Is the resistance higher than the specified?                                                                    |                     |                |
|      | ①Disconnect the radio antenna lead connector from the windshield.                                               |                     |                |
| 4    | ②Measure the resistance between co-axial cable shielded ground and radio connector shielded circuit.            | Go to Step 8.       | Go to Step 10. |
|      | Is the resistance higher than the specified?                                                                    |                     |                |
|      | Measure the resistance of center conductor (signal input) between the antenna                                   | Go to Step 7.       | Go to Step 6.  |
| 5    | connector and the radio connector.                                                                              |                     |                |
|      | Is the resistance higher than the specified?                                                                    |                     |                |
| 6    | Measure the resistance between center conductor (signal input) and coaxial cable shielded ground.               | Go to Step 9.       | Go to Step 1.1 |
|      | Is the resistance lower than the specified?                                                                     |                     |                |
|      | ①Check coaxial cable and interconnection for failed connection or corrosion.                                    |                     |                |
|      | ②Repair cable and interconnection when necessary.                                                               |                     |                |
| 7    | ③If the cable and interconnection are normal, please replace the coaxial cable of antenna.                      | Check radio system. | _              |
|      | Is the maintenance finished?                                                                                    |                     |                |
|      | ①Check coaxial cable ground for failed connection or corrosion.                                                 |                     |                |
| 8    | ②Repair the ground when necessary.                                                                              | Check radio system. |                |
| G    | ③Replace the coaxial cable if the ground is normal.                                                             | Check radio system. |                |
|      | Is the maintenance finished?                                                                                    |                     |                |
| 9    | Replace the affected section of coaxial cable. If the maintenance finished?                                     | Check radio system. | _              |
| 10   | Perform maintenance for the failed connection or corrosion at the coaxial ground                                | G. 1 "              |                |
|      | cable.  Is the maintenance finished?                                                                            | Check radio system. | _              |
|      | ①Check coaxial cable connector on the windshield for failed connection or                                       |                     |                |
|      | corrosion.                                                                                                      |                     |                |
| 11   | ②Replace the good radio already known.                                                                          | Check radio system. | _              |
|      | ③Replace the windshield if the reception is not improved.                                                       |                     |                |
|      | Is the maintenance finished?                                                                                    |                     |                |

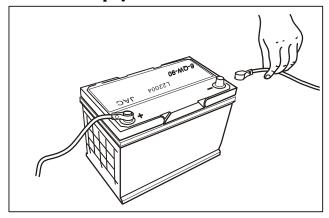
## AV Audio/Video System

## **Diagnosis and Testing**

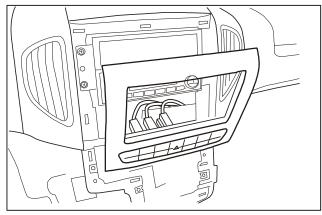
## **Troubleshooting**

2. No radio display with the parking lamp on.

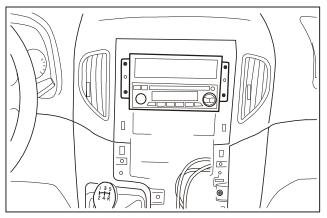
| Step | Operation                                                                                                            | Yes               | No            |
|------|----------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
|      | ①Turn the ignition key to ACC position.                                                                              |                   |               |
|      | ②Turn on the radio.                                                                                                  |                   | Go to Step 2. |
| 1    | ③Turn the parking lamp.                                                                                              | Check harness.    |               |
|      | Adjust the instrument panel lamp dimmer switch.                                                                      |                   |               |
|      | Does the fluorescent shield display of radio operate normally?                                                       |                   |               |
|      | Test the DC dimmer signal circuit for:                                                                               |                   |               |
|      | Open circuit                                                                                                         |                   | Go to Step 3. |
| 2    | High resistance                                                                                                      | Go to Step 6.     |               |
| 2    | Short circuit to ground                                                                                              | Go to Step 0.     |               |
|      | Poor contact                                                                                                         |                   |               |
|      | Is the fault detected and eliminated?                                                                                |                   |               |
| 3    | In the DC dimmer signal circuit, test the output DC voltage of the headlamp and instrument panel lamp dimmer switch. | Go to Step 4.     | Go to Step 5. |
| 3    | Does the voltage change with the rotation of instrument panel lamp dimmer switch?                                    | 00 to Step 4.     |               |
| 4    | Replace the radio.                                                                                                   | Ca to Stan 6      |               |
| 4    | Is the maintenance finished?                                                                                         | Go to Step 6.     | _             |
| 5    | Replace headlamp and instrument panel lamp dimmer switch.                                                            | Go to Step 6.     |               |
| 3    | Is the maintenance finished?                                                                                         | Go to step 6.     |               |
| 6    | Operate the system to check the maintenance result.                                                                  | System is intact. | Go to Step 1. |
| 0    | Is the fault eliminated?                                                                                             | System is mact.   | G0 t0 Step 1. |


## **Diagnosis and Testing**

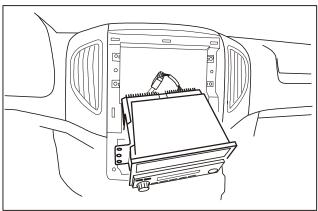
## **Troubleshooting**


## 3. Loudspeaker failed to operate.

| Step | Operation                                                                                                                                                            | Yes            | No                |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|
| 1    | Does every loudspeaker fail to operate?                                                                                                                              | Go to Step 6.  | Go to Step 2.     |
| 2    | Regulate the radio balance and find out the suspected loudspeaker.  Does this loudspeaker operate normally?                                                          | Go to Step 3.  | Go to Step 3.     |
| 3    | ①Remove the radio. ②Use an appropriate jumper to make instantaneous contact with the 1.5V battery in relevant loudspeaker circuit. Is there any bang of loudspeaker? | Go to Step 7.  | Go to Step 4.     |
| 4    | Test relevant loudspeaker circuit for open circuit or too high voltage.  Is the fault detected and eliminated?                                                       | Go to Step 10. | Go to Step 5.     |
| 5    | Check loudspeaker for poor contact.  Is the fault detected and eliminated?                                                                                           | Go to Step 10. | Go to Step 8.     |
| 6    | Test every loudspeaker circuit for short circuit to positive battery voltage or ground.  Is the fault detected and eliminated?                                       | Go to Step 10. | Go to Step 7.     |
| 7    | Check radio harness connector for poor contact.  Is the fault detected and eliminated?                                                                               | Go to Step 10. | Go to Step 9.     |
| 8    | Replace relevant loudspeaker.  If the replacement finished?                                                                                                          | Go to Step 10. | _                 |
| 9    | Replace the radio. Is the maintenance finished?                                                                                                                      | Go to Step 10. | _                 |
| 10   | Replace the failed system.  Does the system return to normal?                                                                                                        | Go to Step 1.  | System is intact. |

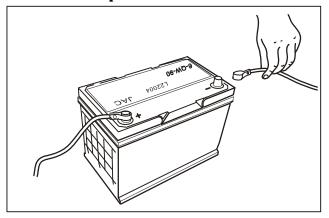

## Removal of CD player



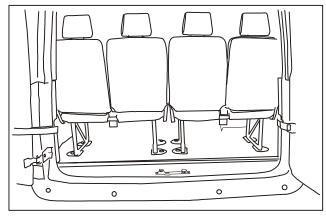

1. Disconnect the negative cable of battery.



2. Remove the outer cover plate of CD player.



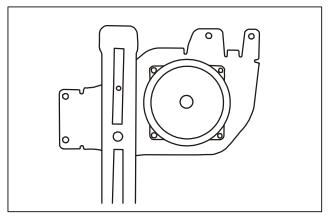

3. Unscrew the mounting bolts from CD player.




4. Disconnect the connecting wire of radio and remove the CD player.

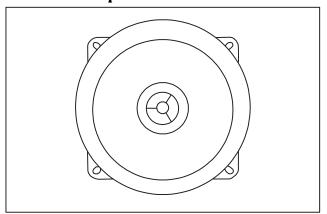

## Removal of loudspeakers




1. Disconnect the negative cable of battery.



2. Remove the third and fourth rows of seat.




3. Remove the inner trims.



4. Remove the mounting bolts.

## Removal of loudspeakers



5. Disconnect the connecting harness and remove the loudspeaker.

## **Specification**

## Basic parameters of audio system

## 1. Operating condition and performance parameter:

| Item                  | Range          | Typical Value |  |
|-----------------------|----------------|---------------|--|
| Operating voltage     | DC 10.8V ~ 16V | 12V           |  |
| Operating temperature | -20°C ∼ 70°C   | /             |  |
| Storage temperature   | -40°C ∼ 80°C   | /             |  |
| Relative humidity     | 40% ~ 93%      | /             |  |
| Atmospheric pressure  | 86KPa ∼ 106KPa | /             |  |

#### 2. AM technical data:

| Item                                   | Unit | Performance Parameter |
|----------------------------------------|------|-----------------------|
| Frequency range                        | KHz  | 531 ~ 1629            |
| Intermediate frequency                 | KHz  | 455±5                 |
| S/N sensitivity                        | dBuV | ≤40                   |
| S/N ratio                              | dB   | ≥40                   |
| Selectivity                            | dBuV | ≥40                   |
| Intermediate frequency rejection ratio | dBuV | ≥50                   |
| Image rejection ratio                  | dBuV | ≥60                   |
| Automatic gain control                 | dBuV | ≥40                   |
| Maximum output power                   | W    | ≥10                   |
| Distortion                             | %    | ≤3                    |

#### 3. FM technical data:

| Item                                   | Unit | Performance Parameter |
|----------------------------------------|------|-----------------------|
| Frequency range                        | MHz  | 87.5 ~ 108            |
| Intermediate frequency                 | MHz  | $10.7 \pm 0.3$        |
| S/N sensitivity                        | dBuV | ≤12                   |
| -3dB amplitude limiting                | dBuV | ≤10                   |
| S/N ratio                              | dBuV | ≥50                   |
| Intermediate frequency rejection ratio | dBuV | ≥65                   |
| Image rejection ratio                  | dBuV | ≥50                   |
| AM rejection ratio                     | dBuV | ≥35                   |
| Selectivity                            | dB   | ≥20                   |
| Search sensitivity                     | dBuV | 14 ~ 24               |
| Channel separation L/R                 | dB   | ≥25                   |
| Distortion                             | %    | ⊴2                    |
| Overload distortion                    | %    | ≤5                    |
| Maximum output power                   | W    | ≥15W                  |
| Stereo S/N ratio                       | dB   | ≥46                   |

#### AV Audio/Video System

## 4. Technical data for USB-MP3 play:

| Item                 | Unit | Performance Parameter |
|----------------------|------|-----------------------|
| Frequency response   | dB   | 100Hz/100KHz ±3dB     |
| Standard distortion  | /    | ≤3%                   |
| S/N ratio            | dB   | ≥50                   |
| Channel separation   | dB   | ≥45                   |
| Maximum output power | W    | ≥10                   |

## 5. Technical data for CD play:

| Item                                                 | Unit | Test Condition | Performance Parameter |
|------------------------------------------------------|------|----------------|-----------------------|
| S/N ratio                                            | dB   | 0dB Track      | ≥60                   |
|                                                      | dB   | 20Hz           | ≥45                   |
| Channel separation                                   | dB   | 1KHz           | ≥50                   |
|                                                      | dB   | 10KHz          | ≥45                   |
| Distortion                                           | %    | 1KHz           | ≤0.35                 |
| Distortion                                           | %    | 10KHz          | ≤0.5                  |
| F                                                    | dB   | 20Hz           | 0± 3                  |
| Frequency response                                   | dB   | 20KHz          | 0± 3                  |
| Maximum output power                                 | W    | 1KHz           | ≥15                   |
| CD read time                                         | S    | TCD-784        | ≤10                   |
| CD quit time                                         | S    | TCD-784        | ≤8                    |
| Time to next track                                   | S    | TCD-784        | ≤3                    |
| Time between first and last track                    | S    | TCD-784        | ≤5                    |
| Pause and play time                                  | S    | TCD-784        | ≤6                    |
| Error correction during reading core shift CD        | um   | TCD-712R       | ≥140                  |
| Error correction during reading plane polarized CD   | mm   | TCD-731RA      | ≥0.6                  |
| Breakpoint/macula during reading error correction CD | mm   | TCD-725B       | ≥0.7 / ≥0.6           |
| Fingerprint during reading error correction CD       | um   | TCD-725B       | ≥65                   |

## 6. Technical data for loudspeakers:

| Item                             | Unit | Performance Parameter |
|----------------------------------|------|-----------------------|
| Rated impedance                  | Ω    | 4Ω± 0.6               |
| Rated power                      | W    | 20W                   |
| Maximum rated power              | W    | 30W                   |
| Rated resonance frequency        | HZ   | 80HZ±20               |
| Rated frequency range            | HZ   | f0-8KHZ               |
| Rated characteristic sensitivity | dB   | 87±3                  |
| Low temperature resistance       | °C   | -40°C                 |
| High temperature resistance      | °C   | 85℃                   |

# **Seat Belt**

Applied models: SUNRAY products manufactured by JAC

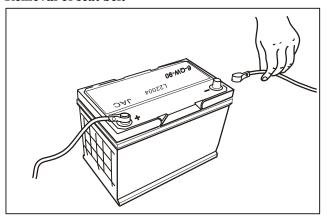
| Subject                          | Page |
|----------------------------------|------|
| Instruction and Operation        |      |
| Seat Belt                        | 130  |
| Overview                         |      |
| Diagnosis and Testing            |      |
| Seat Belt                        | 131  |
| Troubleshooting                  |      |
| Removal/Installation             |      |
| Seat Belt                        |      |
| Removal of seat belt             |      |
| Removal of seat belt buckle lock |      |

#### **Seat Belt**

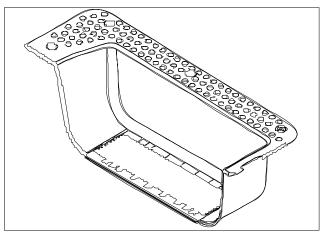
The seat belts are assembled on each seats for Sunray. The seat belt is designed to limit the movement of passengers and protect the passengers when a collision occurs to the vehicle.

Seat Belt

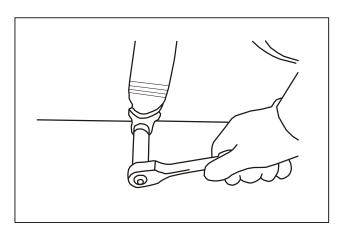



## **Diagnosis and Testing**

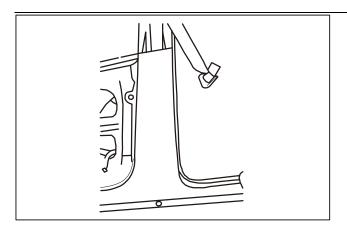
## **Troubleshooting**


Fault of driver's seat belt indicator lamp circuit

| Step | Operation                                                                                                                   | Yes           | No           |
|------|-----------------------------------------------------------------------------------------------------------------------------|---------------|--------------|
|      | ①Turn the ignition switch on and the engine switch is off.                                                                  |               |              |
|      | Important precautions: When the driver's seat belt is not fastened, the seat belt indicator lamp should illuminate.         |               | Go to Step 2 |
| 1    | ②Fasten, unfasten the driver's seat belt and check the seat belt indicator lamp in instrument panel combination instrument. | _             |              |
|      | When unfasten and fasten the driver's seat belt, do the corresponding seat belt indicator lamps illuminate and extinguish?  |               |              |
| 3    | Replace the instrument panel combination instrument.                                                                        | Go to Step 6  |              |
| 3    | Has the replacement operation been completed?                                                                               | Go to Step o  | _            |
|      | ①Turn the ignition switch off.                                                                                              |               | Go to Step 4 |
| 3    | ②Disconnect the connector of left seat belt switch.                                                                         | Go to Step 6  |              |
| 3    | ③Test if the signal circuit of left seat belt switch is open or high-impedance.                                             | Go to Step o  |              |
|      | Has the condition been found and corrected?                                                                                 |               |              |
| 4    | Test if ground circuit of left seat belt switch is open or high-impedance.                                                  | Go to Step 6  | Go to Stop 5 |
| 4    | Has the problem been found and resolved?                                                                                    | Go to Step o  | Go to Step 5 |
| 5    | Replace the left seat belt switch.                                                                                          | Go to Stan 6  |              |
|      | Has the replacement operation been completed?                                                                               | Go to Step 6  | _            |
| 6    | Operate the system to check the maintenance effect.                                                                         | The system is | Ca ta Stan 2 |
| 6    | Has the problem been found and resolved?                                                                                    | normal        | Go to Step 2 |

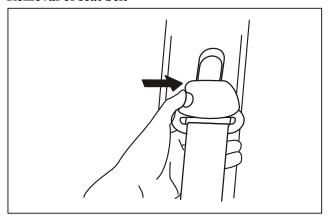

#### Removal of seat belt



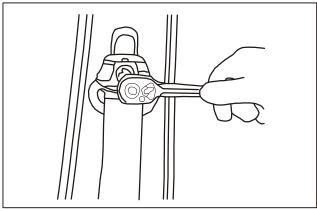

1. Disconnect the connecting wire of battery.



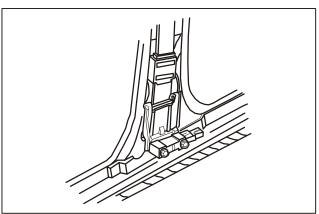
2. Remove the left front door stepping shield.



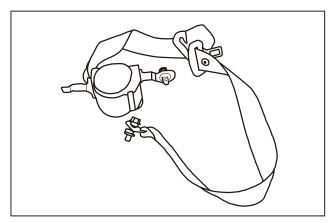

3. Remove the bottom mounting bolts of seat belts.




4. Remove the B pillar inner trim panel.

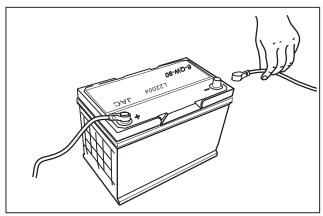

#### Removal of seat belt



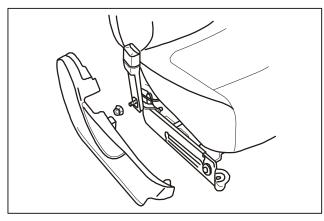

5. Remove the covers of top mounting bolts.



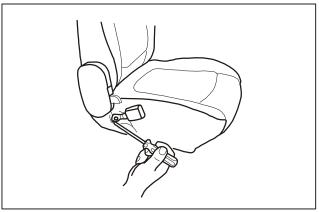
6. Remove the top mounting bolts.



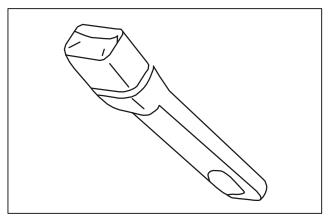

7. Remove the bottom mounting bolts.




8. Remove the seat belt.


#### Removal of seat belt buckle lock




1. Disconnect the connecting wire of battery.



2. Remove the front seat inner lateral panel assembly.



3. Remove the nuts of lower fastening buckle lock from cushion frame.



4. Remove the seat belt buckle locks from seats.

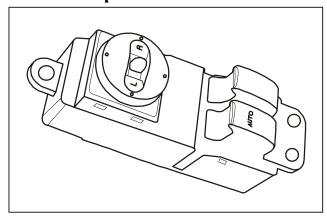
# **Power Window**

Applied models: SUNRAY products manufactured by JAC

| Subject                            | Page |
|------------------------------------|------|
| Instruction and Operation          |      |
| Power Window                       | 136  |
| Installation position              |      |
| Operation Instructions             |      |
| Diagnosis and Testing              |      |
| Power Window                       | 138  |
| Troubleshooting                    |      |
| Removal and Installation           |      |
| Power Window                       | 142  |
| Removal of window regulator motor  |      |
| Removal of window regulator switch |      |

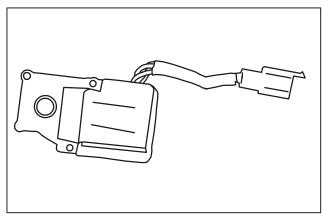
#### **Power Window**

Both front door windows for Sunray adopt electric up/down operation. Power window system can lift or lower windows electrically by turning on the switches on each door trims. The main switch on front door trim at the driver's side enables the driver to lift or lower windows at the passenger's side. Power window system includes power window switches on each door trims, body control module and power window motors inside each doors. Window glass regulator assembly is used instead of window motor. If the window motor is required to be replaced, the window glass regulator must be replaced.


#### Installation position of power window:

Inside the left/right front doors.






#### **Instructions for power window function**



1. Power window switch.

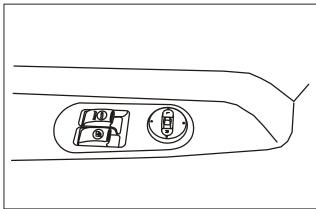
Power window is controlled by 2 window switches on front door trims. The window switch at the driver's side enables the driver to control windows at the passenger's side.



2. Power window motor.

Permanent-magnetic reversible motor enables window regulator upper window bracket to move by the rope wheel mechanism. Connect the battery positive and negative to both terminals of motor and enable the motor to rotate towards one direction. The reverse current flowing to the 2 same connections enables the motor to rotate in reverse.




3. Operation mode.

Operation mode of power window includes:

Manual up;

Manual down;

Auto down (only driver side door)



- 4. After the ignition switch off, the power window can still be operated, and cannot be operated when the following situation occurs:
  - Time for ignition switch off is more than 30 seconds.
  - Any door is opened.
  - Lock the doors from outside.

## **GW Power Window**

## **Diagnosis and Testing**

## **Troubleshooting**

1. All the door power windows cannot operate.

| Step | Operation Method                                                                                                                                 | Yes           | No            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|
| 1    | Check if F31 50A fuse of engine compartment fuse block, F29 15A fuse, F7 10A fuse, F12 10A fuse of meter fuse block are disconnected.            | Go to Step 8  | Go to Step 2  |
|      | Check if the power supply for ETACS is normal                                                                                                    |               |               |
| 2    | ①Turn the ignition switch off and the voltage between Terminal 10 of ETACS connector M36 and ground is the battery voltage.                      | Go to Step 3  | Go to Step 9  |
|      | ②Turn the ignition switch on and the voltage between Terminal 18, Terminal 9 of ETACS connector M37 and ground is the battery voltage.           |               |               |
|      | Check if the ground for ETACS is normal                                                                                                          |               |               |
| 3    | Turn the ignition switch off and disconnect the ETACS connector. Terminal 19 of connector M36 and ground are conductive.                         | Go to Step 4  | Go to Step 10 |
|      | Check if the operation of power window relay is normal.                                                                                          |               |               |
| 4    | ①Terminal 2 and 4 of relay are constant power supply.                                                                                            | Go to Step 7  | Go to Step 5  |
| 4    | ②After the ignition switch is turned on, the voltage for Terminal 1 of relay is the battery voltage.                                             | Go to step /  |               |
| 5    | Turn the ignition switch on and check if Terminal 3 of power window relay grounds.                                                               | Go to Step 11 | Go to Step 6  |
|      | Check if the harnesses of ETACS and power window relay are conductive.                                                                           |               |               |
| 6    | Terminal 15 of ETACS connector M36 should be conductive with Terminal 3 of relay.                                                                | Go to Step 13 | Go to Step 14 |
| 7    | Check if the power supply and ground wire for left front door power window switch are normal                                                     |               |               |
|      | ①Turn the ignition switch on and the battery voltage exists between Terminal 11 of left front door power window switch connector D04 and ground. | Go to Step 12 | Go to Step 15 |
|      | ②Terminal 10 of left front door power window switch connector D04 and ground are conductive.                                                     |               |               |
| 8    | After servicing the fault due to circuit, replace the fuse. Is the fault eliminated?                                                             |               | Go to Step 2  |
| 9    | Repair the open or short power supply circuit for ETACS. Is the fault eliminated?                                                                |               | Go to Step 3  |
| 10   | Check if the ground circuit for ETACS is open.                                                                                                   |               | Go to Step 4  |
| 11   | Repair the circuit fault and replace the power window relay. Is the fault eliminated?                                                            |               | Go to Step 7  |
| 12   | Replace the left front door power window switch.                                                                                                 |               |               |
| 13   | Replace the ETACS.                                                                                                                               |               | Go to Step 7  |
| 14   | Repair the connecting circuit between ETACS and power window. Is the fault eliminated?                                                           |               | Go to Step 13 |
| 15   | Repair the harnesses of left front door power window switch. Is the fault eliminated?                                                            |               | Go to Step 12 |



## **Diagnosis and Testing**

## **Troubleshooting**

2. The left front door power window cannot operate.

| Step | Operation Method                                                                                                                                                                                                                                                                                                                                                                                                       | Yes          | No           |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| 1    | Check if the output signal from power window main switch is normal  Disconnect the left front door power window motor connector and turn the ignition switch on. When the power window main switch goes up, the voltage between Terminal 2 of left front door power window motor connector D08 and ground is the battery voltage, the voltage between Terminal 1 and ground is 0 V, and it is reverse when going down. | Go to Step 2 | Go to Step 3 |
| 2    | Replace the left front door power window motor.                                                                                                                                                                                                                                                                                                                                                                        |              |              |
| 3    | Check if the harness connection between left front door power window switch and motor is normal.                                                                                                                                                                                                                                                                                                                       | Go to Step 2 | Go to Step 4 |
| 4    | Repair the harness connector between left front door power window switch and motor. Is the fault eliminated?                                                                                                                                                                                                                                                                                                           |              | Go to Step 2 |

## **GW Power Window**

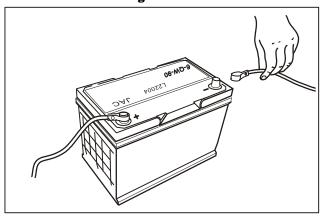
## **Diagnosis and Testing**

## **Troubleshooting**

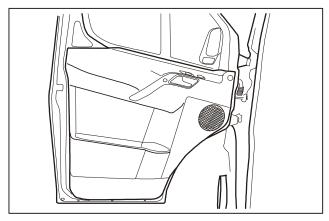
3. The right front door power window cannot operate.

| Step | Operation Method                                                                                                                                                                                                                                                                                                                                                                                                              | Yes           | No            |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|
| 1    | Check if the output signal from power window main switch is normal  Disconnect the right front door power window motor connector and turn the ignition switch on. When the right front door power window main switch goes up, the voltage between Terminal 1 of right front door power window motor connector D15 and ground is the battery voltage, the voltage of Terminal 2 is 0 V, and it is reverse when going down.     | Go to Step 2  | Go to Step 3  |
| 2    | Replace the right front door power window motor.                                                                                                                                                                                                                                                                                                                                                                              |               |               |
| 3    | Check if the conductivity of right front door power window switch is normal Disconnect the right front door power window switch connector D12 and check the conductivity between Terminal 4, 6, 8 and Terminal 1, 3. Terminal 1 and 6, Terminal 2 and 8 are conductive when going up. Terminal 3 and 6, Terminal 1 and 4 are conductive when going down. Terminal 3 and 8, Terminal 1 and 4 are conductive when no operation. | Go to Step 5  | Go to Step 4  |
| 4    | Replace the right front door power window switch.                                                                                                                                                                                                                                                                                                                                                                             |               |               |
| 5    | Check if the harnesses of right front door power window switch and right front door power window motor are conductive. Terminal 3 and 1 of right front door power window switch connector D12 are respectively conductive with Terminal 2 and 1 of right front door power window motor connector D15.                                                                                                                         | Go to Step 7  | Go to Step 6  |
| 6    | Repair or replace the harnesses of right front door power window switch and right front door power window motor. Is the fault eliminated?                                                                                                                                                                                                                                                                                     |               | Go to Step 7  |
| 7    | Check if the power supply for replacing right front door power window switch is normal  Turn the ignition switch on and the voltage between Terminal 6 of right front door power window switch connector D12 and ground is the battery voltage.                                                                                                                                                                               | Go to Step 4  | Go to Step 8  |
| 8    | Check if Terminal 1 of the left front door power window switch connector D04 and Terminal 6 of right front door power window connector D12 are conductive.                                                                                                                                                                                                                                                                    | Go to Step 10 | Go to Step 9  |
| 9    | Repair or replace the connecting wire of left front door power window switch connector and right front door power window switch connector. Is the fault eliminated?                                                                                                                                                                                                                                                           |               | Go to Step 10 |
| 10   | Replace the left front door power window switch.                                                                                                                                                                                                                                                                                                                                                                              |               |               |

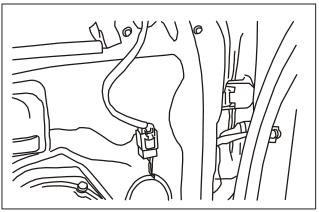



## **Diagnosis and Testing**

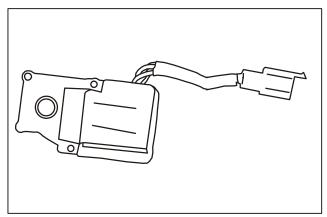
## **Troubleshooting**


4. The auto down function for left front door power window fails.

| Step | Operation Method                                                                                                         | Yes          | No |
|------|--------------------------------------------------------------------------------------------------------------------------|--------------|----|
| 1    | The normal replacement and check operation for left front door power window switch. Does the auto down function operate? | Go to Step 2 |    |
| 2    | Replace the left front door power window switch.                                                                         |              |    |


## Removal of window regulator motor

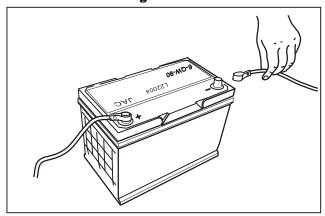



1. Disconnect the connecting wire of battery.

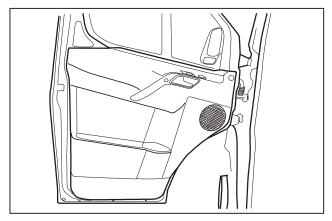


2. Remove the left front door inner trim.

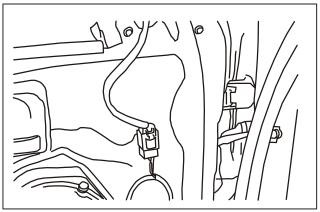



3. Disconnect the harness connection and remove the mounting bolts of motor.

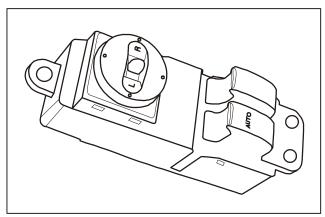



4. Remove the motor.



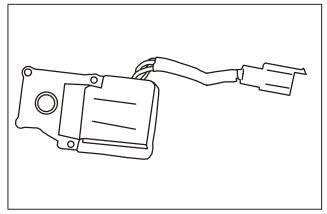

## Removal of window regulator switch



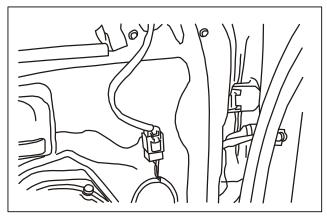

1. Disconnect the connecting wire of battery.



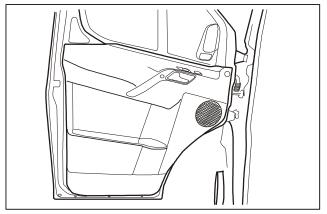
2. Remove the left front door inner trim.



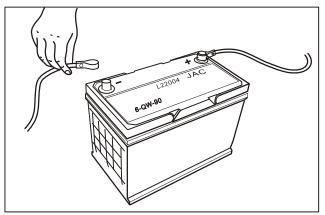

3. Disconnect the connecting wire and remove the mounting bolts of switch.




4. Remove the window switch.


## Installation of window regulator motor

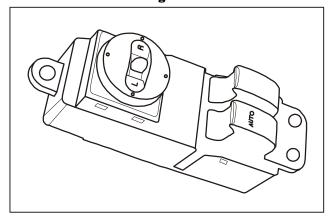



1. Install the motor.

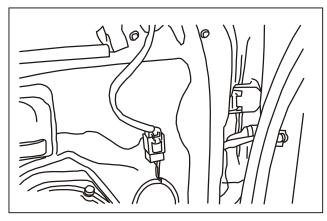


2. Connect the harness and install the mounting bolts of motor.

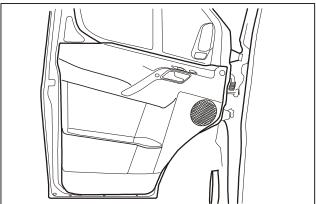



3. Install the left front door inner trim.

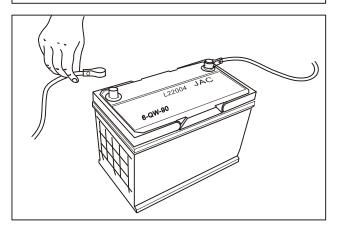



4. Install the connecting wire of battery.




## Installation of window regulator switch




1. Install the window switch.



2. Connect the harness and install the mounting bolts of switch.



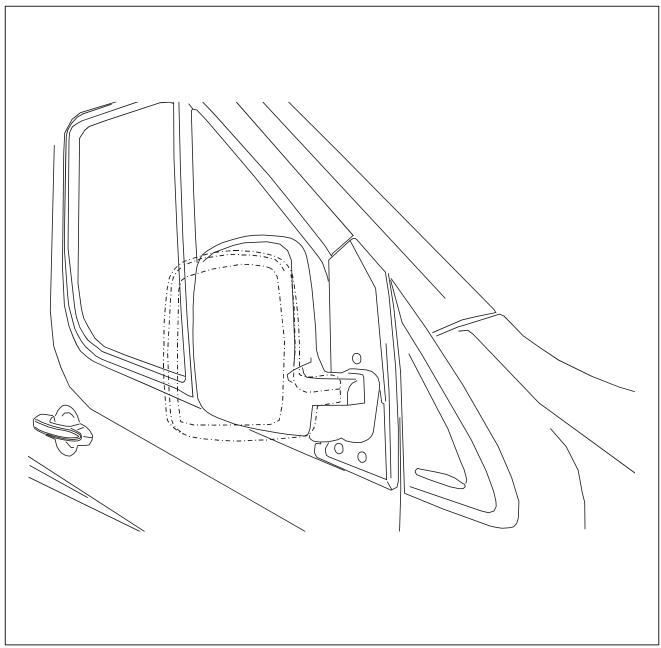
3. Install the left front door inner trim.



4. Install the connecting wire of battery.

# Electric rear-view mirro

Applied models: SUNRAY products manufactured by JAC

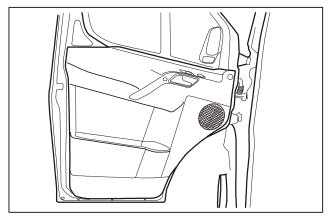

| Subject                             | Page |
|-------------------------------------|------|
| Instruction and Operation           |      |
| Electric rear-view mirro.           | 148  |
| Overview                            | 148  |
| Removal and Installation            |      |
| Electric rear-view mirro.           | 149  |
| Removal of rear view mirror         |      |
| Removal of rear view mirror switch. |      |

#### EM Electric rear-view mirro

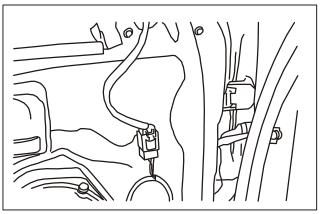
#### **Instruction and Operation**

#### Rear view mirror

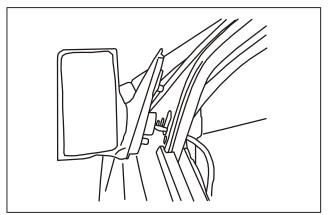
Sunray rear view mirrors is devided into interior rear view mirror and exterior interior rear view mirror. The exterior rear view mirrors are fixed on the top of front windshield and at left and right outboard sides of vehicle body for observation of conditions inside and behind the vehicle.




## **Removal and Installation**


#### Removal of rear view mirror



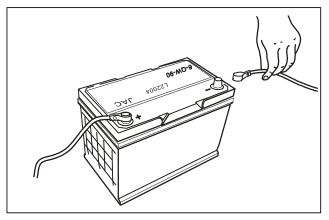

1. Disconnect the connecting wire of battery.



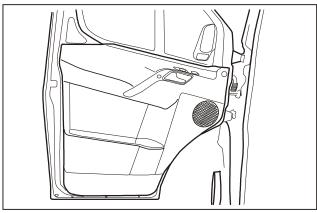
2. Remove the interior trim panel of the left front door.



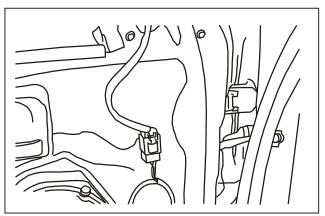
3. Disconnect the connector plug of the rear view mirror.



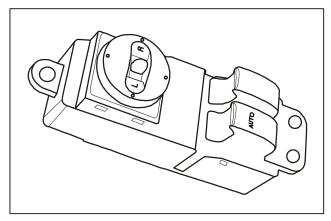

4. Remove mounting bolts of the rear view mirror and take down the rear view mirror.


#### EM Electric rear-view mirro

## **Removal and Installation**


#### Removal of rear view mirror switch




1. Disconnect the connecting wire of battery.

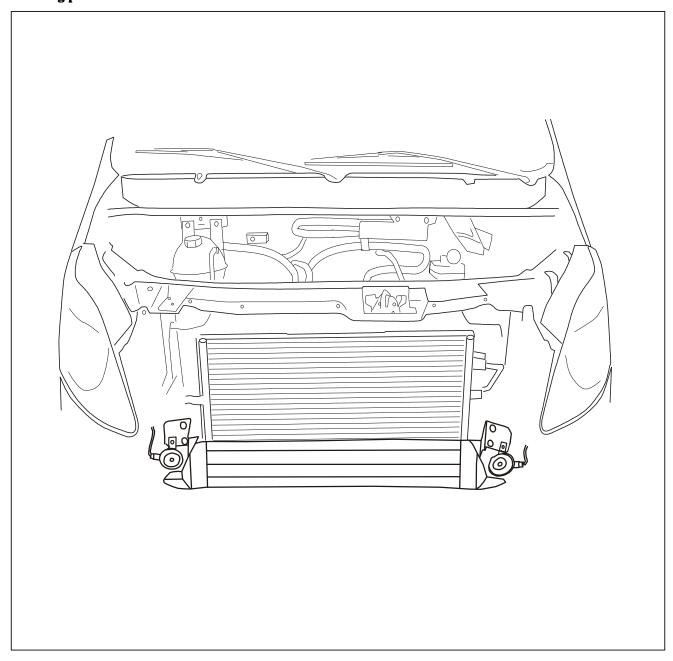


2. Remove the interior trim panel of the left front door.



3. Disconnect the connector plug of the switch.




4. Remove mounting bolts and take down the switch.

## Horn

| Applied models: SUNRAY products manufactured by JA |
|----------------------------------------------------|
|----------------------------------------------------|

| Subject                   | Page |
|---------------------------|------|
| Instruction and Operation |      |
| Horn                      |      |
| Mounting position         | 152  |
| Diagnosis and Testing     |      |
| Horn                      |      |
| Troubleshooting           |      |
| Removal/Installation      |      |
| Horn                      |      |
| Removal of Horn           |      |

# Mounting position of horn



# **Troubleshooting**

#### 1. Horn always on.

| Step | Operation                                                                                               | Yes               | No                               |
|------|---------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
| 1    | Is the vehicle equipped with any anti-theft system?                                                     | Go to Step 2.     | Go to Step 3.                    |
| 2    | Is the vehicle diagnostic system check performed?                                                       | Go to Step 4.     | Check vehicle diagnostic system. |
| 3    | Is horn operation and other necessary inspection performed?                                             | Go to Step 4.     | Check horn harness.              |
| 4    | Press and then release the horn botton.  Is the horn always on?                                         | Go to Step 5.     | Check horn harness.              |
| 5    | Is the vehicle equipped with any anti-theft system?                                                     | Go to Step 6.     | Go to Step 7.                    |
| 6    | Disconnect the body control module.  Is the horn always on?                                             | Go to Step 7.     | Go to Step 11.                   |
| 7    | Disconnect the horn relay. Is the horn always on?                                                       | Go to Step 10.    | Go to Step 9.                    |
| 8    | Check horn relay for poor contact. Is any fault detected and elimilated?                                | Go to Step 15.    | Go to Step 14.                   |
| 9    | Repair the horn relay control circuit that is shorted to ground.  Is the maintenance finished?          | Go to Step 15.    | _                                |
| 10   | Check harness connector of body control module for poor contact.  Is any fault detected and elimilated? | Go to Step 15.    | Go to Step 13.                   |
| 12   | Repair the shorted horn control circuit.  Is the maintenance finished?                                  | Go to Step 15.    | _                                |
| 13   | Replace the body control module.  Is the replacement finished?                                          | Go to Step 15.    | _                                |
| 14   | Replace the horn relay.  Is the replacement finished?                                                   | Go to Step 15.    | _                                |
| 15   | Is the horn able to operate normally?                                                                   | System is normal. | Go to Step 1.                    |

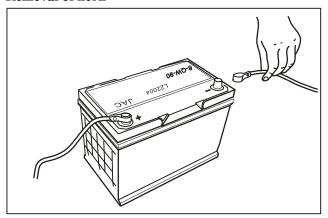
#### **HO HORN**

# **Diagnosis and Testing**

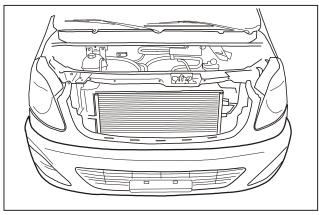
# **Troubleshooting**

#### 2. Horn failed to work.

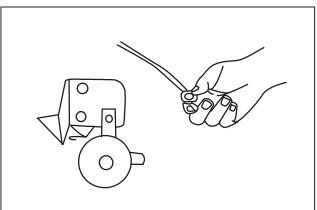
| Step | Operation                                                                                                                                                                                                                                          | Yes                 | No                               |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|
| 1    | Is the vehicle equipped with any anti-theft system?                                                                                                                                                                                                | Go to Step 2.       | Go to Step 3.                    |
| 2    | Is the vehicle diagnostic system check performed?                                                                                                                                                                                                  | Go to Step 4.       | Check vehicle diagnostic system. |
| 3    | Is horn operation and other necessary inspection performed?                                                                                                                                                                                        | Go to Step 4.       | Check horn harness.              |
| 4    | Press and then release the horn botton. Is the horn always on?                                                                                                                                                                                     | Check horn harness. | Go to Step 5.                    |
| 5    | <ol> <li>Disconnect the horn relay.</li> <li>Connect a test lamp between the positive battery voltage circuit of horn relay coil and a sound ground.</li> <li>Is the test lamp lit?</li> </ol>                                                     | Go to Step 6.       | Go to Step 13.                   |
| 6    | <ol> <li>Connect a test lamp between the positive battery voltage circuit of horn relay coil and the horn relay control circuit.</li> <li>Press the horn button and hold it.</li> <li>Is the test lamp lit?</li> </ol>                             | Go to Step 7.       | Go to Step 14.                   |
| 7    | Connect a test lamp between the positive battery voltage circuit of horn relay button and a sound ground.  Is the test lamp lit?                                                                                                                   | Go to Step 8.       | Go to Step 15.                   |
| 8    | Connect a jumper with a 15A fuse between the positive battery voltage circuit of horn relay button and the horn control circuit.  Does the horn ring?                                                                                              | Go to Step 11.      | Go to Step 9.                    |
| 9    | <ol> <li>Reconnect the horn relay.</li> <li>Disconnect the horn connector.</li> <li>Connect a test lamp between the horn control circuit and a sound ground.</li> <li>Press the horn button and hold it.</li> <li>Is the test lamp lit?</li> </ol> | Go to Step 10.      | Go to Step 16.                   |
| 10   | <ol> <li>Connect a test lamp between the horn control circuit and the horn ground circuit.</li> <li>Press the horn button and hold it.</li> <li>Is the test lamp lit?</li> </ol>                                                                   | Go to Step 12.      | Go to Step 17.                   |
| 12   | Perform troubleshooting for the high impedence in the horn control circuit or horn ground circuit.  Is the maintenance finished?                                                                                                                   | Go to Step 19.      | _                                |
| 13   | Perform troubleshooting for the open circuit or high impedence in the positive battery voltage circuit of horn relay coil.  Is the maintenance finished?                                                                                           | Go to Step 19.      | _                                |
| 14   | Perform troubleshooting for the open circuit in horn relay control circuit or shorted positive battery circuit. Horn relay control circuit is composed of horn slip ring and horn button.  Is the maintenance finished?                            | Go to Step 19.      | _                                |
| 15   | Perform troubleshooting for the open circuit or high impedence in the positive battery voltage circuit of horn relay button. Is the maintenance finished?                                                                                          | Go to Step 19.      | _                                |
| 16   | Perform troubleshooting for the open circuit or high impedence in the horn control circuit.  Is the maintenance finished?                                                                                                                          | Go to Step 19.      | _                                |
| 17   | Perform troubleshooting for the open circuit or high impedence in the horn ground circuit.  Is the maintenance finished?                                                                                                                           | Go to Step 19.      | _                                |
| 18   | Replace the horn relay. Is the replacement finished?                                                                                                                                                                                               | Go to Step 19.      | _                                |
| 19   | Operate the horn. Is the horn able to operate normally?                                                                                                                                                                                            | System is normal.   | Go to Step 1                     |


# **Troubleshooting**

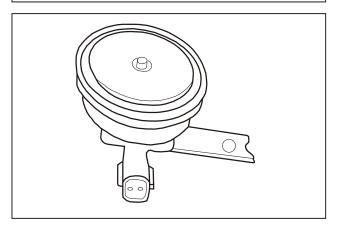
3. Inferior tone quality of horn.


| Step | Operation                                                                                                                                                                                                                                                                                                                                | Yes               | No                               |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
| 1    | Is the vehicle equipped with any anti-theft system?                                                                                                                                                                                                                                                                                      | Go to Step 2.     | Go to Step 3.                    |
| 2    | Is the vehicle diagnostic system check performed?                                                                                                                                                                                                                                                                                        | Go to Step 4.     | Check vehicle diagnostic system. |
| 3    | Is horn operation and other necessary inspection performed?                                                                                                                                                                                                                                                                              | Go to Step 2.     | Check horn harness.              |
| 4    | Press the horn button.  Is there any screak or buzz?                                                                                                                                                                                                                                                                                     | Go to Step 5.     | Check horn harness.              |
| 5    | <ol> <li>Check the horn for proper mounting torque.</li> <li>Check if there is any fragment at the connecting part between horn and vehicle.</li> <li>Is any fault detected and elimilated?</li> </ol>                                                                                                                                   | Go to Step 9.     | Go to Step 6.                    |
| 6    | Perform procedures below for each horn:  1. Disconnect the horn connector.  2. Connect a jumper with a 15A fuse between the positive battery terminal of horn and the control circuit of horn.  3. Connect aother jumper between the negative battery terminal of horn and the grounding terminal of horn.  Is there any screak or buzz? | Go to Step 8.     | Go to Step 7.                    |
| 7    | Perform troubleshooting for the high impedence in the horn control circuit or the horn ground circuit.  Is the maintenance finished?                                                                                                                                                                                                     | Go to Step 9.     | _                                |
| 8    | Replace the horn. Is the replacement finished?                                                                                                                                                                                                                                                                                           | Go to Step 9.     | _                                |
| 9    | Operate the horn.  Is the horn able to operate normally?                                                                                                                                                                                                                                                                                 | System is normal. | Go to Step 1                     |

#### Removal/Installation


#### Removal of horn




1. Disconnect the negative cable of battery.



2. Remove the front bumper.

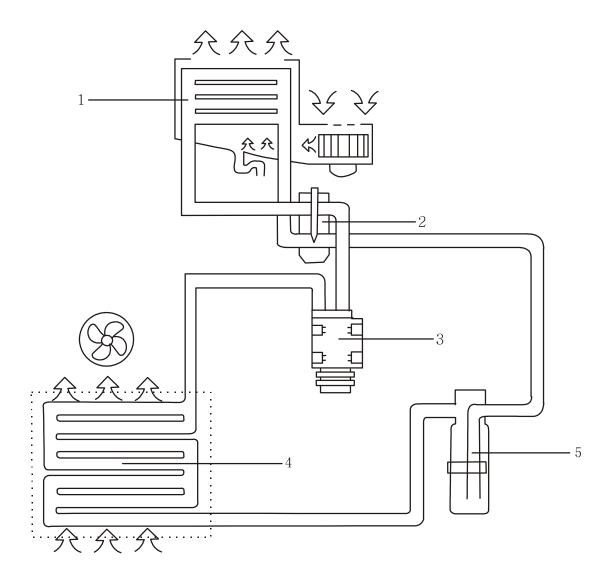


3. Remove the mounting bolt of horn and disconnect the horn plug.



4. Remove the horn.

# Air Conditioner (A/C)

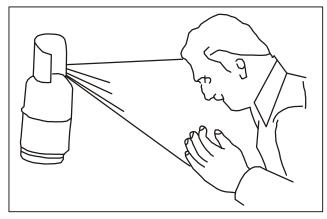

Applied models: SUNRAY products manufactured by JAC

| Subject                              | Page |
|--------------------------------------|------|
| Instruction and Operation            |      |
| Air Conditioner                      |      |
| Overview                             |      |
| Precautions                          |      |
| Functional operation                 |      |
| Diagnosis and Testing                |      |
| Air Conditioner                      | 165  |
| Operating principle                  |      |
| Air distribution system introduction |      |
| Leak test                            |      |
| A/C system performance testing       |      |
| Refrigerant recovery                 |      |
| A/C System Performance Table         |      |
| System Testing                       | 176  |
| Removal/Installation                 |      |
| Air Conditioner                      | 189  |
| Removal of front A/C                 |      |
| Removal of top evaporator tank       | 191  |
| Removal of front condenser           | 193  |
| Removal of bottom condenser          | 195  |
| Removal of heater water tank         | 196  |
| Removal of after motor               | 198  |
| Removal of compressor                |      |
| Installation of compressor assembly  | 204  |
| Removal of front A/C panel           |      |
| Removal of rear A/C panel            | 206  |
| Specification                        |      |
| Air Conditioner                      | 207  |
| Basic parameters                     | 207  |

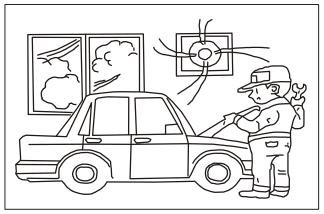
#### A/C system

SUNRAY adopts dual A/C system, with the front and rear A/C controlled independently. In this system, the front and rear A/C use independent condenser and evaporator but share the same compressor.

#### A/C system schematic diagram:




- 1. Evaporator
- 2. Expansion valve
- 4. Condenser
- 5. Fluid reservoir
- 3. Compressor


#### **Precautions**

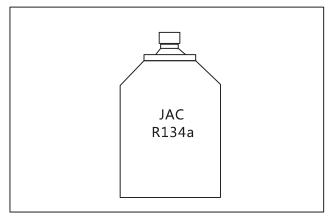


1. Refrigerant is of low freezing point and strong volatility, so please wear gloves and goggles in order to avoid frostbite, blindness and other phenomena caused by its contact with skin.

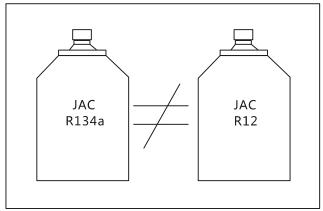


 In case of the refrigerant gets into your eyes or having contact with skin, please flush the affected areas with fresh water and go to the doctor for help. Please don't rub your eyes with hand or handkerchief.

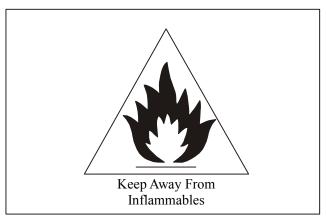



3. The handling of refrigerant shall be performed in well-ventilated areas.

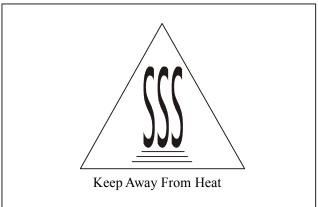
Although refrigerant is innoxious, abundant exhaust of refrigerant into enclosed space may lead to hypoxia.




4. During the handling of refrigerant, the ambient environment shall be free from water and foreign matters such as dust, for which may cause damage to A/C system when flowing into. Therefore, special attention must be paid.

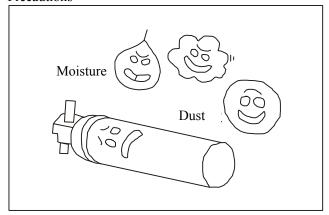

#### **Precautions**



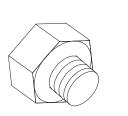

5. R-134a shall be adopted as refrigerant.
Use of other kinds of refrigerant may bring negative effect to system components.



6. R-134a refrigerant and R-12 refrigerant are incompatible, so even little amount of R-12 refrigerant is not allowed to be mixed into R-134a refrigerant.




7. When handling refrigerant, please note that the surroundings must be free from any tinder or inflammable, for the exposure of refrigerant reservoir to heat source shall lead to explosion.

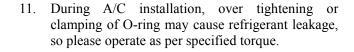


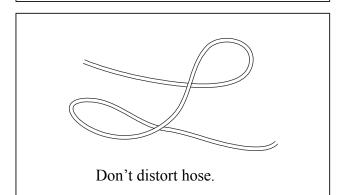

8. R134a refrigerant container is under high pressure status, so please don't place it under high temperature condition and the ambient temperature for storage should be below 52°C.

Precautions



9. Generally, dust covers are adopted for A/C components, in order to avoid access of sewage, dust and moisture. Dust covers should be removed before operation and sealed after operation.





First by hand and then with tools

10. During the reinstallation of A/C system after removal, please apply refrigerant oil onto the O-ring. As for screwed joints, install them by hand and then use two wrenches for tightening. As for the flanged joints, install nuts and bolts when pushing the pipeline gently.



Tighten to the specified torque





12. Hoses shall be free from distortion.

#### **Functional operation**



#### 1. "TO-FACE" mode

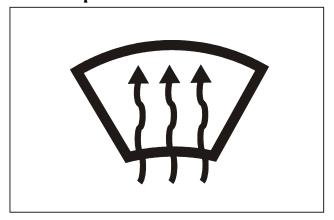
Air is adjusted when passing through system and vented out through upper air vent. This mode is applied to most of places using A/C.



#### 2. "TO-FACE/FEET" mode

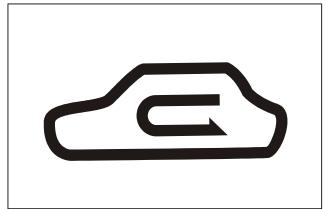
Air is adjusted and vented out through upper air vent and floor air vent. The air from floor air vent is hotter than that from upper air vent. However, when the temperature knob is rotated counterclockwise to the end (hottest) or clockwise to the end (coldest), air temperature from two different positions are the same.



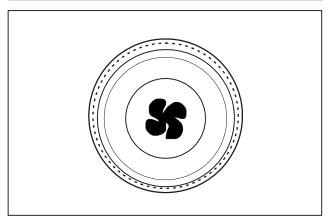

#### 3. "TO-FEET" mode

Air is vented out through the bottom air vent.



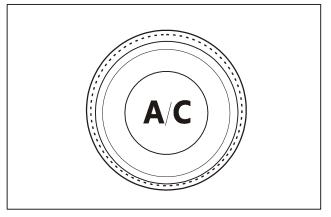

# 4. "TO-FEET" plus "DEFROST" mode Air is vented out through the bottom air vent and a little air is vented out through defroster air vent and air vent of side window defroster.

#### **Functional operation**




#### 5. Defroster

Air is adjusted and vented out through defroster air vent and a little air is vented out through side window defroster. It is recommended to use this mode only in foggy or icy weather.

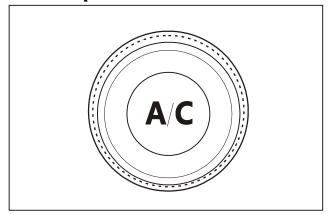



Internal/external circulation select button
 Press this button and the indicator shall lighten, indicating the internal circulation mode is applied; press this button again and the external circulation mode is selected.

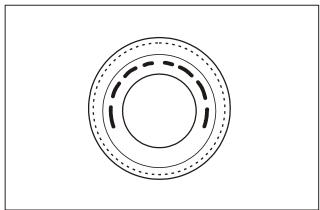


#### 7. Front control panel air volume knob

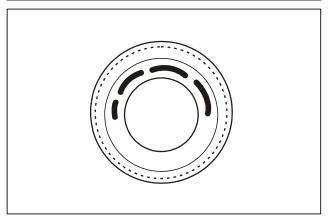
Rotate the air volume knob shown in the right figure to achieve perfect control of the air volume of blower. Rotate leftwards, the air volume shall decrease, and rightwards, the air volume shall increase.




#### 8. A/C switch

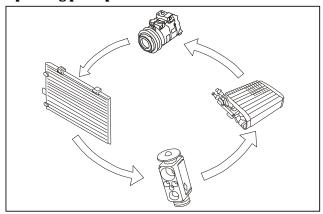

Press this switch with the indicator on, indicating the A/C system is in operation. Press this switch again, and the A/C system is turned off.

If the fan knob is located at off position instead of at certain position within speed setting range, the A/C system cannot operate.

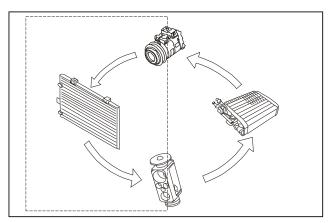

#### **Functional operation**



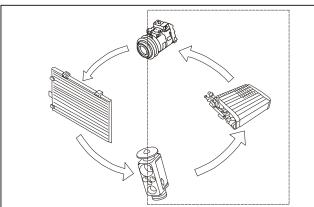
9. Front control panel temperature control knob
Rotate the knob within the range shown in the
right figure, and the interior temperature can be
controlled within the indicated range.



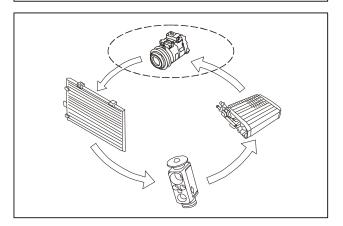

10. Rear control panel cold/warm select knob
Rotate the knob within the red zone, the vented air
is warm air; rotate the knob within the blue zone,
the vented air is cold air.




11. Rear control panel air volume knob
Rotate the air volume knob shown in the right
figure to achieve perfect control of the air volume
of blower. Rotate leftwards, the air volume shall
decrease, and rightwards, the air volume shall
increase.

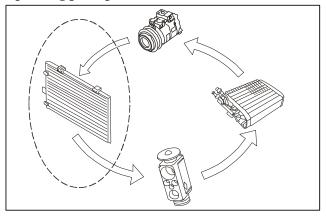

#### **Operating principle**



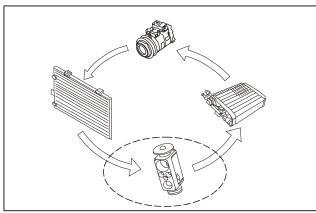

1. During operation, low pressure gaseous refrigerant from evaporator transforms into high pressure and high temperature gas after passing through compressor, which transforms into high pressure and low temperature liquid after being cooled by condenser radiating pipe; the liquid, after being dehumidified and buffered by receiver drier, flows into expansion valve at stable pressure and flow rate, and finally flows into evaporator through throttling and depressurization; the refrigerant evaporates and absorbs abundant heat once encountering low pressure condition.



2. High-pressure side of refrigerating system.




3. Low-pressure side of refrigerating system.

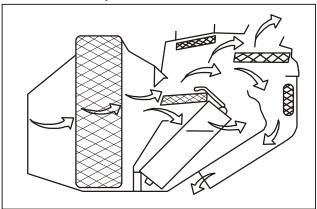



4. Compression process.


# Operating principle



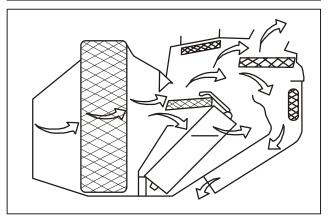
5. Condensation process.




6. Throttling and expansion process.



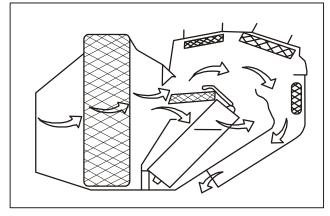
7. Evaporation process.


#### Air distribution system introduction



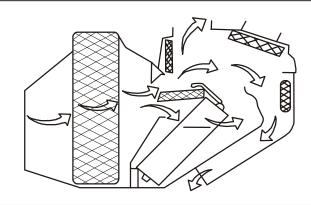
#### 1. Mixing flow.

The outside air is mixed through:


- Instrument panel air vent
- Floor air vent



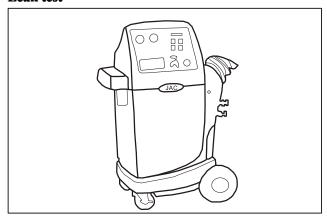
#### 2. Ventilation.


The outside air comes in through the instrument panel air vent.

No operation of compressor during ventilation.

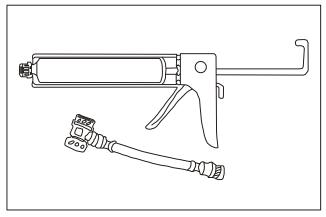


#### 3. Heater.


Air is mostly from floor air vent and a little air is from defrosting air duct.



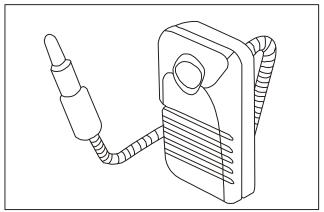
#### 4. Defogging.


Equivalent air from floor air vent and defrosting air vent.

#### Leak test



#### 1. Required tools.


R-134a A/C system dye tracer (24 pcs.). General purpose 12V leak detector lamp. Fluorescent dye scavenger. A/C dye injection tool kit. Dye cell for replacement. Electronic leak detector. Spray bottle with soap water.



#### 2. Fluorescence leak detector.

IMPORTANT: Be sure to wear dark color goggles with UV lamp, so the color of dye can be deepened.

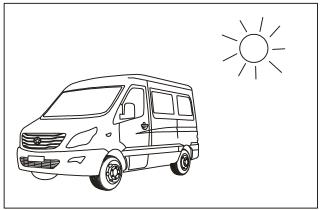
The application of fluorescent dye can facilitate the detection of leak position in A/C system.



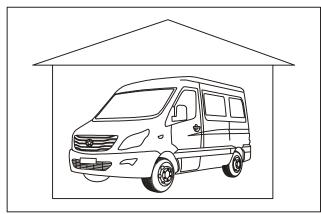
#### 3. Electronic leak detector.

IMPORTANT: Perform testing in continuous path to ensure detection of any possible leak. Check every position of system for leak.

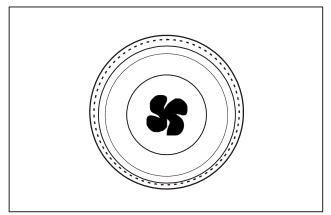



#### 4. Soap water.

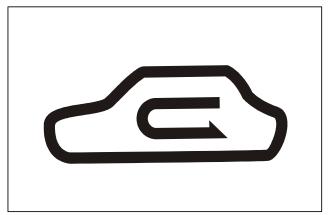
Fill a bottle with solution consisting of 50% water and 50% detergent.


Run A/C system and spray the soap water onto connectors and components.

In case of any obvious leak, bubbles shall appear. This is an ideal method for detecting leak of hoses and connectors.

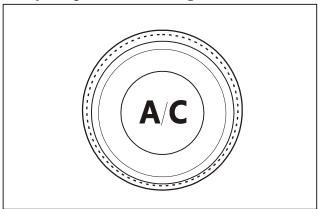

### A/C system performance testing



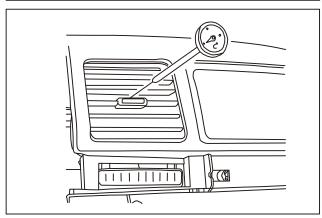

1. Test the vehicle under direct sunlight.



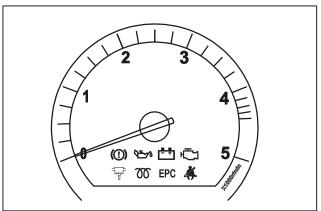
2. Don't test the vehicle under airflow obstruction of condenser, such as the vehicle is parked closely against wall.



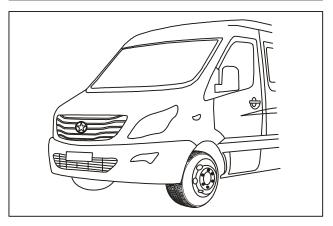

3. Set the blower motor to the highest speed mode.




4. External air circulation mode.

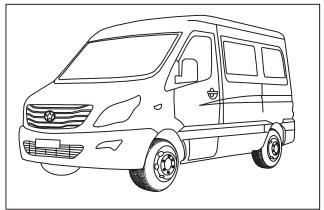

### A/C system performance testing



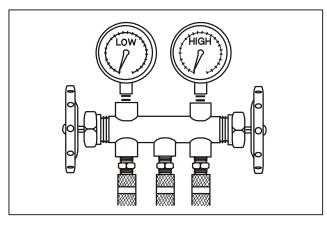

5. Set the cooling temperature to the coldest status.



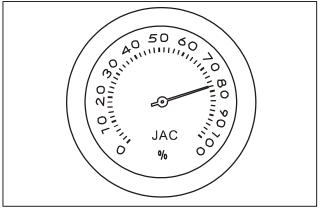
6. Open the instrument panel air vent facing right ahead. Insert the temperature gauge into the panel air vent center in thickness of 50mm.



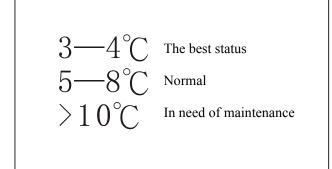

7. Test under idling status.




8. Both front windows are closed.

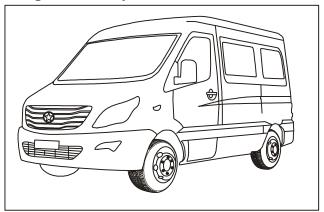

#### A/C system performance testing



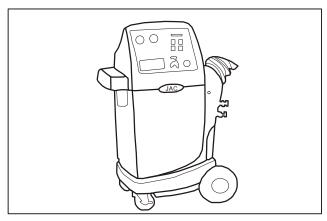

9. The engine hood is closed.



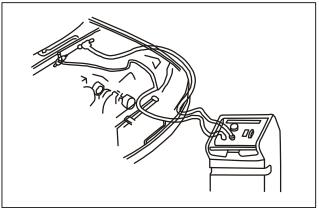
10. Connect the precision pressure gauge to A/C system.



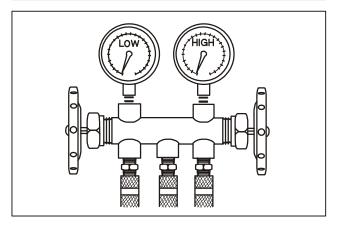

11. As for the precise testing of humidity (relative humidity %), the pressure and temperature of air supply outlet shall vary with humidity (relative humidity %). Please refer to "A/C System Performance Table" in this section for details.




12. Shut down the engine. Compare the readings with data listed in "A/C System Performance Table" and no big difference can be found under normal operation of A/C system.


#### Refrigerant recovery

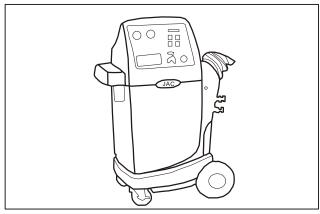



1. Park the vehicle in well-ventilated areas.

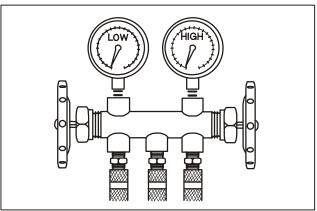


2. Connect to the refrigerant recovery machine.

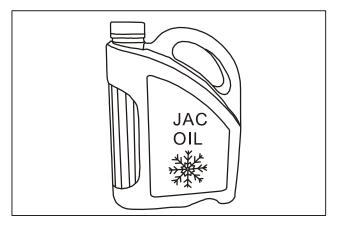



3. Turn on the refrigerant recovery machine and select the refrigerant reclaimer on the control panel.




4. Open the manual valves at both high-pressure and low-pressure sides.




5. The refrigerant recovery machine shall start to recover refrigerant and lubricating oil from A/C system, which respectively flows into a fluid reservoir and a removable oil reservoir.



6. Refrigerant recovery machine shall drain all refrigerant out of A/C system, achieving partial vacuum of A/C system with pressure at about 34 kPa (10 Hg).



7. Once partial vacuum is realized, it is recommended to turn off the refrigerant recovery machine and two manual valves and record the pressure readings. If the vacuum reading rises up to positive pressure in 2 min, there is still surplus refrigerant (after boiling) in the receiver drier; therefore, you should continue to execute the reclaimer until no obvious positive pressure rise occurs.



8. Check the oil reservoir for oil recovery and record the recovered volume, for the same volume of oil shall be added into A/C system later.

# **Diagnosis and Testing**

# A/C System Performance Table

| Engine speed | Relative humidity |     | ent air<br>rature |    | re of central vent | Pressure at 1 side of pres | ow-pressure<br>ssure gauge |     | nigh-pressure<br>ssure gauge |
|--------------|-------------------|-----|-------------------|----|--------------------|----------------------------|----------------------------|-----|------------------------------|
| (r/min)      | (%)               | °F  | $^{\circ}$ C      | °F | $^{\circ}$         | psi                        | kPa                        | psi | kPa                          |
|              |                   | 59  | 15                | 37 | 3.00               | 27                         | 162                        | 142 | 943                          |
|              |                   | 68  | 20                | 37 | 3.00               | 31                         | 185                        | 168 | 1106                         |
|              |                   | 77  | 25                | 40 | 4.64               | 36                         | 209                        | 191 | 1296                         |
|              | 20                | 86  | 30                | 47 | 8.60               | 42                         | 236                        | 225 | 1494                         |
|              |                   | 95  | 35                | 54 | 12.49              | 50                         | 265                        | 266 | 1653                         |
|              |                   | 104 | 40                | 62 | 16.45              | 58                         | 300                        | 304 | 1864                         |
|              |                   | 113 | 45                | 69 | 20.47              | 63                         | 334                        | 323 | 2155                         |
|              |                   | 59  | 15                | 37 | 3.00               | 25                         | 171                        | 139 | 956                          |
|              |                   | 68  | 20                | 38 | 3.50               | 28                         | 197                        | 164 | 1129                         |
|              |                   | 77  | 25                | 44 | 6.79               | 32                         | 222                        | 192 | 1323                         |
|              | 40                | 86  | 30                | 52 | 11.27              | 36                         | 252                        | 209 | 1445                         |
|              |                   | 95  | 35                | 61 | 15.94              | 42                         | 288                        | 248 | 1709                         |
|              |                   | 104 | 40                | 69 | 20.76              | 48                         | 329                        | 279 | 1925                         |
| Idling       |                   | 113 | 45                | 77 | 25.18              | 54                         | 375                        | 306 | 2110                         |
| speed        |                   | 59  | 15                | 37 | 3.00               | 26                         | 177                        | 140 | 966                          |
|              |                   | 68  | 20                | 40 | 4.47               | 30                         | 205                        | 166 | 1146                         |
|              |                   | 77  | 25                | 48 | 8.92               | 34                         | 233                        | 192 | 1326                         |
|              | 60                | 86  | 30                | 57 | 13.93              | 39                         | 269                        | 215 | 1480                         |
|              |                   | 95  | 35                | 66 | 19.11              | 45                         | 310                        | 249 | 1718                         |
|              |                   | 104 | 40                | 76 | 24.59              | 52                         | 358                        | 300 | 2072                         |
|              |                   | 113 | 45                | 86 | 29.82              | 59                         | 406                        | 318 | 2196                         |
|              |                   | 59  | 15                | 37 | 3.00               | 27                         | 186                        | 142 | 976                          |
|              |                   | 68  | 20                | 43 | 6.11               | 31                         | 214                        | 168 | 1160                         |
|              |                   | 77  | 25                | 52 | 11.15              | 36                         | 250                        | 191 | 1320                         |
|              | 80                | 86  | 30                | 62 | 16.95              | 42                         | 289                        | 225 | 1551                         |
|              |                   | 95  | 35                | 74 | 23.23              | 50                         | 342                        | 266 | 1833                         |
|              |                   | 104 | 40                | 85 | 29.27              | 58                         | 398                        | 304 | 2096                         |
|              |                   | 113 | 45                | 96 | 35.65              | 63                         | 436                        | 323 | 2226                         |

#### A/C System Performance Table

| °C | °F | kPa | psi | $^{\circ}$ | °F | kPa | psi |
|----|----|-----|-----|------------|----|-----|-----|
|    |    |     | r   |            |    |     | F - |

Definition: This table lists the pressure of refrigerant 134a under different temperature. For example, under room temperature of 26.6  $^{\circ}$ C (80°F), the pressure of refrigerant reservoir reaches 595.6 kPa (86.4 psi). If the refrigerant is heated up to 51.6  $^{\circ}$ C (125°F), the pressure shall rise up to 1278.8 kPa (185.5 psi). You can also determine the boiling point of refrigerant 134a based on different pressure. For example, under the pressure of 188.2 kPa (27.3 psi), the boiling point of refrigerant R134a is 0°C (32°F).

| P     | F   |       |      |      |     |        |       |
|-------|-----|-------|------|------|-----|--------|-------|
|       |     |       |      | 15.5 | 60  | 392.3  | 56.9  |
| -23.3 | -10 | 12.4  | 1.8  | 18.3 | 65  | 438.2  | 63.6  |
| -20.5 | -5  | 27.0  | 3.9  | 21.1 | 70  | 487.3  | 70.7  |
| -17.7 | 0   | 43.2  | 6.3  | 23.8 | 75  | 539.7  | 78.3  |
| 15.0  | 5   | 60.8  | 8.8  | 26.6 | 80  | 595.6  | 86.4  |
| -12.2 | 10  | 80.1  | 11.6 | 29.4 | 85  | 655.1  | 95.0  |
| 9.4   | 15  | 101.3 | 14.7 | 32.2 | 90  | 718.5  | 104.2 |
| -6.6  | 20  | 124.3 | 18.0 | 35.0 | 95  | 785.6  | 113.9 |
| -3.8  | 25  | 149.4 | 21.7 | 37.7 | 100 | 856.9  | 124.3 |
| -1.1  | 30  | 176.6 | 25.6 | 40.5 | 105 | 932.3  | 135.2 |
| 0.0   | 32  | 188.2 | 27.3 | 43.3 | 110 | 1012.1 | 146.8 |
| 1.6   | 35  | 206.2 | 29.9 | 46.1 | 115 | 1096.4 | 159.0 |
| 4.4   | 40  | 238.0 | 34.5 | 48.8 | 120 | 1185.2 | 171.9 |
| 7.2   | 45  | 272.5 | 39.5 | 51.6 | 125 | 1278.8 | 185.5 |
| 10.0  | 50  | 309.5 | 44.9 | 54.4 | 130 | 1377.3 | 199.8 |
| 12.7  | 55  | 349.4 | 50.7 | 60.0 | 140 | 1589.6 | 230.5 |

# **Diagnosis and Testing**

# A/C system performance diagnosis

1. Air heater performance diagnosis.

| Step | Operation                                                                                              | Yes            | No             |
|------|--------------------------------------------------------------------------------------------------------|----------------|----------------|
| 1    | Whether or not to conduct this diagnosis based on "symptoms" or instruction of other diagnosis tables? | Go to Step 2.  | _              |
|      | ①Start the engine.                                                                                     |                |                |
| 2    | ②Let the engine idling.                                                                                | Go to Step 3.  | Go to Step 9.  |
|      | Does the engine temperature reach normal operating temperature?                                        | Go to Step 3.  | Go to Step 7.  |
|      | ①Let the engine idling.                                                                                |                |                |
|      | ②Select "FLOOR" mode.                                                                                  |                |                |
|      | ③Set the minimum speed of blower.                                                                      |                |                |
| 3    | Set the warmest temperature.                                                                           | Go to Step 7.  | Go to Step 4.  |
|      | ⑤Sense the temperature of inlet and outlet hoses at the heater core.                                   |                |                |
|      | Is the inlet hose of heater warmer than the outlet hose?                                               |                |                |
|      | Place the temperature gauge at the central air vent.                                                   |                |                |
|      | ②Fix the temperature gauge onto the outlet hose at the heater core.                                    |                |                |
|      | ③Set the maximum speed of blower.                                                                      |                |                |
|      | Set the maximum speed of blower.      Set the warmest temperature.                                     |                | Go to Step 6.  |
| 4    | ⑤Record temperature at the position listed below:                                                      | Go to Step 5.  |                |
|      | Central air vent on instrument panel.                                                                  | r              |                |
|      | Outlet hose at the heater core.                                                                        |                |                |
|      | ©Compare the recorded temperatures.                                                                    |                |                |
|      | Are these two temperatures nearly the same?                                                            |                |                |
|      | ①Check the following parts of vehicle for cold air leak and conduct relevant maintenance:              |                |                |
|      | Front shield plate.                                                                                    |                | _              |
| 5    | Internal circulation damper.                                                                           | Go to Step 10. |                |
|      | Air heater, ventilation and A/C system module housing.                                                 |                |                |
|      | ②Conduct necessary maintenance.                                                                        |                |                |
|      | Is the maintenance finished?                                                                           |                |                |
|      | ①Check the operation of temperature damper.                                                            |                |                |
| 6    | ②Conduct necessary maintenance.                                                                        | Go to Step 10. | _              |
|      | Is the maintenance finished?                                                                           |                |                |
|      | ①Shut down the engine.                                                                                 |                |                |
|      | ②Backflush the heater core.                                                                            |                |                |
|      | ③Start the engine.                                                                                     |                |                |
| 7    | ④Select "FLOOR" mode.                                                                                  | Go to Step 8.  | Go to Step 10. |
| ,    | ⑤Set the minimum speed of blower.                                                                      | Go to Step o.  | Go to Step 10. |
|      | ®Set the warmest temperature.                                                                          |                |                |
|      | ⑦Sense the temperature of inlet and outlet hoses at the heater core.                                   |                |                |
|      | Is the inlet hose of heater warmer than the outlet hose?                                               |                |                |
| 8    | Replace the heater core.                                                                               | Go to Step 10. | _              |
|      | Is the maintenance finished?                                                                           | 30 to 5tep 10. |                |
| 9    | Troubleshoot too low engine temperature.                                                               | Go to Step 10. | _              |
|      | Is the maintenance finished?                                                                           | <b>r</b>       |                |

| 10 | Run the system to check the maintenance result. | System is normal  | Go to Stan 2  |
|----|-------------------------------------------------|-------------------|---------------|
| 10 | Is the fault detected and eliminated?           | System is normal. | Go to Step 2. |

# **Diagnosis and Testing**

# A/C system performance diagnosis

2. Insufficient defrosting.

| Step | Operation Operation                                                                                    | Yes               | No             |  |
|------|--------------------------------------------------------------------------------------------------------|-------------------|----------------|--|
| 1    | Whether or not to conduct this diagnosis based on "symptoms" or instruction of other diagnosis tables? | Go to Step 2.     | _              |  |
|      | ①Start the engine.                                                                                     |                   |                |  |
|      | ②Select "DEFROST" mode.                                                                                | Contraction 2     | G + G + 10     |  |
| 2    | ③Set the maximum speed of blower.                                                                      | Go to Step 3.     | Go to Step 10. |  |
|      | Is there sufficient airflow from defroster outlet?                                                     |                   |                |  |
| 2    | Measure the operating temperature of engine.                                                           | Carta Stan A      | C              |  |
| 3    | Does the engine temperature reach normal operating temperature?                                        | Go to Step 4.     | Go to Step 8.  |  |
|      | ①Set the minimum speed of blower.                                                                      |                   |                |  |
|      | ②Set the warmest temperature.                                                                          | G + G 11          |                |  |
| 4    | ③Sense the temperature of inlet and outlet hoses at the heater core.                                   | Go to Step 11.    | Go to Step 5.  |  |
|      | Is the inlet hose of heater warmer than the outlet hose?                                               |                   |                |  |
|      | Test the operation of A/C compressor.                                                                  | G : G: 7          |                |  |
| 5    | Does the A/C compressor run?                                                                           | Go to Step 7.     | Go to Step 6.  |  |
|      | Replace the A/C compressor.                                                                            | Carta Stan 14     |                |  |
| 6    | Is the maintenance finished?                                                                           | Go to Step 14.    | _              |  |
| 7    | Conduct A/C system performance test.                                                                   | Go to Step 9.     | Go to Step 12. |  |
| /    | Does the operation of A/C system meet the requirements?                                                | do to step 9.     | Go to Step 12. |  |
| 8    | Troubeshoot too low engine temperature.                                                                | Go to Step 14.    | _              |  |
|      | Is the maintenance finished?                                                                           | Об ю Зієр 14.     | _              |  |
| 9    | Check whether the internal circulation damper operates normally.                                       | Go to Step 14.    | Go to Step 13. |  |
|      | Does the internal circulation damper operate normally?                                                 | Go to Step 11.    | Go to Step 13. |  |
| 10   | Conduct troubleshooting for air outlet.                                                                | Go to Step 14.    | _              |  |
|      | Is the maintenance finished?                                                                           |                   |                |  |
| 11   | Conduct troubleshooting for air heater.                                                                | Go to Step 14.    | _              |  |
|      | Is the maintenance finished?                                                                           | *                 |                |  |
| 12   | Conduct troubleshooting on A/C performance.                                                            | Go to Step 14.    | _              |  |
|      | Is the maintenance finished?                                                                           | •                 |                |  |
| 13   | Conduct troubleshooting for internal circulation damper.                                               | Go to Step 14.    | _              |  |
|      | Is the maintenance finished?                                                                           | •                 |                |  |
| 14   | Run the system to check the maintenance result.                                                        | System is normal. | Go to Step 2.  |  |
| - 1  | Is the fault detected and eliminated?                                                                  |                   |                |  |

# A/C system performance diagnosis

#### 3. Blower motor noise diagnosis.

| Step | Operation                                                                                              | Yes               | No             |  |
|------|--------------------------------------------------------------------------------------------------------|-------------------|----------------|--|
| 1    | Whether or not to conduct this diagnosis based on "symptoms" or instruction of other diagnosis tables? | Go to Step 2.     | _              |  |
| 2    | Check if there is any chip at air inlet grille.                                                        | Ca ta Stan 9      | 0 1 91 2       |  |
| 2    | Is there any chip?                                                                                     | Go to Step 8.     | Go to Step 3.  |  |
|      | 1.Sit in the vehicle.                                                                                  |                   |                |  |
|      | 2.Close doors and windows.                                                                             |                   |                |  |
| 3    | 3. Turn the ignition switch to ON position with the engine off.                                        | Go to Step 4.     | Go to Step 11. |  |
|      | 4.Run the blower motor at every speed and mode to determine the time and place of noise generating.    |                   |                |  |
|      | Is the noise under operation of blower is obvious?                                                     |                   |                |  |
| 4    | Touch the blower casing to check for vibration when the blower motor operating at different speed.     | Go to Step 6.     | Go to Step 5.  |  |
|      | Is there any overvibration?                                                                            |                   |                |  |
| 5    | Listen to the sound of blower motor at different speed.                                                | Go to Step 9.     | Go to Step 11. |  |
|      | Is there any abnormal noise such as squeak or chirp?                                                   | do to 3ιερ 7.     | 30 to 5tcp 11. |  |
|      | 1. Remove the blower motor.                                                                            |                   |                |  |
|      | 2. Check the blower motor impeller for any abnormal deposition.                                        | Go to Step 8.     | Go to Step 7.  |  |
| 6    | 3. Check the blower motor for any abnormal deposition.                                                 |                   |                |  |
|      | Do you find any foreign matter on blower motor or blower motor impeller?                               |                   |                |  |
|      | Check blower motor for:                                                                                |                   |                |  |
|      | Vane crack.                                                                                            |                   |                |  |
| 7    | Looseness of impeller fasteners.                                                                       | Go to Step 9.     | Go to Step 10. |  |
|      | Improper positioning of impeller.                                                                      |                   |                |  |
|      | Do you find any abnormality mentioned above?                                                           |                   |                |  |
| 8    | Clear foreign matter.                                                                                  | Go to Step 10.    |                |  |
|      | Is the operation finished?                                                                             | Go to Step 10.    |                |  |
| 9    | Replace blower motor.                                                                                  | Go to Step 11.    |                |  |
|      | Is the maintenance finished?                                                                           | Go to Step 11.    |                |  |
| 10   | Install blower motor.                                                                                  | Go to Step 11.    |                |  |
| 10   | Is the operation finished?                                                                             | 00 to 5tcp 11.    | _              |  |
| 11   | Run the system to check the maintenance result.                                                        | System is normal. | Go to Step 2.  |  |
| 11   | Is the fault detected and eliminated?                                                                  | System is norman. | 00 to 5tep 2.  |  |

# **Diagnosis and Testing**

# A/C system performance diagnosis

4. Refrigerating system noise diagnosis.

| Step | Operation                                                                                                                                          | Yes                                     | No                                                                                                                                                                                                              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Whether or not to conduct this diagnosis based on "A/C system symptoms" or instruction of other diagnosis tables?                                  | Go to Step 2.                           | _                                                                                                                                                                                                               |
| 2    | Check accessory drive belt and drive belt tensioner for failure and conduct troubleshooting when necessary.                                        | Go to Step 3.                           | _                                                                                                                                                                                                               |
| 3    | Run the engine to check compressor for any abnormal noise:  Does the noise last for over 30 seconds?                                               | Go to Step 5.                           | Go to Step 4.                                                                                                                                                                                                   |
| 4    | Let the engine run for several minutes.  Stop the engine for 1 minute.  Restart the engine.  Is any noise detected by using this procedure?        | Go to Step 6.                           | Generation of liquid slugging noise is a common phenomenon, which shall occur when the system experience a long time of shutdown under high temperature and the ambient temperature lowers after a whole night. |
| 5    | Check if the refrigerant level in system is too low.  Is the system refrigerant sufficient?                                                        | Go to Step 7.                           | Go to Step 8.                                                                                                                                                                                                   |
| 6    | Check if the heat expansion valve is stuck at closed or open position.  Is the heat expansion valve is stuck at open position?                     | Replace expansion valve.                | Go to Step 7.                                                                                                                                                                                                   |
| 7    | Check if the compressor bolt and/or A/C pipeline scratches body parts.  Is the mounting bolt loosened?                                             | Tighten bolt and/or rearrange pipeline. | Go to Step 8.                                                                                                                                                                                                   |
| 8    | <ul><li>①Recover refrigerant and replace compressor.</li><li>②Refill the system.</li><li>Is the gas pressure within the specified range?</li></ul> | The system inspection is finished.      | Go to Step 1                                                                                                                                                                                                    |

# A/C system performance diagnosis

5. A/C system actuator noise diagnosis.

| Step     | Operation                                                                                                      | Yes               | No            |
|----------|----------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 1        | Whether or not to conduct this diagnosis based on "symptoms" or instruction of other diagnosis tables?         | Go to Step 2.     | _             |
|          | ①Start the engine.                                                                                             |                   |               |
|          | ②Finish the settings below:                                                                                    |                   |               |
|          | Blower motor speed                                                                                             |                   |               |
|          | Air heater, ventilation and A/C system modes                                                                   |                   |               |
|          | Temperature control setting                                                                                    |                   |               |
| 2        | ③Define the noise types:                                                                                       | Go to Step 6.     | Go to Step 3. |
|          | Scraping, bang                                                                                                 |                   |               |
|          | Tick/click, chirp or creak                                                                                     |                   |               |
|          | Whish/howling                                                                                                  |                   |               |
|          | Is the scraping or bang obvious during mode selection or temperature setting?                                  |                   |               |
| 3        | When the blower motor speed reduces, is there still tick/click chirp, squeak or scraping but with lower sound? | Go to Step 6.     | Go to Step 4. |
| 4        | Is whish/howling obvious under every mode but not so under every temperature setting?                          | Go to Step 6.     | Go to Step 5. |
| 5        | Is there obvious whish/howling only under "DEFROST" or "FLOOR" mode?                                           | Go to Step 6.     | Go to Step 6. |
|          | Remove the instrument panel bracket.                                                                           |                   |               |
|          | ①Check damper for normal operation.                                                                            | Go to Step 9.     | Go to Step 7. |
| 6        | ②Check air duct for blockage or foreign matter.                                                                |                   |               |
|          | Does any of the above condition occur?                                                                         |                   |               |
| 7        | Check modes, temperature dampers and seals for warpage or crack.                                               | G . 4 . St 10     | Go to Step 8. |
| 7        | Is the damper under normal status?                                                                             | Go to Step 10.    |               |
| 8        | Replace relevant dampers and/or seals.                                                                         | Go to Step 10.    |               |
| 8        | Is the maintenance finished?                                                                                   |                   | _             |
| 9        | Remove obstruction or foreign matter.                                                                          | Go to Step 10.    |               |
| <i>y</i> | Is the operation finished?                                                                                     |                   | _             |
| 10       | Install the instrument panel bracket.                                                                          | Go to Step 11.    | _             |
| 10       | Is the operation finished?                                                                                     |                   | _             |
| 11       | Run the system to check the maintenance result.                                                                | System is normal. | Go to Step 2. |
|          | Is the fault detected and eliminated?                                                                          | System is norman. | 30 to 5top 2. |

# **Diagnosis and Testing**

# A/C system performance diagnosis

#### 6. Odour diagnosis.

| Step | Operation                                                                                                                                  | Yes               | No             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 1    | Whether or not to conduct this diagnosis based on "symptoms" or instruction of other diagnosis tables?                                     | Go to Step 2.     | _              |
|      | ①Sit in the vehicle.                                                                                                                       |                   |                |
|      | ②Close all doors and windows.                                                                                                              |                   |                |
|      | ③Start the engine.                                                                                                                         |                   |                |
|      | 4)Let the engine idling under normal operating temperature.                                                                                | Go to Step 3.     |                |
| 2    | ⑤Set the maximum speed of blower.                                                                                                          |                   | Go to Step 8.  |
|      | ©Set the coldest temperature.                                                                                                              |                   |                |
|      | ⑦Run the A/C under every blower speed, mode and temperature to determine what kind of odour (musty taste, smell of coolant or oil) occurs. |                   |                |
|      | Check air heater, ventilation and A/C system module assembly filter and                                                                    |                   |                |
| 3    | air inlet grille for any chip?  Is there any chip?                                                                                         | Go to Step 4.     | Go to Step 5.  |
|      | Clear all chip.                                                                                                                            |                   |                |
| 4    | Is the operation finished?                                                                                                                 | Go to Step 15.    | _              |
|      | Check if the carpet is moist.                                                                                                              |                   |                |
| 5    | Is the carpet moist?                                                                                                                       | Go to Step 6.     | Go to Step 14. |
|      | Check the existence of the conditons below:                                                                                                |                   |                |
|      | Leak at front windshield periphery                                                                                                         | Go to Step 7.     | Go to Step 14. |
| 6    | Drain pipe blockage of air heater, ventilation and A/C system module                                                                       |                   |                |
|      | Leak at door seal                                                                                                                          |                   |                |
|      | Is there any leak?                                                                                                                         |                   |                |
| 7    | Repair leak when necessary.                                                                                                                | Go to Step 15.    | _              |
|      | Is the maintenance finished?                                                                                                               |                   | ~ ~            |
| 8    | Does the odour smell like coolant?                                                                                                         | Go to Step 9.     | Go to Step 12. |
| 9    | Check cooling system for any leak.  Is there any leak?                                                                                     | Go to Step 10.    | Go to Step 12. |
|      | Check vehicle inside for coolant leak or check the front windshield for a                                                                  |                   |                |
| 10   | layer of film.                                                                                                                             | Go to Step 11.    | Go to Step 15. |
|      | Is there any fault?                                                                                                                        | -                 |                |
| 11   | Replace the heater core.                                                                                                                   | Go to Step 15.    | _              |
|      | Is the maintenance finished?                                                                                                               |                   |                |
| 12   | Does the odour smell like engine oil?                                                                                                      | Go to Step 13.    | Go to Step 15. |
|      | ①Check engine compartment for any leak.                                                                                                    |                   |                |
| 13   | ②Repair leak.                                                                                                                              | Go to Step 15.    | _              |
|      | Is the maintenance finished?                                                                                                               |                   |                |
| 14   | Musty taste is probably caused by molds on evaporator and heater core or inside air heater, ventilation and A/C system module assembly.    | Go to Step 15.    | _              |
|      | Is the operation finished?                                                                                                                 |                   |                |
| 15   | Run the system to check the maintenance result.                                                                                            | System is normal. | Go to Step 2.  |

| 1 | * 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |
|---|-------------------------------------------|--|
| 1 | Is the fault detected and eliminated'?    |  |
| 1 | Is the fault detected and eliminated?     |  |
| 1 |                                           |  |

#### A/C system performance diagnosis

7. Diagnosis of failed blower motor operation.

| Step | Operation                                                                   | Yes               | No             |  |
|------|-----------------------------------------------------------------------------|-------------------|----------------|--|
|      | ①Turn the ignition switch to ON position with the engine off.               |                   |                |  |
| 1    | ②Turn the blower motor switch to each speed position.                       | Go to "Fault 8".  | Go to Step 2.  |  |
|      | Is the blower motor able to operate at each speed position?                 |                   |                |  |
|      | ①Turn the ignition switch to OFF position.                                  |                   |                |  |
|      | ②Disconnect the blower motor.                                               |                   |                |  |
|      | ③Set a test lamp between blower motor power voltage circuit and             |                   |                |  |
| 2    | control circuit.                                                            | Go to Step 9.     | Go to Step 3.  |  |
|      | 4 Turn the ignition switch to ON position with the engine off.              |                   |                |  |
|      | ⑤Turn the blower motor switch to each speed position.                       |                   |                |  |
|      | Is the test lamp on under every speed.                                      |                   |                |  |
|      | Test blower motor power voltage circuit for open circuit or excessive       |                   |                |  |
| 3    | resistance.  Is the fault detected and eliminated?                          | Go to Step 15.    | Go to Step 4.  |  |
|      | Test blower motor circuit for open circuit or excessive resistance.         |                   |                |  |
| 4    | Is the fault detected and eliminated?                                       | Go to Step 15.    | Go to Step 5.  |  |
|      | ①Turn the ignition switch to OFF position.                                  |                   |                |  |
|      | ②Connect the blower motor.                                                  |                   |                |  |
|      |                                                                             |                   | Go to Step 6.  |  |
| 5    | ③ Air heater, ventilation and A/C system control module.                    | Go to Step 10.    |                |  |
|      | ④ Turn the ignition switch to ON position with the engine off.              |                   |                |  |
|      | ⑤Turn the blower motor switch to each speed position.                       |                   |                |  |
|      | Is the blower motor able to operate at each speed position?                 |                   |                |  |
| 6    | Check serial data code or check for any fault.                              | Go to Step 7.     | Go to Step 8.  |  |
|      | Is there any fault? Test circuit.                                           |                   |                |  |
| 7    | Is the fault detected and eliminated?                                       | Go to Step 15.    | Go to Step 8.  |  |
|      | Test blower motor switch control circuit for open circuit or excessive      |                   |                |  |
| 8    | resistance.                                                                 | Go to Step 15.    | Go to Step 11. |  |
|      | Is the fault detected and eliminated?                                       |                   | So to step 11. |  |
| 9    | Check blower motor for poor contact.                                        | Ca ta Stan 15     | Carta Stan 12  |  |
| 9    | Is the fault detected and eliminated?                                       | Go to Step 15.    | Go to Step 12. |  |
|      | Check air heater, ventilation and A/C system control module for poor        | Go to Step 15.    |                |  |
| 10   | contact.  Is the fault detected and eliminated?                             |                   | Go to Step 13. |  |
|      |                                                                             |                   |                |  |
| 11   | Check audio system for poor contact.  Is the fault detected and eliminated? | Go to Step 15.    | Go to Step 14. |  |
|      | Replace blower motor.                                                       |                   |                |  |
| 12   | Is the replacement finished?                                                | Go to Step 15.    |                |  |
|      | Replace air heater, ventilation and A/C system control module.              |                   |                |  |
| 13   | Is the replacement finished?                                                | Go to Step 15.    |                |  |
|      | Replace blower switch.                                                      |                   |                |  |
| 14   | Is the replacement finished?                                                | Go to Step 15.    |                |  |
| 15   | Run the system to check the maintenance result.                             | System is normal. | Go to Step 1.  |  |

| In the Coult aliminate 40 | ĺ |
|---------------------------|---|
| Is the fault eliminated?  | i |
|                           |   |

# A/C system performance diagnosis

#### 8. Fault diagnosis of blower motor.

| Step | Operation                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                  | No            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------|
| 1    | ①Turn the ignition switch to ON position with the engine off. ②Turn the blower motor switch to each speed position. If there any speed position failed?                                                                                                                                                                                                                                                                              | Go to Step 3.                                                        | Go to Step 2. |
| 2    | Check blower motor fuse for blowout.  Is the fuse blown out?                                                                                                                                                                                                                                                                                                                                                                         | Replace the fuse with a new one of the same rating.                  | Go to Step 3. |
| 3    | Check the power supply of blower motor.  The blower motor won't run even though there is voltage.                                                                                                                                                                                                                                                                                                                                    |                                                                      |               |
| 4    | <ul> <li>①Run the blower under every speed and run once at the integrated radio control position of blower.</li> <li>②20 blower speeds should be effective.</li> <li>Is every blower speed effective?</li> </ul>                                                                                                                                                                                                                     | Go to Step 8.                                                        | Go to Step 5. |
| 5    | <ul> <li>①Plug a 2-pin connector into the back of blower motor.</li> <li>②Use integrated radio to control blower and run the blower once at each one of 20 blower speeds.</li> <li>③Compare the voltage with the illustrated voltage. Please refer to "1.2.1.2 Sensor Resistance Table" in "Automatic Air Heater, Ventilation and A/C System" for details.</li> <li>Does the voltage approach to the illustrated voltage?</li> </ul> | Go to Step 8.                                                        | Go to Step 6. |
| 6    | Connect the fault diagnosis instrument. Conduct combined testing for switch data. Use fault diagnosis instrument to increase/decrease the soft key to select from 20 different blower speeds.  Is every speed effective                                                                                                                                                                                                              | Conduct integrated radio control testing for blower switch function. | Go to Step 7. |
| 7    | Replace air heater, ventilation and A/C system control module.  Is the fault detected and eliminated?                                                                                                                                                                                                                                                                                                                                | Go to Step 8.                                                        |               |
| 8    | Run the system to check the maintenance result.  Is the fault eliminated?                                                                                                                                                                                                                                                                                                                                                            | System is normal.                                                    | Go to Step 1  |

# **Diagnosis and Testing**

# A/C system performance diagnosis

9. Diagnosis of poor A/C system refrigeration.

| Step | Operation                                                                                                                     | Yes               | No                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------|
| 1    | Check the operation of air mixing damper to confirm no blockage or rupture.                                                   | Replace actuator. | Go to Step 2.                        |
|      | Is air mixing damper blocked or ruptured?                                                                                     |                   |                                      |
|      | ①Turn the ignition switch to ON position with the engine off.                                                                 | Go to Step 3.     | Go to "Fault 7".                     |
| 2    | ②Turn the blower motor switch to each speed position.                                                                         |                   |                                      |
|      | Is the blower motor able to operate at each speed position?                                                                   |                   |                                      |
| 3    | Does blower motor run at corresponding speed?                                                                                 | Go to Step 4.     | Go to "Fault 8".                     |
|      | ①Start the engine.                                                                                                            |                   |                                      |
|      | ②Set the mode switch to "TO-Face" mode.                                                                                       |                   | Go to "Internal Air                  |
|      | ③Set the internal circulation switch to "ON" position.                                                                        |                   | Circulation Fault                    |
| 4    | 4Observe the internal circulation damper.                                                                                     | Go to Step 5.     | Diagnosis Help" in "Automatic Air    |
|      | ⑤Set the internal circulation switch to "OFF" position.                                                                       |                   | Heater, Ventilation and A/C System". |
|      | Does the internal circulation damper transfer from internal circulation to ventilation?                                       |                   |                                      |
|      | ①Start the engine.                                                                                                            |                   |                                      |
|      | ②Use the fault diagnosis instrument to clear all fault codes stored in air heater, ventilation and A/C system control module. |                   |                                      |
| 5    | ③Set the left side air temperature switch to coldest position.                                                                | Go to Step 6.     | Replace compressor.                  |
|      | Set the mode switch to "TO-FACE/FEET" position.                                                                               |                   |                                      |
|      | ⑤Set the blower motor switch to high speed position.                                                                          |                   |                                      |
|      | Does the A/C compressor run?                                                                                                  |                   |                                      |
| 6    | Conduct A/C system performance test.                                                                                          | Go to Step 9.     | Ca to Ston 7                         |
| 6    | Is the fault detected and eliminated?                                                                                         |                   | Go to Step 7.                        |
| 7    | Install a temperature gauge near the interior air temperature sensor.                                                         | Go to Step 9.     | Go to Step 8.                        |
| ,    | Is the indicated temperature below 3°C(5°F)?                                                                                  |                   | Go to step 8.                        |
| 8    | Check air suction pipe for leak or blockage.                                                                                  | Go to Step 9.     |                                      |
|      | Is the fault detected and eliminated?                                                                                         | Ou to step 3.     | _                                    |
| 9    | Run the system to check the maintenance result.                                                                               | System is normal. | Go to Step 1                         |
| 9    | Is the fault eliminated?                                                                                                      | System is normal. | Go to Step 1                         |

# A/C system performance diagnosis

10. Diagnosis for insufficient warm air.

| Step | Operation                                                                                                                                                       | Yes                 | No                                |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------|
| 1    | Check the operation of air mixing damper to confirm no blockage or rupture.                                                                                     | Replace actuator.   | Go to Step 2.                     |
|      | Is air mixing damper blocked or ruptured?                                                                                                                       |                     |                                   |
| 2    | Turn the blower motor switch to each speed position.                                                                                                            | Go to Step 3.       | Go to "Fault 7"                   |
| _    | Is the blower motor able to operate at each speed position?                                                                                                     |                     |                                   |
| 3    | Does blower motor run at corresponding speed?                                                                                                                   | Go to Step 4.       | Go to "Fault 8"                   |
|      | ①Start the engine.                                                                                                                                              |                     | Go to "Internal Air               |
|      | ②Set the mode switch to "TO-Face" mode.                                                                                                                         |                     |                                   |
|      | ③Set the internal circulation switch to "ON" position.                                                                                                          |                     | Circulation Fault                 |
| 4    | 4 Observe the internal circulation damper.                                                                                                                      | Go to Step 5.       | Diagnosis Help" in "Automatic Air |
|      | ⑤Set the internal circulation switch to "OFF" position.                                                                                                         |                     | Heater, Ventilation               |
|      | Does the internal circulation damper transfer from internal circulation to ventilation?                                                                         |                     | and A/C System".                  |
| -    | Set the temperature switch to "OFF" position.                                                                                                                   | Carta Stan C        | Carta Stan 0                      |
| 5    | When heating or defrosting is applied, is it still cold?                                                                                                        | Go to Step 6.       | Go to Step 9.                     |
|      | ①Start the engine.                                                                                                                                              | Replace compressor. | Go to Step 8.                     |
| 6    | ②Shut down the air heater, ventilation and A/C control system.                                                                                                  |                     |                                   |
|      | Does the A/C compressor run?                                                                                                                                    |                     |                                   |
|      | Check cooling system for:                                                                                                                                       | Go to Step 10.      | Go to Step 8.                     |
|      | Too low coolant level.                                                                                                                                          |                     |                                   |
|      | Looseness or wear of accessory drive belt.                                                                                                                      |                     |                                   |
| 7    | Leak of radiator hose or heater hose.                                                                                                                           |                     |                                   |
| ,    | Distortion of radiator hose or heater hose.                                                                                                                     |                     |                                   |
|      | Lack of radiator cap pressure seal.                                                                                                                             |                     |                                   |
|      | Leak of radiator cap.                                                                                                                                           |                     |                                   |
|      | Is the fault detected and eliminated?                                                                                                                           |                     |                                   |
|      | ①Set the mode switch to "TO-FACE" mode.                                                                                                                         | Go to Step 10.      | Go to Step 9.                     |
|      | ②Turn the ignition switch to ON position with the engine off.                                                                                                   |                     |                                   |
|      | ③Set the blower motor switch to maximum speed position.                                                                                                         |                     |                                   |
| 8    | (4) Cover the sensor air inlet with a piece of paper of 5mm² (2 square inch) to check whether there is any airflow through the interior air temperature sensor. |                     |                                   |
|      | Is the paper still at the original position?                                                                                                                    |                     |                                   |
| 0    | Check aspirator pipeline for leak or blockage.                                                                                                                  | Carta China 10      |                                   |
| 9    | Is the fault detected and eliminated?                                                                                                                           | Go to Step 10.      | _                                 |
| 10   | Run the system to check the maintenance result.                                                                                                                 | Sustam is named     | Go to Ston 2                      |
| 10   | Is the fault eliminated?                                                                                                                                        | System is normal.   | Go to Step 2.                     |

#### **AT Air Conditioner**

## **Diagnosis and Testing**

## A/C system performance diagnosis

#### 11. Inadequate air out.

| Step | Operation                                                   | Yes                  | No              |  |
|------|-------------------------------------------------------------|----------------------|-----------------|--|
|      | ①Start the engine.                                          |                      |                 |  |
| 1    | ②Set the mode switch to "OFF" position.                     | Go to Step 2.        | Go to Step2     |  |
|      | Does the blower stop operation?                             |                      |                 |  |
|      | ①Set the mode switch to "VENT" position.                    |                      |                 |  |
| 2    | ②Turn the blower motor switch to each speed position.       | Go to Step 4.        | Go to "Fault 7" |  |
|      | Is the blower motor able to operate at each speed position? |                      |                 |  |
| 3    | Does blower motor run at corresponding speed?               | Go to Step 4.        | Go to "Fault 8" |  |
| 4    | Check mode damper for any damage or blockage.               | Replace mode damper. | Go to Step 5.   |  |
| 4    | Is the mode damper damaged or blocked?                      | Replace mode damper. | Go to Step 3.   |  |
| 5    | Run the system to check the maintenance result.             | System is normal.    | Go to Step 1    |  |
|      | Is the fault eliminated?                                    | System is normal.    |                 |  |

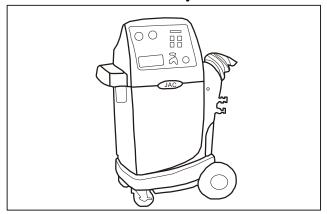
## **Diagnosis and Testing**

## A/C system performance diagnosis

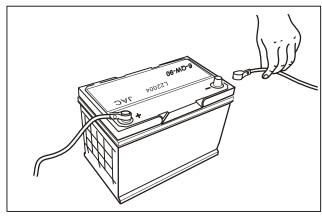
12. Fault diagnosis of internal/external circulation.

| Step | Operation                                                                                                                                         | Yes            | No             |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--|--|
|      | ①Turn the ignition switch to ON position with the engine off.                                                                                     |                |                |  |  |
|      | ②Set the blower motor switch to maximum speed position.                                                                                           |                |                |  |  |
|      | ③Set the mode switch to "TO-FACE/FEET" position.                                                                                                  |                |                |  |  |
| 1    | Set the internal circulation switch to "VENTILATION" position.                                                                                    | Go to Step 2.  | Go to Step 2.  |  |  |
|      | ⑤Set the internal circulation switch to "INTERNAL CIRCULATION" position.                                                                          |                |                |  |  |
|      | Do you hear any change in air flow sound when setting the internal circulation switch to "INTERNAL CIRCULATION" position?                         |                |                |  |  |
|      | ①Set the internal circulation switch to "VENTILATION" position.                                                                                   |                |                |  |  |
|      | ②Observe the drive shaft of internal circulation actuator.                                                                                        |                |                |  |  |
| 2    | ③Set the internal circulation switch to "INTERNAL CIRCULATION" position.                                                                          | Go to Step 3.  | Go to Step 3.  |  |  |
|      | Does the drive shaft of internal circulation actuator rotate?                                                                                     |                |                |  |  |
|      | ①Observe the drive shaft of internal circulation actuator.                                                                                        |                |                |  |  |
| 3    | ②Use the fault diagnosis instrument and command the internal circulation actuator transfer to "INTERNAL CIRCULATION" and "VENTILATION" positions. | Go to Step 11. | Go to Step 4.  |  |  |
|      | Does the drive shaft of internal circulation actuator rotate?                                                                                     |                |                |  |  |
|      | ①Turn the ignition switch to OFF position.                                                                                                        |                |                |  |  |
|      | ②Disconnect the internal circulation actuator.                                                                                                    |                |                |  |  |
| 4    | ③Turn the ignition switch to ON position with the engine off.                                                                                     | Go to Step 5.  | Go to Step 12. |  |  |
|      | (4) Use a test lamp connected to sound ground to detect the ignition voltage circuit 3 of internal circulation actuator.                          |                |                |  |  |
|      | Is the test lamp on?                                                                                                                              |                |                |  |  |
|      | ①Set a test lamp between damper control Circuit A and ignition voltage circuit 3 of internal circulation actuator.                                |                |                |  |  |
| 5    | ②Use the fault diagnosis instrument and command the internal circulation actuator transfer to "INTERNAL CIRCULATION" and "VENTILATION" positions. | Go to Step 6.  | Go to Step 7.  |  |  |
|      | Is the test lamp on when this command is executed?                                                                                                |                |                |  |  |
|      | ①Set a test lamp between damper control circuit B and ignition voltage circuit 3 of internal circulation actuator.                                |                |                |  |  |
| 6    | ②Use the fault diagnosis instrument and command the internal circulation actuator transfer to "INTERNAL CIRCULATION" and "VENTILATION" positions. | Go to Step 9.  | Go to Step 8.  |  |  |
|      | Is the test lamp on when this command is executed?                                                                                                |                |                |  |  |
| 7    | Check the internal circulation actuator control Circuit A for open circuit, excessive resistance, short circuit to ground or voltage.             | Go to Step 15. | Go to Step 11. |  |  |
|      | Is the fault detected and eliminated?                                                                                                             |                |                |  |  |
| 8    | Check the internal circulation actuator control Circuit B for open circuit, excessive resistance, and short circuit to ground or voltage.         | Go to Step 15. | Go to Step 11. |  |  |
|      | Is the fault detected and eliminated?                                                                                                             |                |                |  |  |

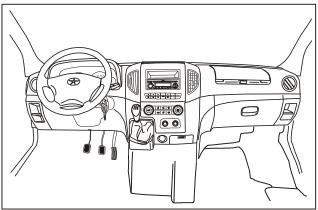
#### **AT Air Conditioner**


## **Diagnosis and Testing**

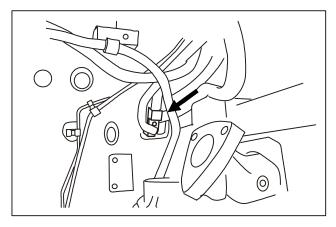
## A/C system performance diagnosis


13. Fault diagnosis of internal/external circulation.

| Step | Operation                                                                                              | Yes               | No             |  |
|------|--------------------------------------------------------------------------------------------------------|-------------------|----------------|--|
|      | Check internal circulation damper and internal circulation actuator for:                               |                   |                |  |
|      | Dislocation of circulation actuator.                                                                   |                   |                |  |
|      | Linkage fractured or stuck.                                                                            |                   |                |  |
|      | Internal circulation damper fractured or stuck.                                                        |                   |                |  |
| 9    | Obstacle blocking the internal circulation damper moving within the whole range.                       | Go to Step 15.    | Go to Step 10. |  |
|      | Lack of internal circulation damper seals.                                                             |                   |                |  |
|      | Dislocation of internal circulation damper seals.                                                      |                   |                |  |
|      | Is the fault detected and eliminated?                                                                  |                   |                |  |
| 10   | Check the harness connector of internal circulation actuator for poor contact.                         | Go to Step 15.    | Go to Step 13. |  |
|      | Is the fault detected and eliminated?                                                                  |                   |                |  |
| 11   | Check the harness connector of air heater, ventilation and A/C system control module for poor contact. | Go to Step 15.    | Go to Step 14. |  |
|      | Is the fault detected and eliminated?                                                                  |                   |                |  |
| 12   | Repair the ignition voltage circuit of internal circulation actuator.                                  | Carta Stan 15     |                |  |
| 12   | Is the repair finished?                                                                                | Go to Step 15.    | _              |  |
| 12   | Replace the internal circulation actuator.                                                             | C                 |                |  |
| 13   | Is the replacement finished?                                                                           | Go to Step 15.    | _              |  |
| 1.4  | Replace air heater, ventilation and A/C system control module.                                         | C + C+ 15         |                |  |
| 14   | Is the replacement finished?                                                                           | Go to Step 15.    | _              |  |
| 1.5  | Run the system to check the maintenance result.                                                        | C                 | Contraction 2  |  |
| 15   | Is the fault eliminated?                                                                               | System is normal. | Go to Step 2.  |  |

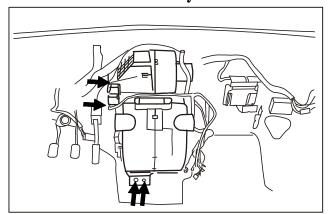

#### Removal of front A/C assembly



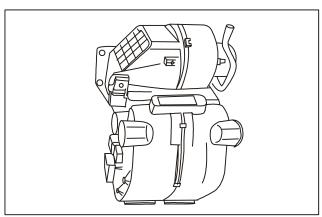

1. Recover refrigerant.



2. Disconnect negative cable of battery.

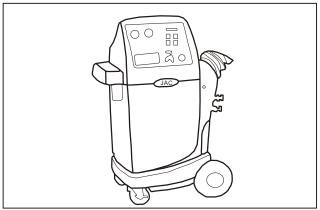



3. Remove instrument panel.

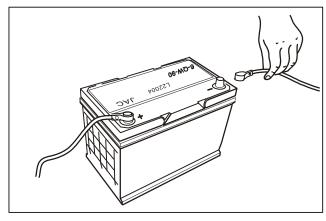



4. Remove mounting bolts from expansion valve.

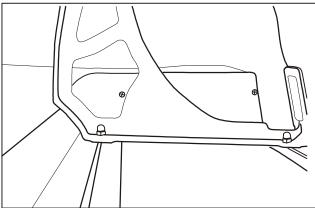
## Removal of front A/C assembly



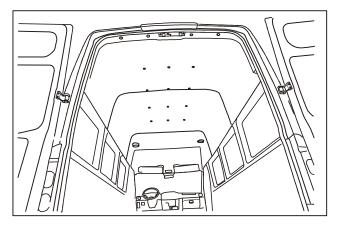

5. Remove mounting bolts from front A/C.




6. Disconnect the connector and remove the front A/C assembly.

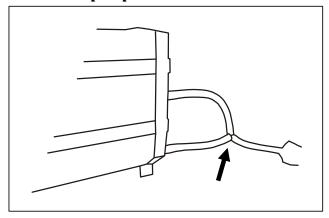

## Removal of top evaporator tank



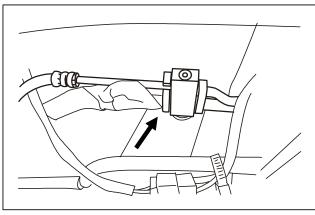

1. Recover refrigerant.



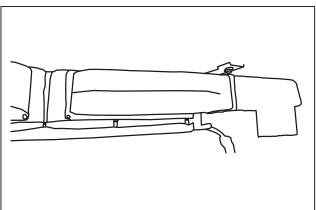
2. Disconnect negative cable of battery.



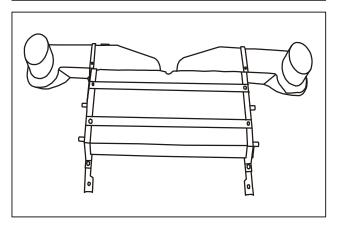

3. Remove luggage rack.




4. Remove ceiling and interior trim.

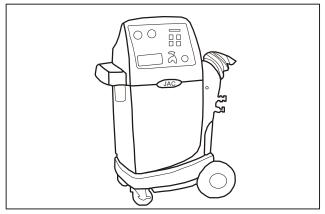

#### Removal of top evaporator tank



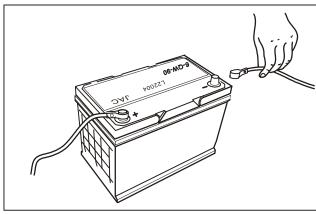

5. Disconnect the A/C drain pipe.



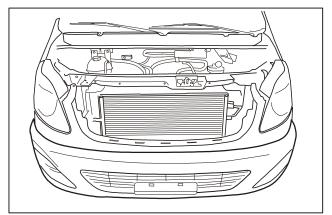
6. Remove mounting bolts from expansion valve.



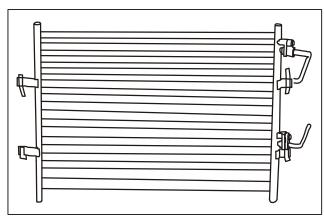

7. Remove mounting bolts.




8. Remove the top evaporator tank assembly.

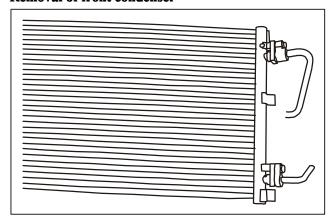

#### Removal of front condenser



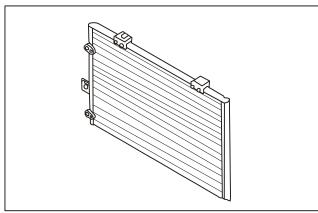

1. Recover refrigerant.



2. Disconnect negative cable of battery.

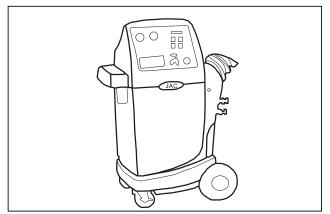



3. Remove front bumper.

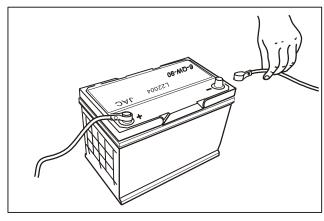



4. Remove mounting bolts.

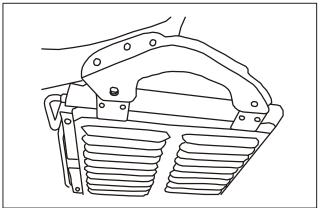
#### Removal of front condenser



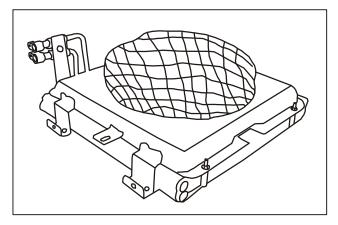

5. Disconnect pipeline.




6. Remove condenser.

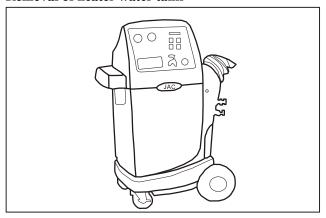

#### Removal of bottom condenser



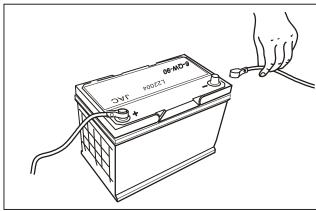

1. Recover refrigerant.



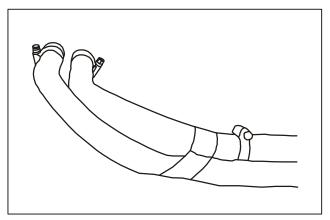
2. Disconnect negative cable of battery.



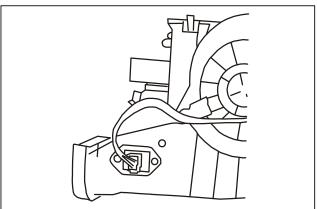

3. Remove mounting bolts and disconnect pipeline.




4. Remove bottom condenser assembly.

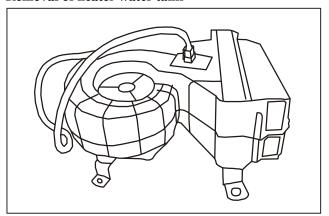

#### Removal of heater water tank



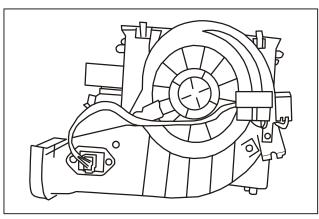

1. Recover refrigerant.



2. Disconnect negative cable of battery.

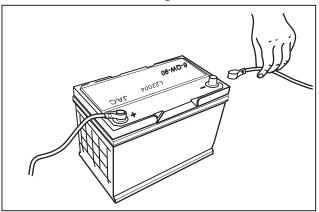



3. Remove connecting pipe of heater water tank.

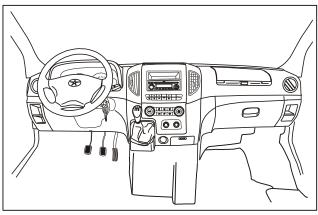



4. Disconnect the plug.

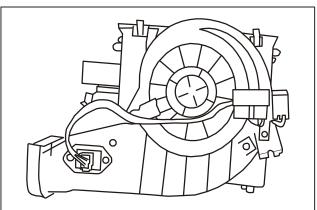
#### Removal of heater water tank



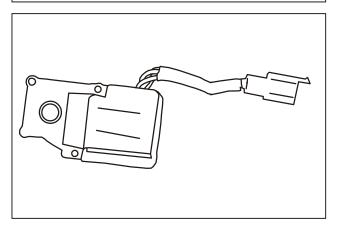

5. Remove mounting bolts from heater water tank.




6. Remove heater water tank assembly.

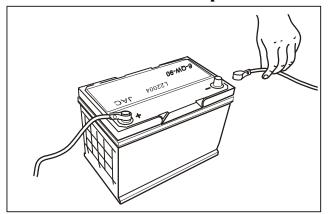

#### Removal/installation of temperature control motor



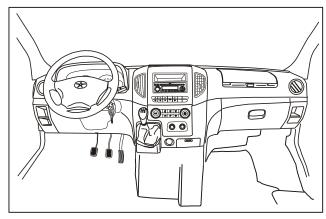

1. Disconnect negative cable of battery.



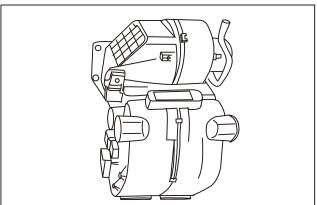
2. Remove instrument panel.



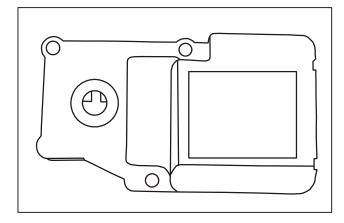

3. Disconnect harness connector and remove mounting screws from temperature control motor.




4. Take down the temperature control motor.

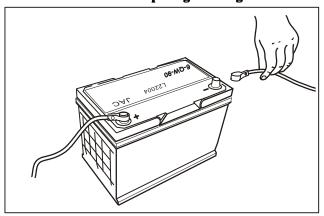

#### Removal/installation of mode damper motor



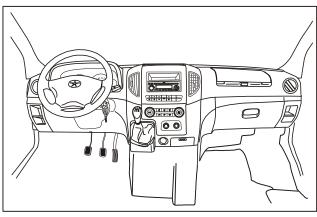

1. Disconnect negative cable of battery.



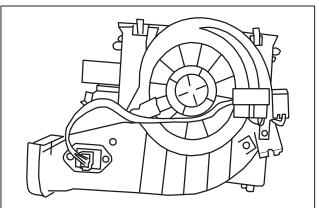
2. Remove instrument panel.



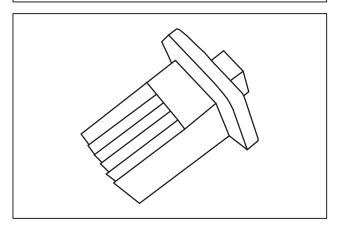

3. Disconnect harness connector and connections and remove mounting screws from mode damper motor.




4. Remove the mode damper motor.

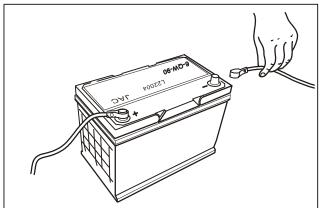

## Removal/installation of speed governing module



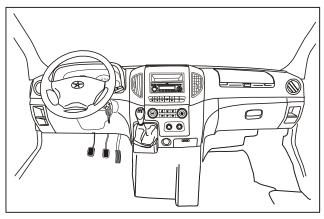

1. Disconnect negative cable of battery.



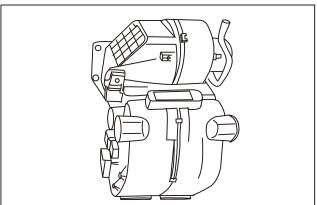
2. Remove instrument panel.



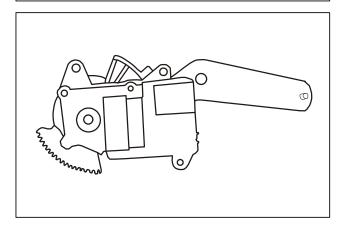

3. Disconnect the harness connector of speed governing module and remove mounting screws.




4. Remove the speed governing module.

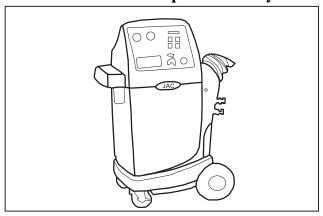

### Removal/installation of internal/external air damper motor



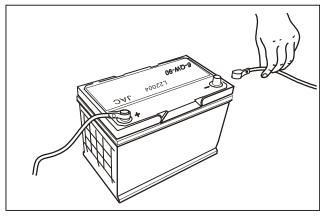

1. Disconnect negative cable of battery.



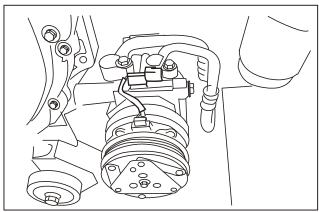
2. Remove instrument panel.



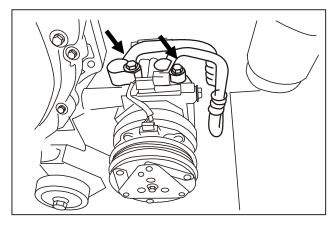

3. Disconnect harness connector and remove mounting screws from internal/external air damper motor.




4. Take down the internal/external air damper motor.

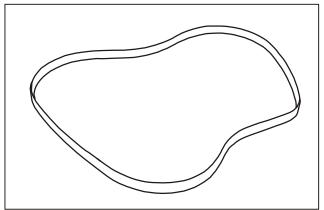

#### Removal/installation of compressor assembly



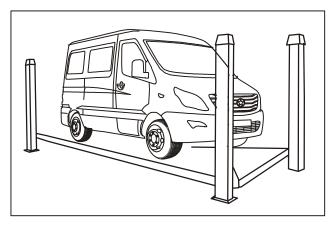

1. Recover refrigerant.



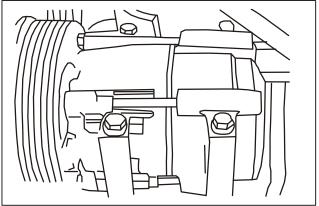
2. Disconnect negative cable of battery.



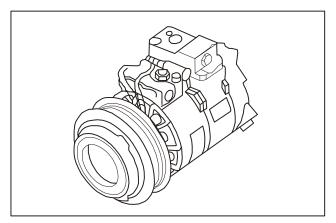

3. Disconnect A/C clutch switch harness.




4. Unscrew mounting bolts from pipeline and make high and low pressure pipes separated.

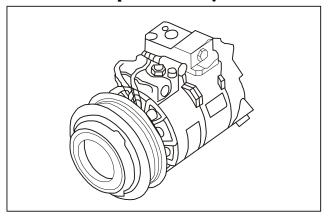

### Removal/installation of compressor assembly



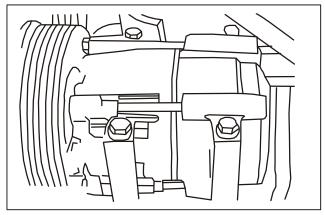

5. Loosen mounting nuts from tension pulley, unscrew adjusting bolt for tension pulley and remove the compressor drive belt.



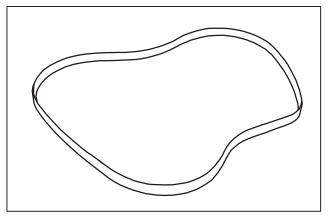
6. Lift the vehicle.



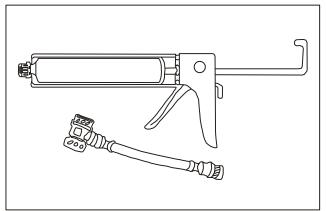

7. Remove mounting bolts from compressor.




8. Remove the compressor from vehicle bottom.

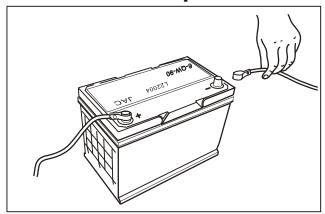

#### Installation of compressor assembly



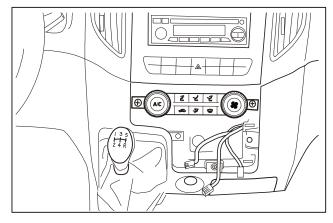

1. Refill compressor with compressor oil and tighten the oil filler bolt.



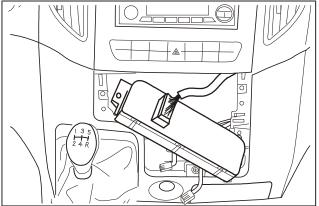
2. Install the compressor onto vehicle in reverse order of removal.



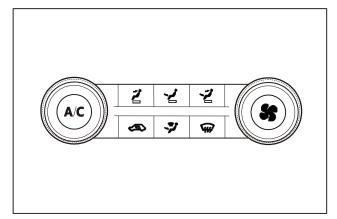

3. Adjust belt tension after installation.




4. Check pipeline for leak after replenishment of refrigerant.


#### Removal of front A/C control panel



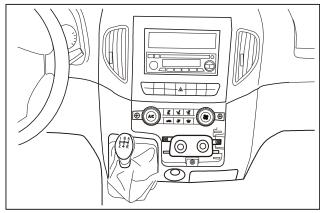

1. Disconnect negative cable of battery.



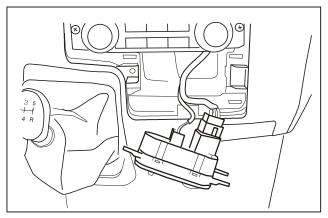
2. Remove outer cover plate of A/C control panel.



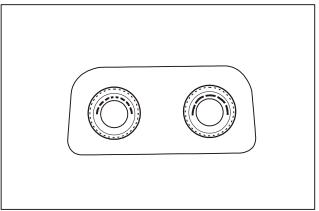
3. Remove mounting bolts from A/C control panel and disconnect harness.




4. Remove the A/C control panel.


## Removal of front A/C control panel




1. Disconnect negative cable of battery.



2. Remove outer cover plate of A/C control panel.



3. Remove mounting bolts from A/C control panel and disconnect harness.



4. Remove the A/C control panel.

## **Specification**

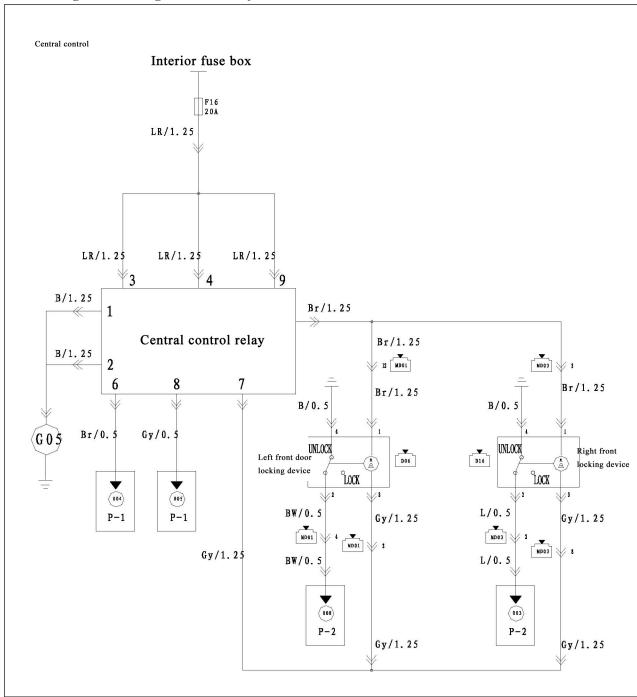
## **Basic parameters**

| Name                  | Item                                            | Parameter                      | Parameter                          |  |  |  |
|-----------------------|-------------------------------------------------|--------------------------------|------------------------------------|--|--|--|
|                       | Type:                                           | 10-cyliner swash-plate co      | mpressor                           |  |  |  |
|                       | Air displacement: ml/r                          | Air displacement: ml/r 210ml/r |                                    |  |  |  |
| A/C compressor        | Lubricating oil grade:                          | PAG                            |                                    |  |  |  |
|                       | Lubricating oil volume: g                       | 400±15g                        |                                    |  |  |  |
|                       | Electromagnetic clutch:                         | Four-groove disc clutch o      | f 110mm diameter.                  |  |  |  |
|                       |                                                 |                                |                                    |  |  |  |
|                       |                                                 | Front heater assembly          | Rear heater assembly               |  |  |  |
| Air heater:           | Type:                                           | All-aluminum welding he        | ater                               |  |  |  |
|                       | Power:                                          | 4000W                          | 4500W                              |  |  |  |
|                       |                                                 |                                |                                    |  |  |  |
|                       |                                                 | Front A/C blower               | Rear A/C blower (2)                |  |  |  |
| Blower:               | Operating voltage:                              | DC 12 V                        | DC 12 V                            |  |  |  |
|                       | Operating current:                              | 18.3 A                         | 12 A                               |  |  |  |
|                       |                                                 |                                |                                    |  |  |  |
|                       |                                                 | Front A/C                      | Rear A/C                           |  |  |  |
| Refrigerating device: | Type:                                           | Laminated evaporator           | Dual parallel flow-type evaporator |  |  |  |
|                       | Evaporator power:                               | >4500 W                        | >5000W                             |  |  |  |
|                       |                                                 |                                |                                    |  |  |  |
|                       |                                                 | Front condenser assembly       | Rear condenser assembly            |  |  |  |
| Condenser             | Type:                                           | Aluminum parallel flow type    | Aluminum parallel flow type        |  |  |  |
|                       | Power:                                          | 12000 W                        | 12000 W                            |  |  |  |
|                       |                                                 |                                |                                    |  |  |  |
| Fluid reservoir       | Fluid reservoir Model and capacity 400 ml R134a |                                |                                    |  |  |  |
|                       |                                                 |                                |                                    |  |  |  |
| Refrigerant:          | Model and filling amount                        | R134a, 1550 g                  |                                    |  |  |  |

# **Circuit Diagram**

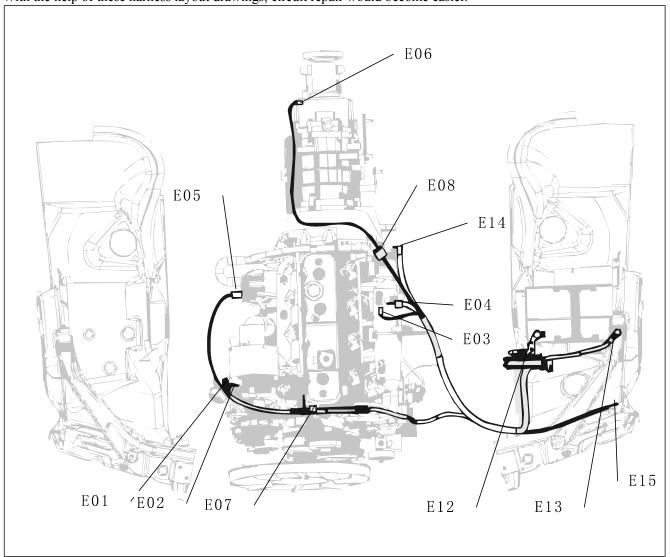
# Applied models: SUNRAY products manufactured by JAC

| Subject                                   | Page |
|-------------------------------------------|------|
| Diagram specification                     | 210  |
| Circuit Diagram                           | 218  |
| Interior fuse box                         |      |
| Exterior fuse box.                        |      |
| Start charging system.                    |      |
| Engine ECU electronic control unit.       |      |
| Horn                                      |      |
| ABS system.                               |      |
| Airbag system.                            |      |
| Reversing system                          |      |
| Electric rear view mirror.                |      |
| Audio system                              |      |
| Cigarette lighter and fuel heater.        |      |
| Rear ceiling lamp and front fog lamp      |      |
| Rear fog lamp                             |      |
| High beam and low beam.                   |      |
| Turn signal lamp and hazard warning lamp. |      |
| Small lamp                                |      |
| Central control                           |      |
| Wiper and washer.                         |      |
| Power window                              |      |
| Front A/C system                          | 242  |
| Rear A/C system                           |      |
| ETACS                                     |      |
| Instrument                                | 247  |
| Self diagnosis                            | 250  |
|                                           |      |
| Harness layout                            | 251  |
| Main harness                              | 251  |
| Engine compartment harness.               |      |
| Left front door harness.                  |      |
| Right front door harness                  |      |
| Left tail lamp harness.                   |      |
| Right tail lamp harness.                  |      |
| Left back door harness                    |      |
| Rear loud speaker harness                 |      |
| ABS harness                               |      |
| Fuel tank harness                         |      |
| Reversing radar harness                   | 263  |


#### **EC Circuit Diagram**

#### Instruction

This chapter consists of two parts as circuit diagram and harness layout drawing.

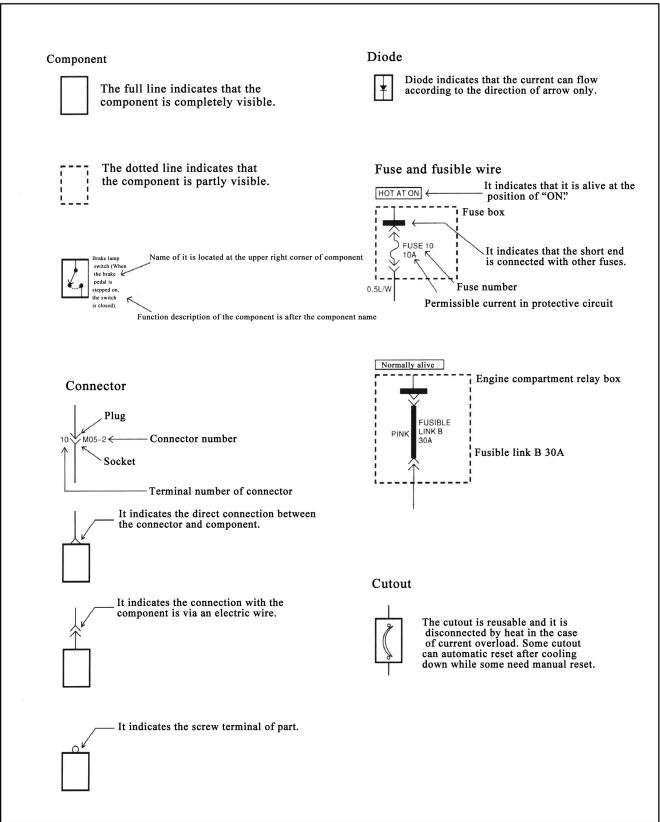

#### Circuit Diagram

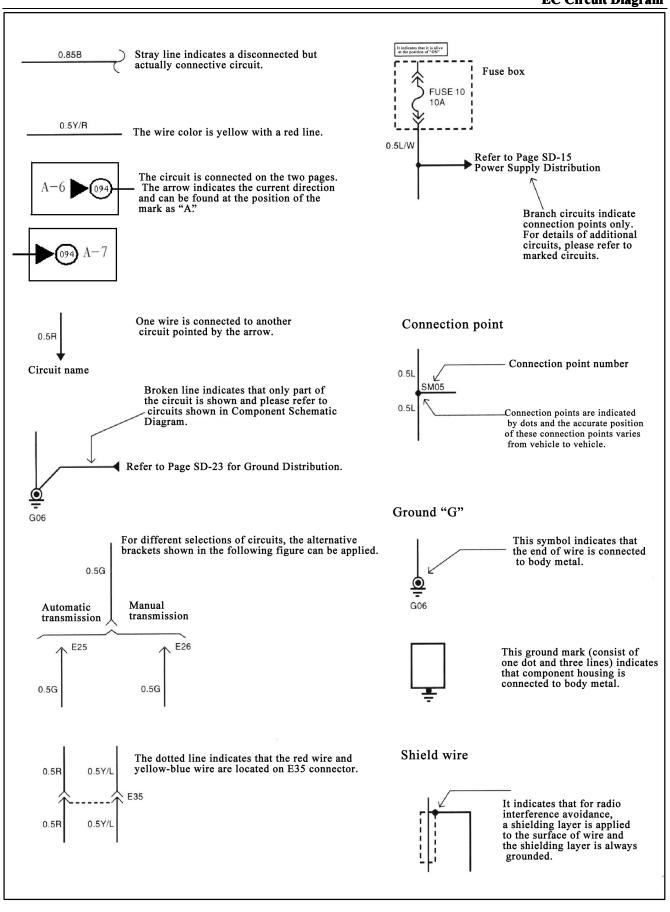
Start to understand every system form understanding its circuit diagram for circuit diagram indicates all operating paths of every component. For example, it indicates power supply and negative ground of electric load, position of wire connector and relative fuse, switch, etc. consist of circuit. For trouble diagnosis and troubleshooting, the full understanding of circuit diagram is necessary.

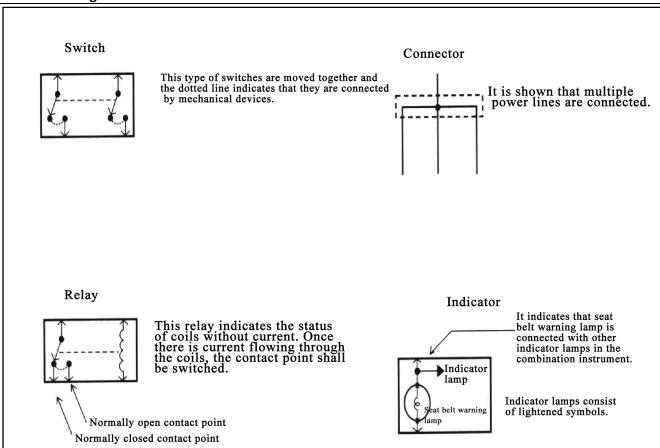


## Harness layout drawing

Mounting and fixed position of main harness and wire connector and route of main harness are indicated in this part. With the help of these harness layout drawings, circuit repair would become easier.





#### **EC Circuit Diagram**

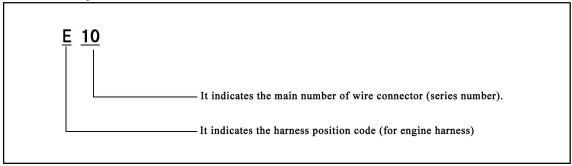

#### Notation

The following electrical notations, electrical symbols and abbreviations are adopted in this manual.

#### Notation of circuit diagram

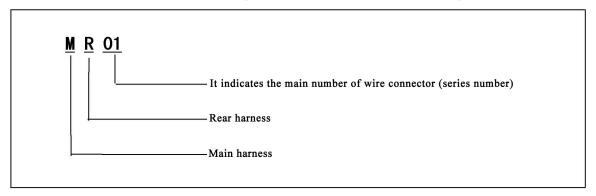






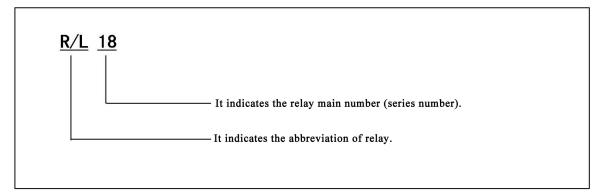

Wire color description

| Wire color  | Code | Wire color | Code |
|-------------|------|------------|------|
| Black       | В    | Orange     | 0    |
| Blue        | L    | Pink       | P    |
| Brown       | Br   | Red        | R    |
| Green       | G    | Violet     | V    |
| Gray        | Gr   | Yellow     | Y    |
| Light green | Lg   | White      | W    |


#### Identification of wire connector codes

Wire connector identification code consists of harness position identification code and wire connector identification code. For example:




#### Notice:

Wire connectors between harnesses are expressed by following codes. For example:



#### Identification of relays

Relay identification code consists of relay abbreviation and its main number (series number). For example:



## **EC Circuit Diagram**

## Electrical symbols of circuit diagram

| Electrical symbol    | Symbol description                                                                                                                                                                                       |                            | Symbol description                                                                                                                                         |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Battery              | It generates current via chemical action     It supplies current to circuits directly                                                                                                                    | Electrical heating         | • It generates heat via current                                                                                                                            |
| Harness ground point | • It is connected to body ground point via harness to connect current with battery negative terminal and from a circuit                                                                                  | Cigarette lighter          | • It generates heat via current and can be used as vehicle power supply                                                                                    |
| Slow blow fuse       | <ul> <li>When the current exceeds the rated one, fusible wire is blown and the current is cut off.</li> <li>Warning: In fuse replacement, the current of fuse should not exceed rated current</li> </ul> | Vehicle power supply       | ● It distributes power for off-board electrical appliances which are in accordance with rated voltages                                                     |
| Plate fuse           | Slow blow fuse Plate fuse                                                                                                                                                                                | Horn                       | • It makes a sound via current                                                                                                                             |
| Lighting             | • When the current is flowing through filament, light and heat is generated                                                                                                                              | Loud speaker               |                                                                                                                                                            |
| Resistance           | ● It is mainly used in series circuit to protect electrical appliance with rated voltage                                                                                                                 | Switch                     | • It allows or stops the existing current by opening or closing circuit                                                                                    |
| Motor                | • It converts electric energy to mechanical energy                                                                                                                                                       | Diode                      | • Diode, allows current to flow in only one direction                                                                                                      |
| Pump                 | ● It sucks or discharges gas or liquid via the work of motor.                                                                                                                                            | Light-emitting diode (LED) | <ul> <li>When current flows through it, it is lightened</li> <li>Different from general bulbs, when LED is lighten, there is no heat generation</li> </ul> |

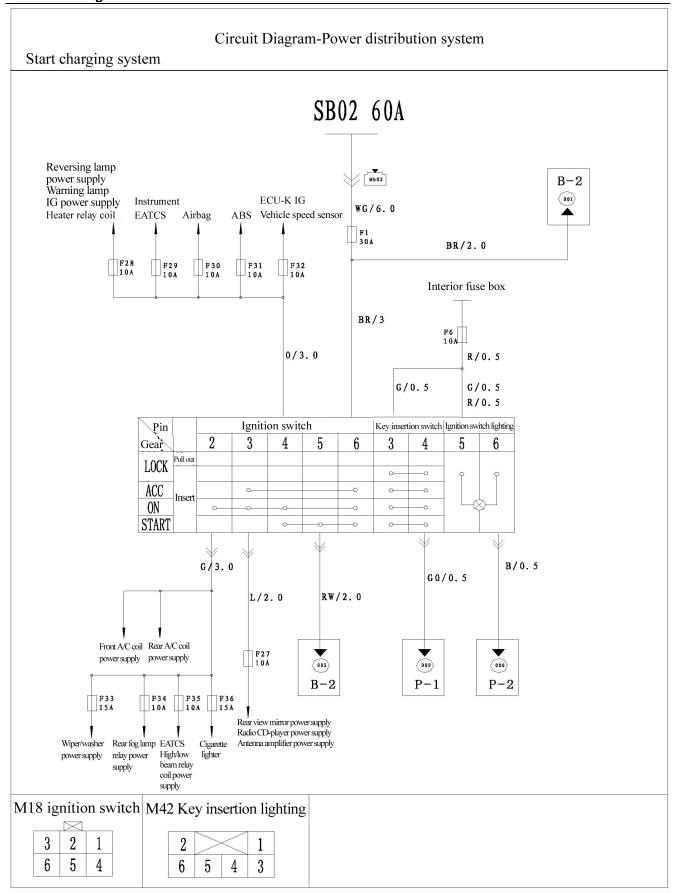
| Electrical symbol                 | Symbol description                                          | Electrical symbol       | Symbol description                                                        |
|-----------------------------------|-------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------|
| Sensor (Thermistor type )         | • Resistance value varies according to temperature changes. | Fan                     | • It is used for engine heat dissipation.                                 |
| Sensor  (Sliding resistance type) | • Resistance value varies according to component positions. | Circuit intraconnection | The above diagram indicates Circuit C-D is intraconnected to Circuit A-B. |
| Normally open relay               | There is no current flowing through the                     | -                       | is current flowing through the coils                                      |
| Normally closed relay             | There is no current flowing through the                     |                         | is current flowing through the coils                                      |

#### **EC Circuit Diagram**

## Circuit Diagram-Power distribution system

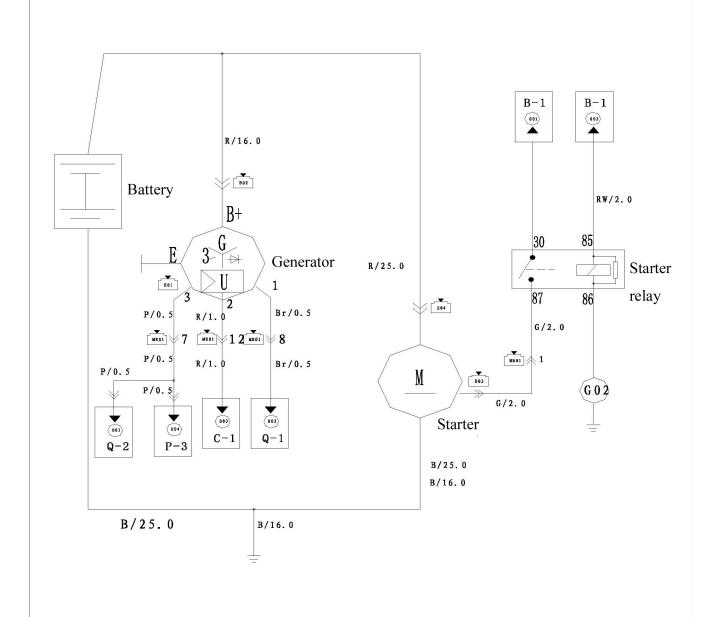
## Power distribution system-1 Interior fuse box M01

| lni | terior | THEE | hov         |
|-----|--------|------|-------------|
| 111 | CITOI  | IUSC | $UU\Lambda$ |


| F19<br>10A | F20<br>10A | F21<br>40A | F22<br>10A | F23       | F24<br>15A | F25<br>10A | F26<br>25A | F27<br>10A | F28<br>10A | F29<br>10A | F30<br>10A | F31<br>10A | F32<br>10A | F33<br>15A | F34<br>10A | F35<br>10A | F36<br>15A |
|------------|------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            |            | FDS        |            | )         | С          |            | XII        |            |            | ΧШ         |            |            | X IV       |            | D          |            | Е          |
|            | VI         |            |            | VII       |            |            | VIII       |            |            | IX         |            |            | X          |            |            | XI         |            |
|            | I          |            |            | П         |            |            | Ш          |            |            | IV         |            |            | V          |            | A          |            | В          |
| F1<br>30A  | F2<br>30A  | F3         | F4<br>30A  | F5<br>20/ |            | F7<br>15A  | F8<br>10A  | F9<br>10A  | F10<br>30A | F11        | F12<br>15A | F13<br>25A | F14<br>10A | F15<br>40A | F16<br>20A | F17<br>15A | F18<br>15A |

| FDS  | Self diagnosis             | F5  | Radio CD-player          | F28 | Reversing lamp             |
|------|----------------------------|-----|--------------------------|-----|----------------------------|
| C    | Small lamp relay           | F6  | ETACS                    | F29 | Instrument                 |
| XII  | Starter relay              | F7  | Front fog lamp           | F30 | Airbag                     |
| XIII | Front A/C relay            | F8  | Turn signal lamp         | F31 | ABS                        |
| XIV  | Rear A/C relay             | F9  | Instrument               | F32 | Vehicle speed sensor       |
| D    | Horn relay                 | F10 | ECU                      | F33 | Wiper and washer           |
| E    | Rear fog lamp relay        | F11 | Vacancy                  | F34 | Rear fog lamp              |
| VI   | Front fog lamp relay       | F12 | Horn                     | F35 | High and low beam coil end |
| VII  | Central control lock relay | F13 | ABS                      | F36 | Cigarette lighter          |
| VIII | Wiper intermittent relay   | F14 | Ceiling lamp             |     |                            |
| IX   | Compressor relay           | F15 | Front A/C                |     |                            |
| X    | ECU relay                  | F16 | Door lock and small lamp |     |                            |
| XI   | Condenser fan relay        | F17 | High beam                |     |                            |
| II   | Power window relay         | F18 | Low beam                 |     |                            |
| III  | Heater relay               | F19 | Small lamp               |     |                            |
| IV   | Flasher relay              | F20 | Small lamp               |     |                            |
| V    | Warning lamp relay         | F21 | Rear A/C                 |     |                            |
| Å    | Low beam relay             | F22 | Compressor               |     |                            |
| В    | High beam relay            | F23 | ECU                      |     |                            |
| F1   | Starter                    | F24 | ECU                      |     |                            |
| F2   | Condenser fan              | F25 | ECU                      |     |                            |
| F3   | Vacancy                    | F26 | Heater                   |     |                            |

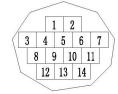
F27 ACC

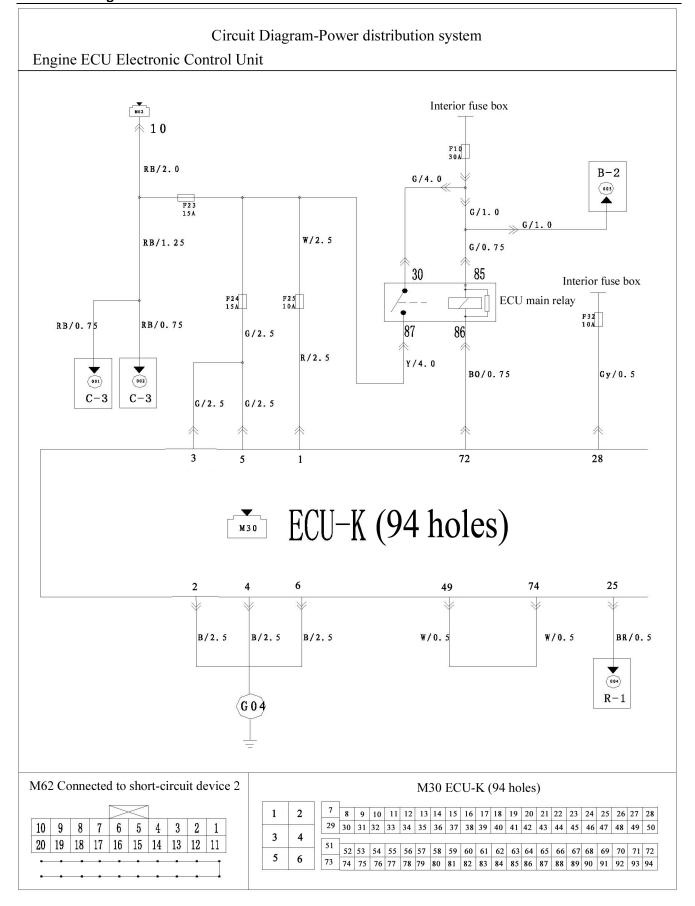

Power window

# Circuit Diagram-Power distribution system Power distribution system-2 Exterior fuse box E12 SB04 40A SB05 60A SB01 SB02 SB03 80A 60A 60A Constant power supply I SB01 Constant power supply II SB02 Constant power supply III SB03 ABS power supply SB04 Preheating module power supply SB05

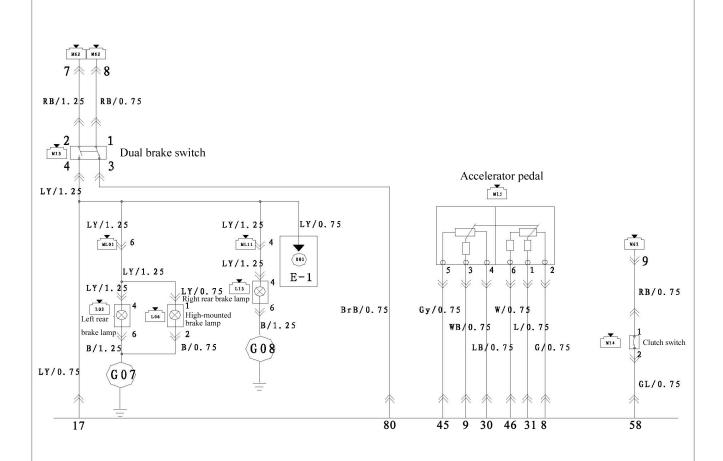


#### Circuit Diagram-Power distribution system

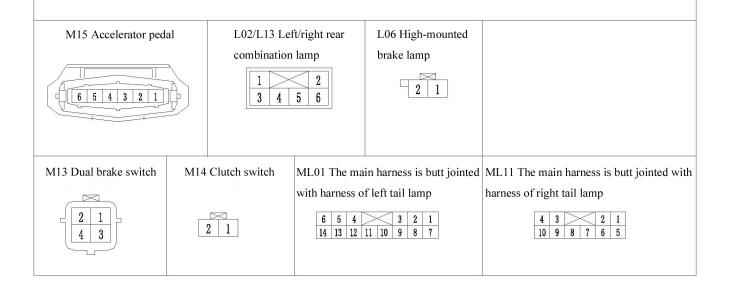

## Start charging system




E01 Generator control

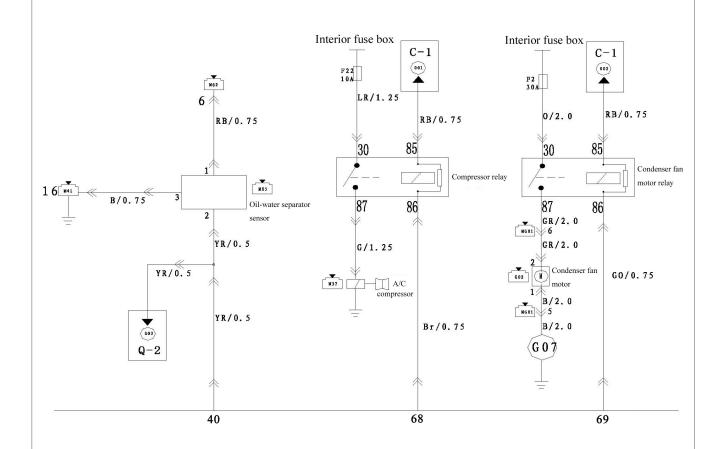


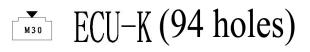

ME01 Engine harness is butt jointed with main harness






## Circuit Diagram-Power distribution system Engine ECU Electronic Control Unit





## ECU-K (94 holes)

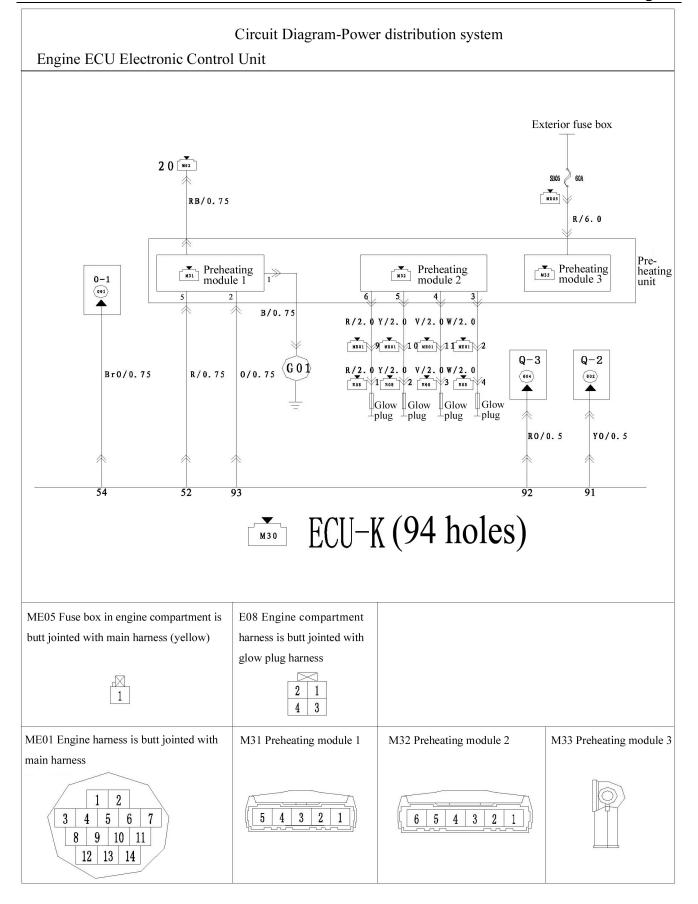


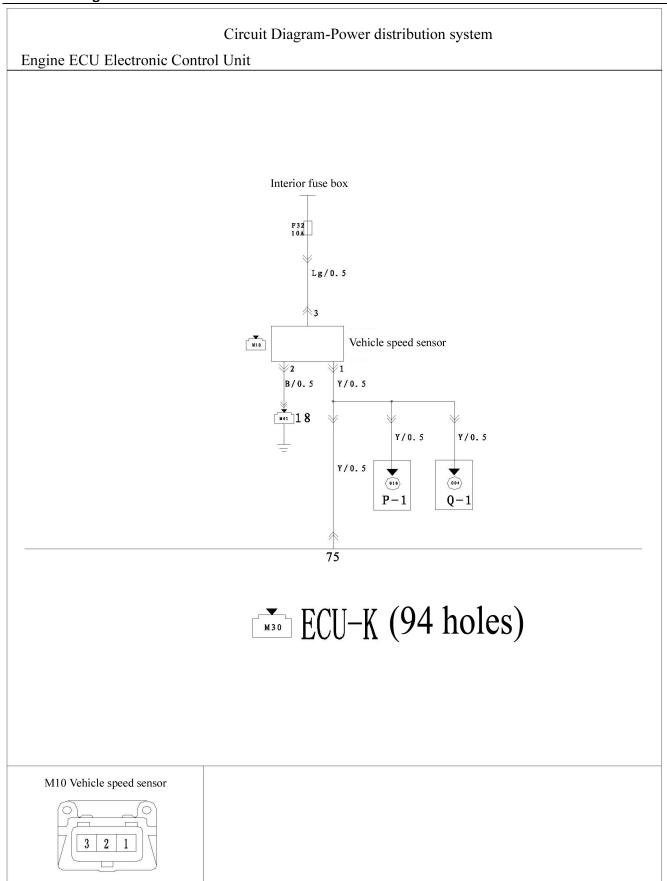
#### Circuit Diagram-Power distribution system

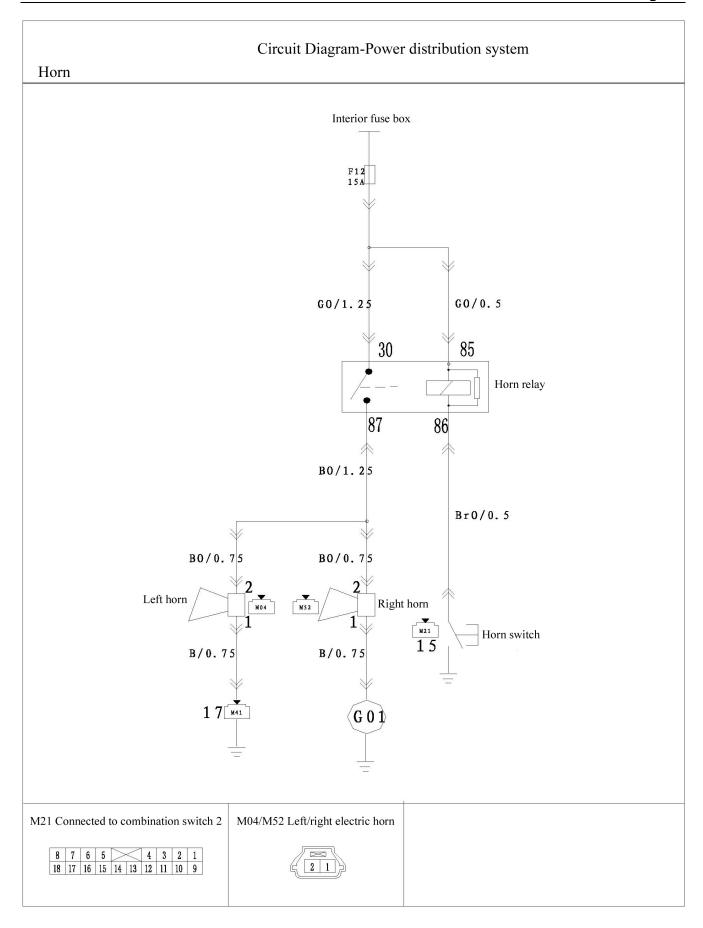
#### Engine ECU Electronic Control Unit

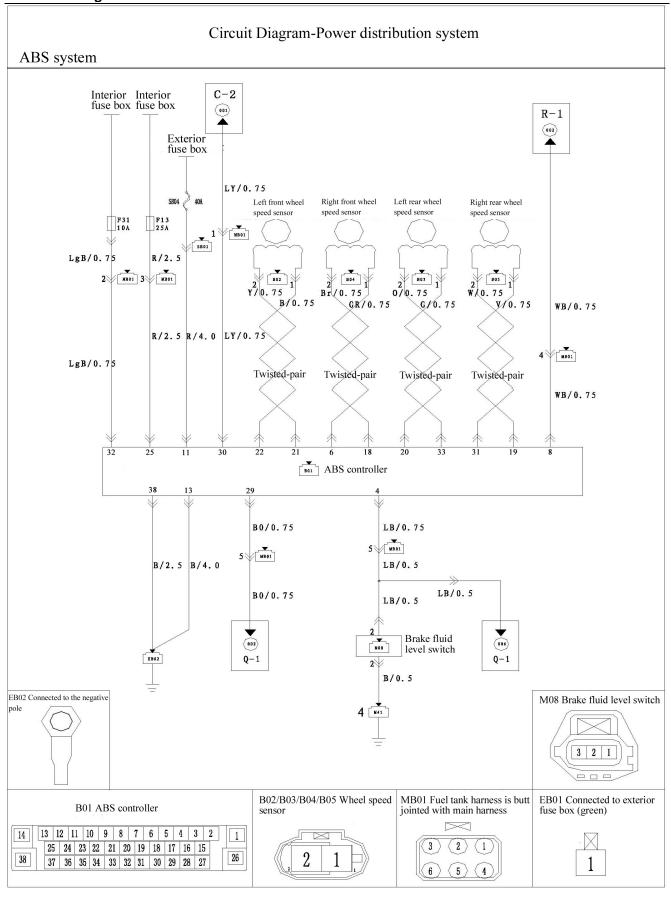


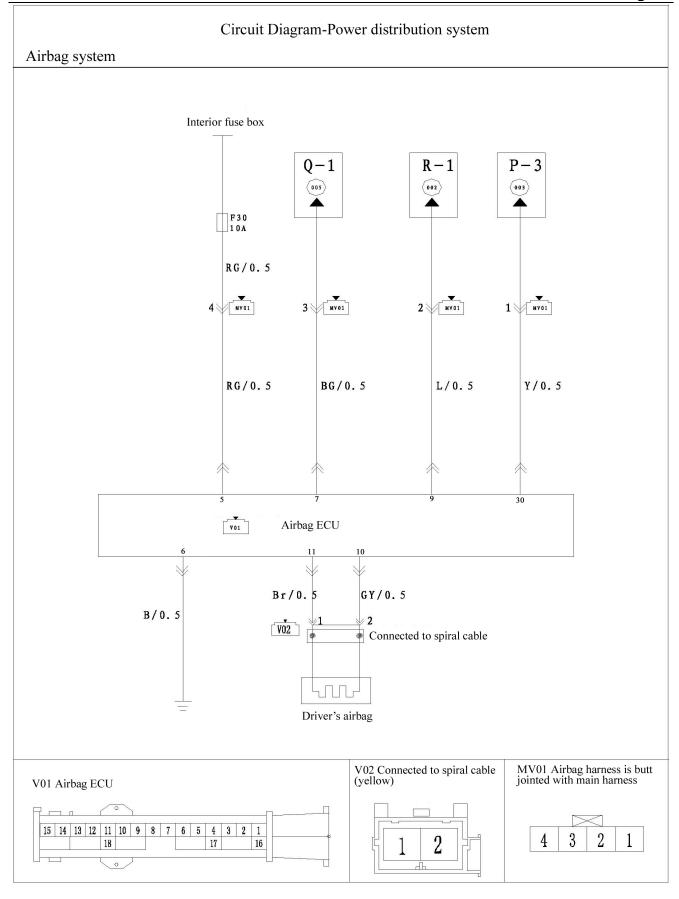


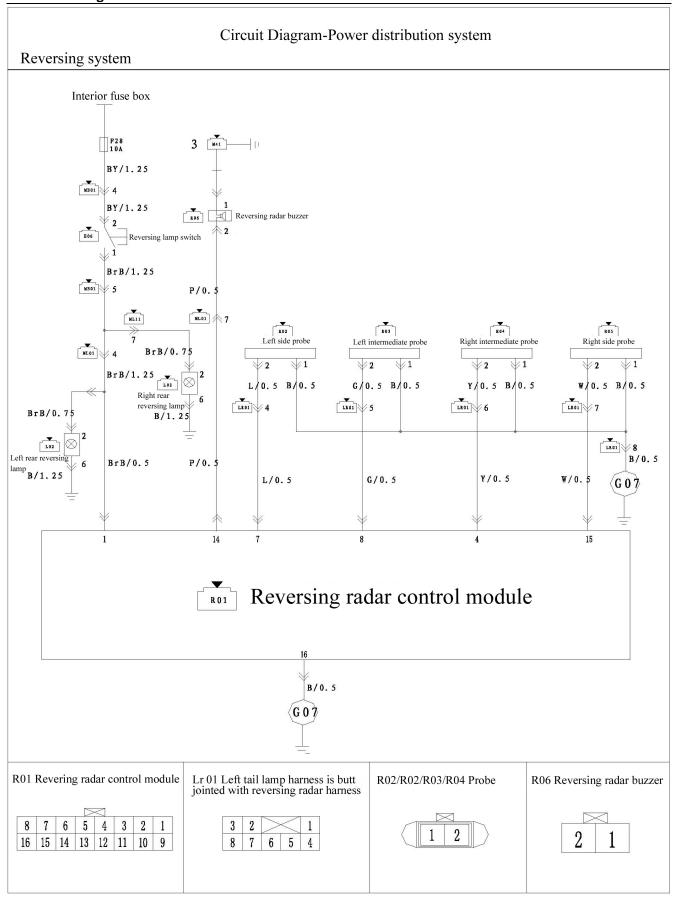

M41 Connected to short-circuit device 1 (ground wire)


10 9 8 7 6 5 4 3 2 1
20 19 18 17 16 15 14 13 12 11


11 2 3

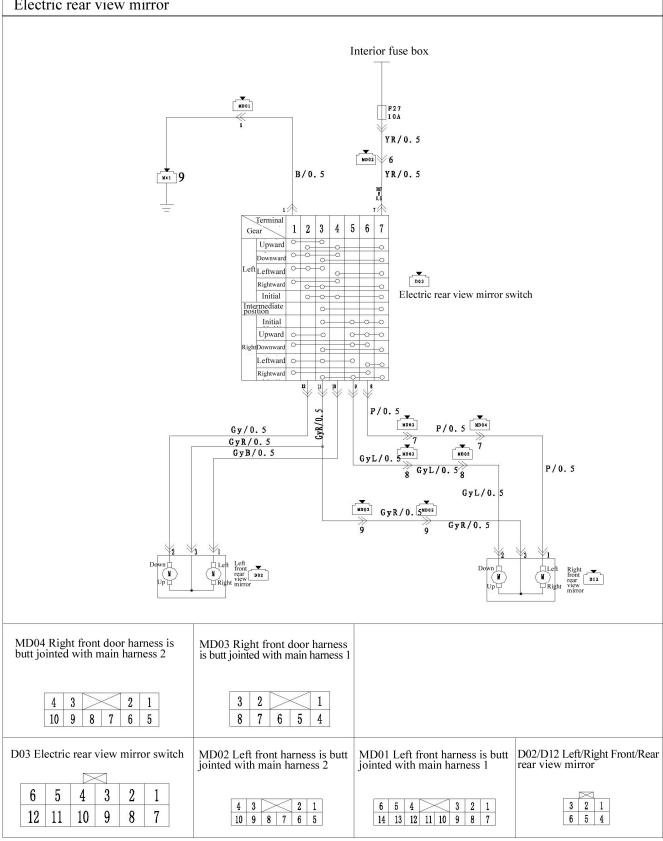

4 5 6

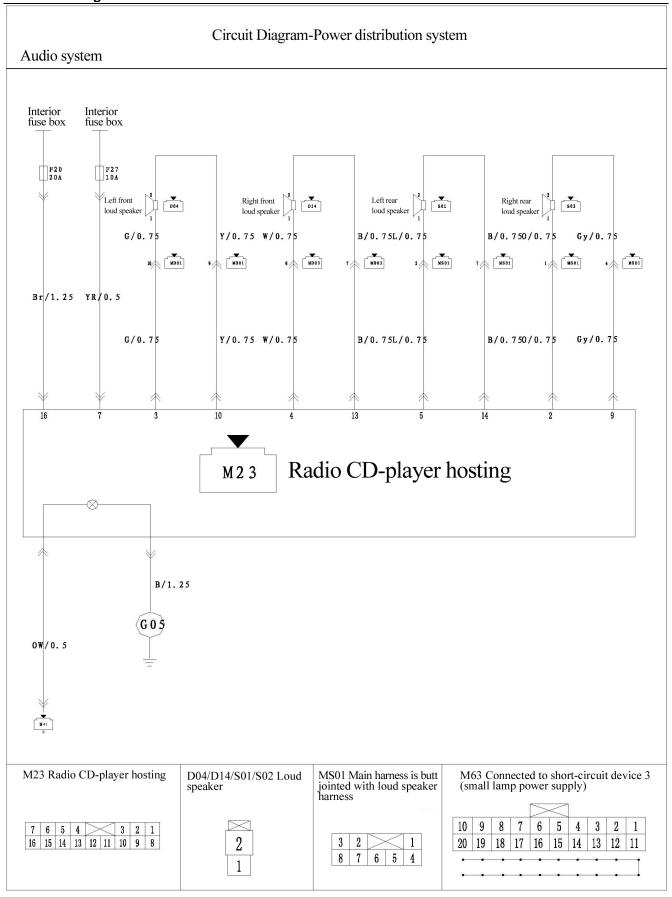

MG01 Main harness is butt jointed with fuel tank harness







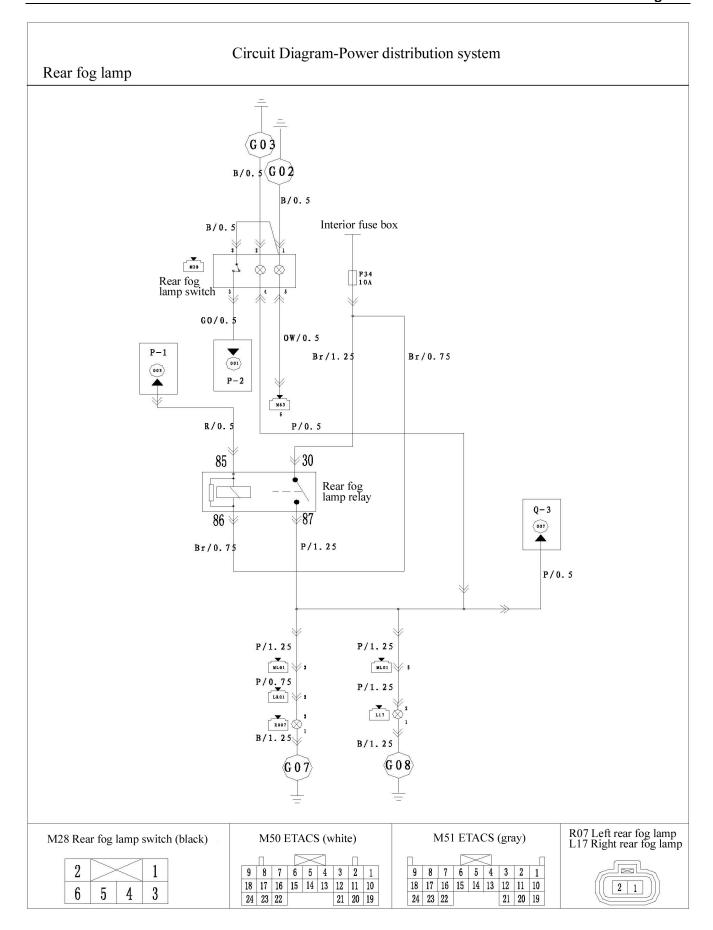


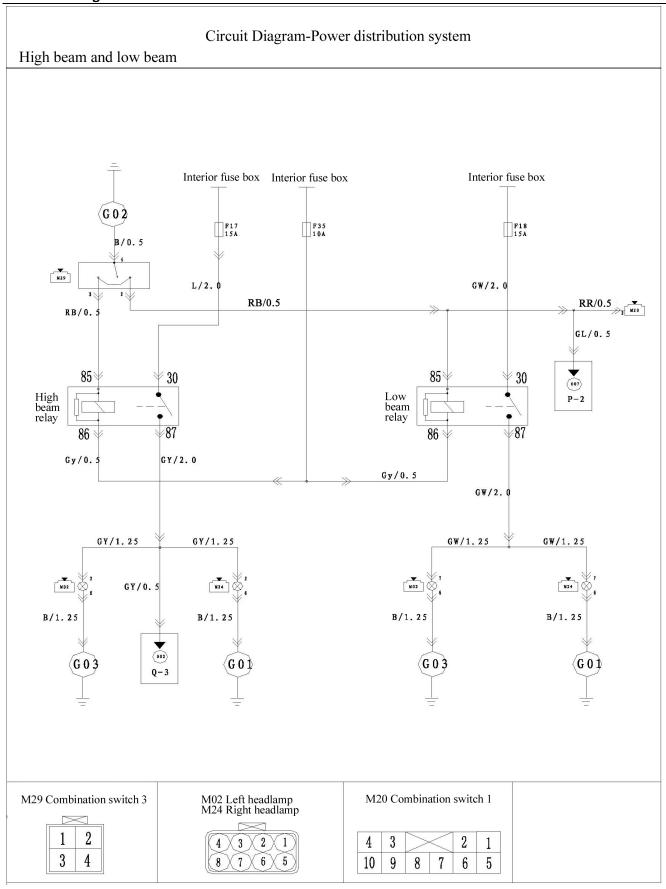

#### Circuit Diagram-Power distribution system

#### Electric rear view mirror



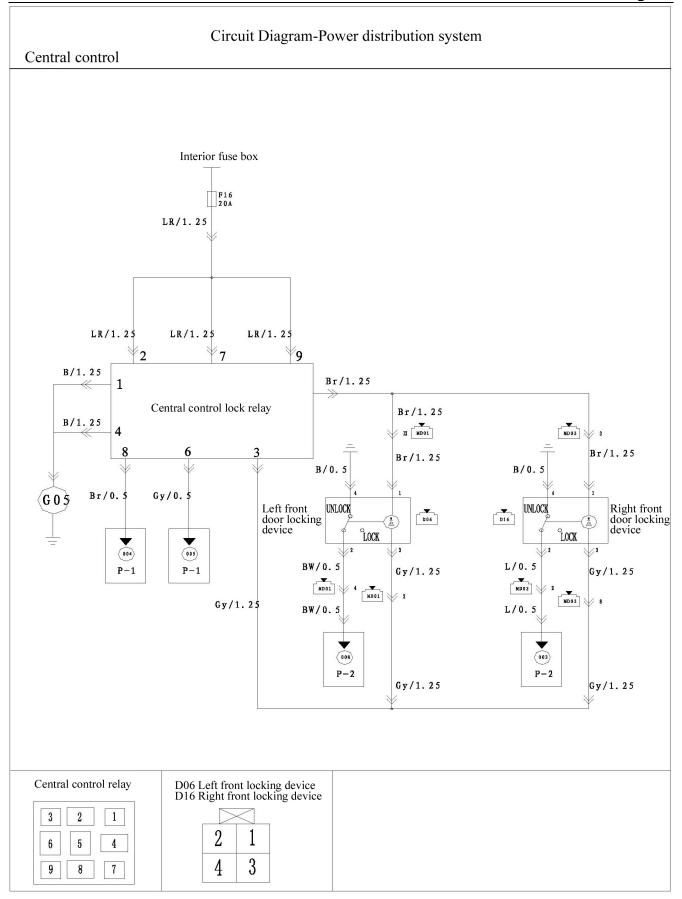


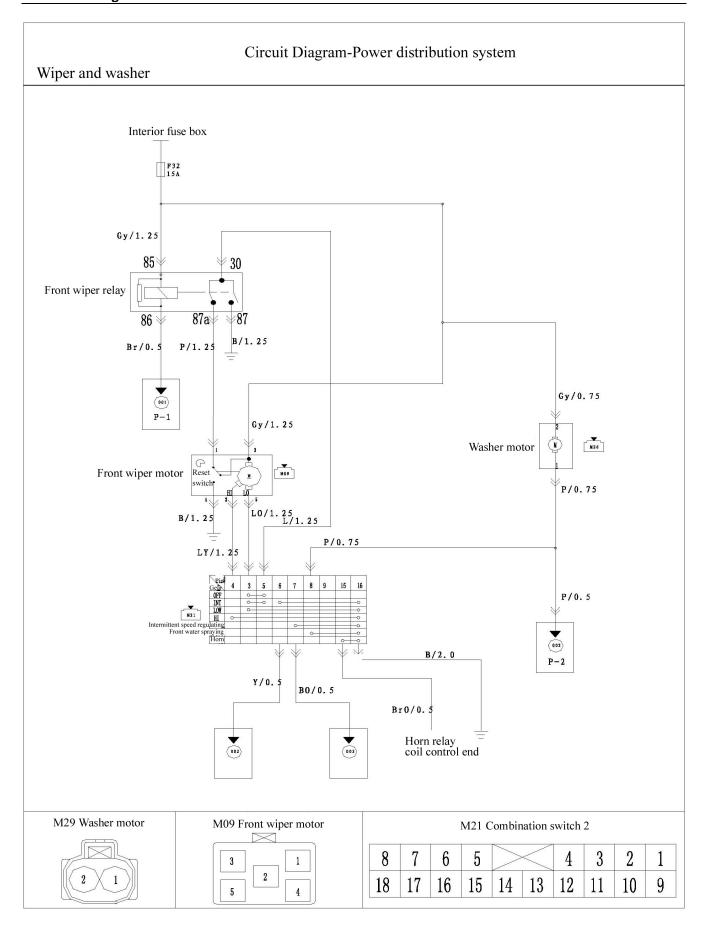

## Circuit Diagram-Power distribution system Cigarette lighter and fuel heater Interior fuse box Interior fuse box Interior fuse box F36 15A F26 25A F28 10A W/2.0 BY/0.75 85 30 Fuel heater relay BY/2.0 87 WB/0.75 L/2.0 M19 Cigarette lighter+ \_\_\_\_ M56 Cigarette lighter-B/2.0B/0.5B/2.0м 63 15 M07 Heater M19/M56 Cigarette lighter +/-M06 Oil temperature sensor

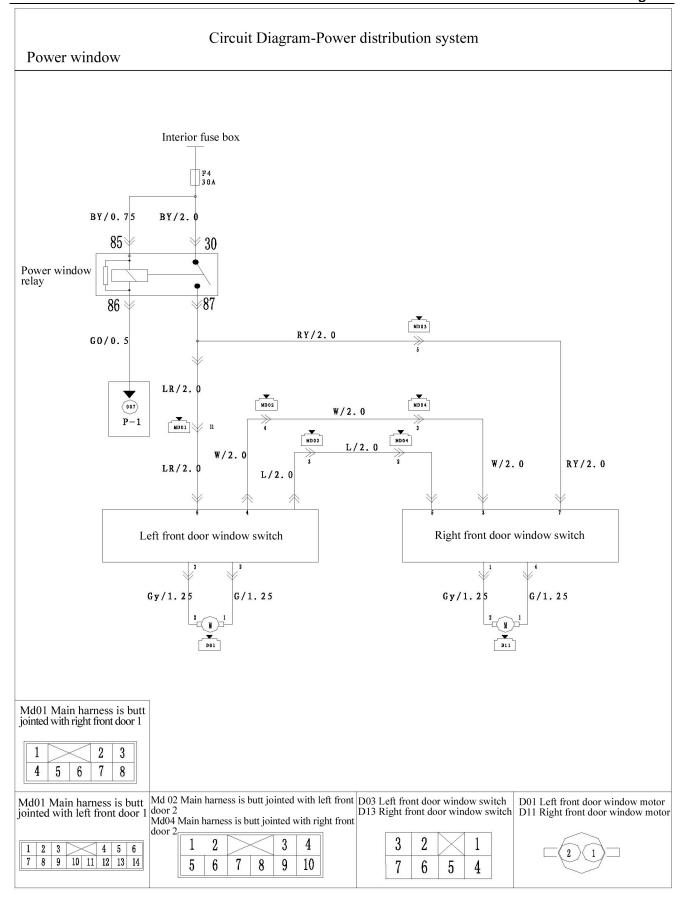

#### Circuit Diagram-Power distribution system Rear ceiling lamp and front fog lamp G 0 2 (G 0 3 $B/0.5\langle G02\rangle$ Interior fuse box Interior fuse box B/0.5Front fog lam switch (004) G 0 3 0/1.25 B/0.5 OB/0.5 OW/0.5 OB/0.5 Br/2.0 W12 Rear ceiling lamp switch OB/0.5 BR/0.5 GR/0.5 OW/0.5 BR/1.25 85 30 WL11 1 Front fog lamp relay BR/1.25 Q-386 87 (008) OW/0.75 BR/0.75 BR/0.75 GR/2.0 GR/0.5 B/0.75 B/0.75 GR/1.25 GR/1.25 G 0 8 M02 H34 B/1.25 B/1.25 G 0 3 G 0 1 M12 Rear ceiling lamp switch (red) M27 Front fog lamp switch (white) ML11 Main harness is butt jointed with right tail lamp M02 Left front fog lamp M34 Right front fog lamp L11 Intermediate ceiling lamp L12 Rear ceiling lamp harness 2 1 2 2 1 1 8 7

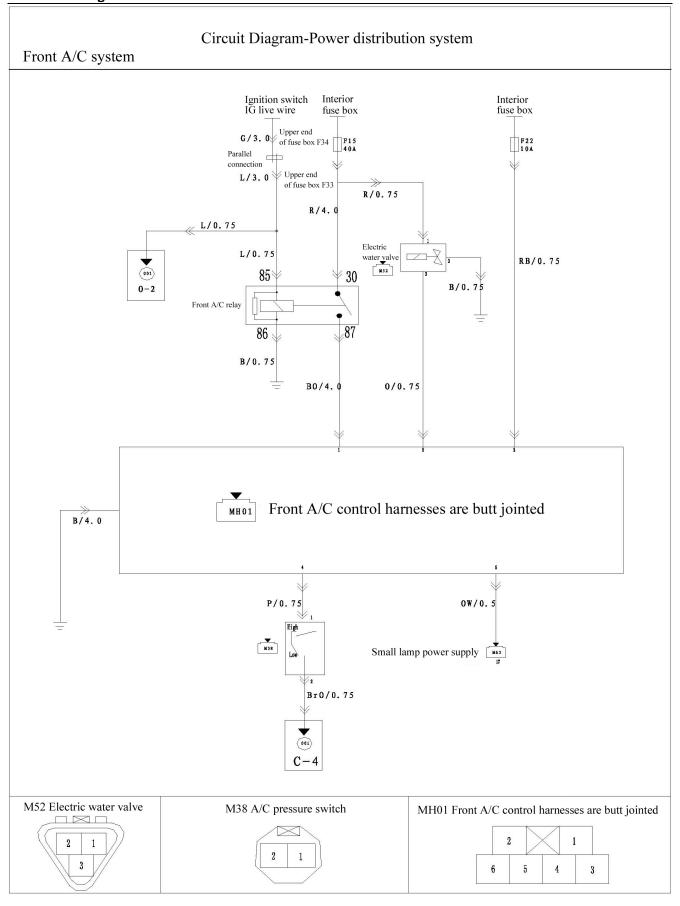
6 5 4 3

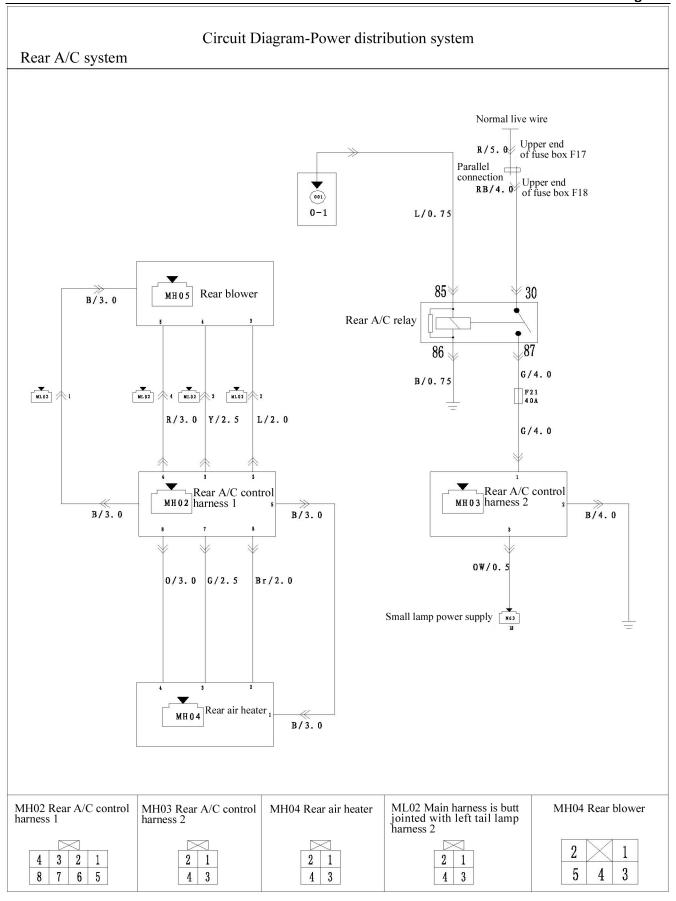
10 9

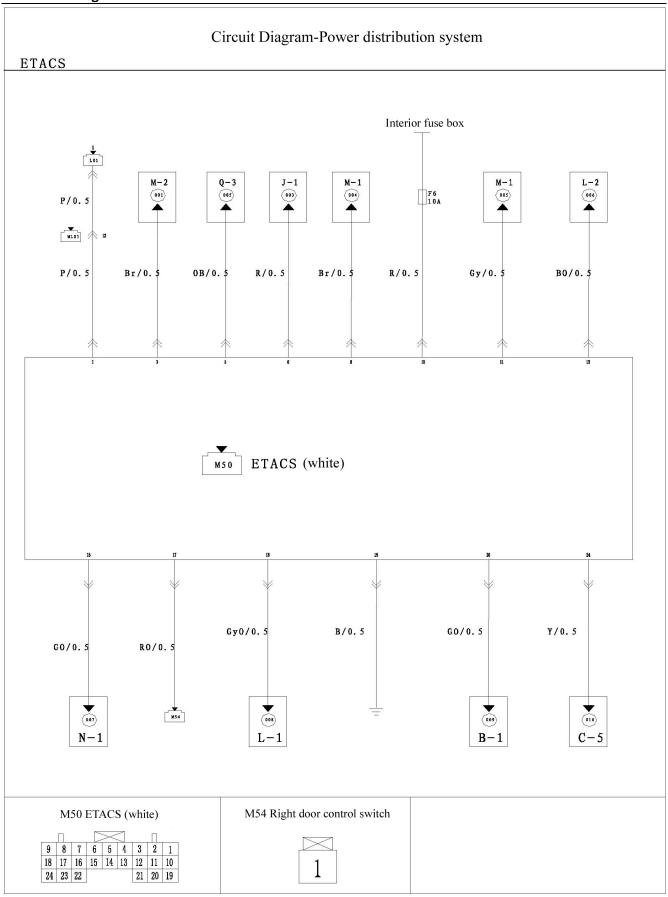

6 5

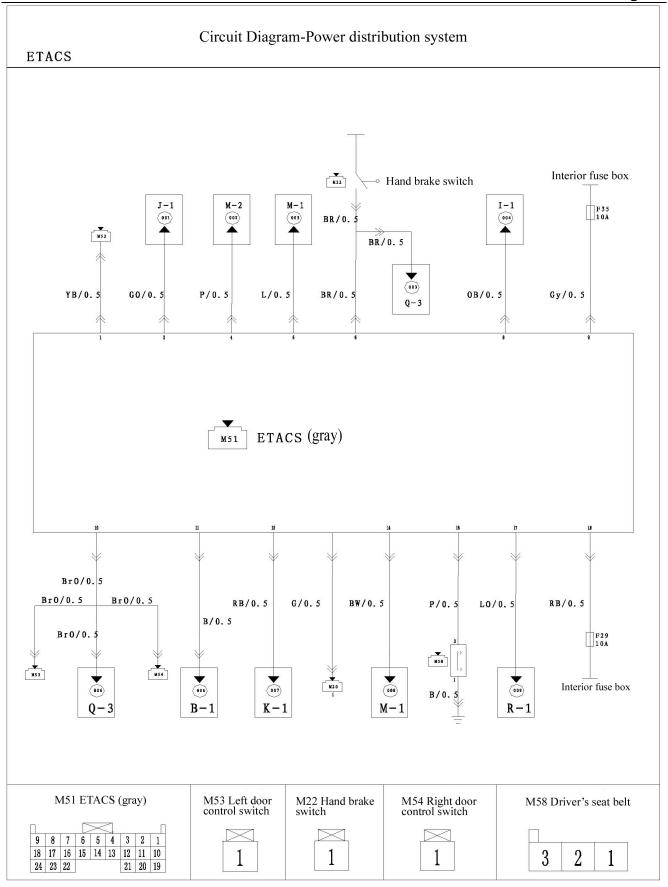


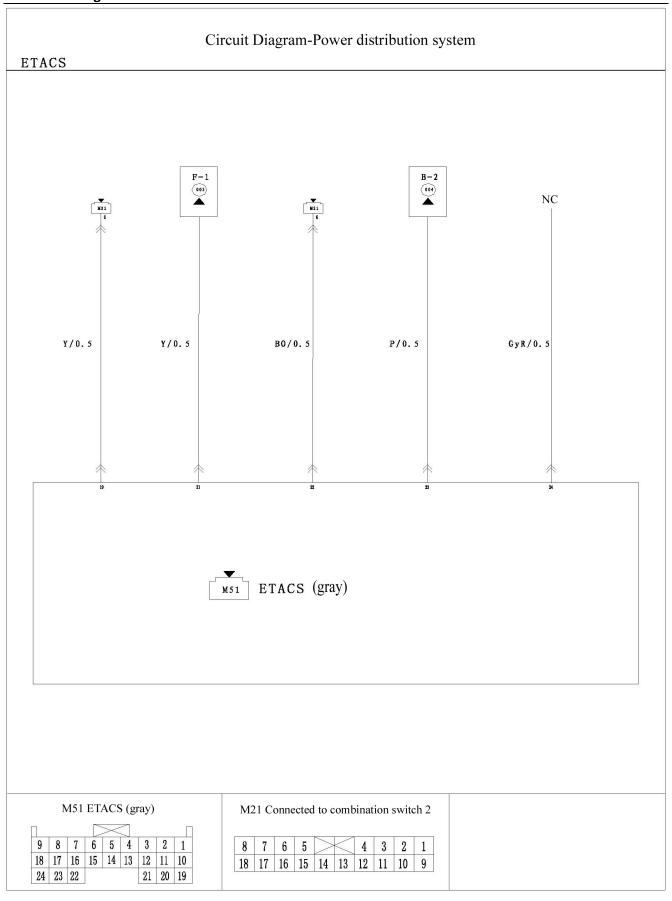



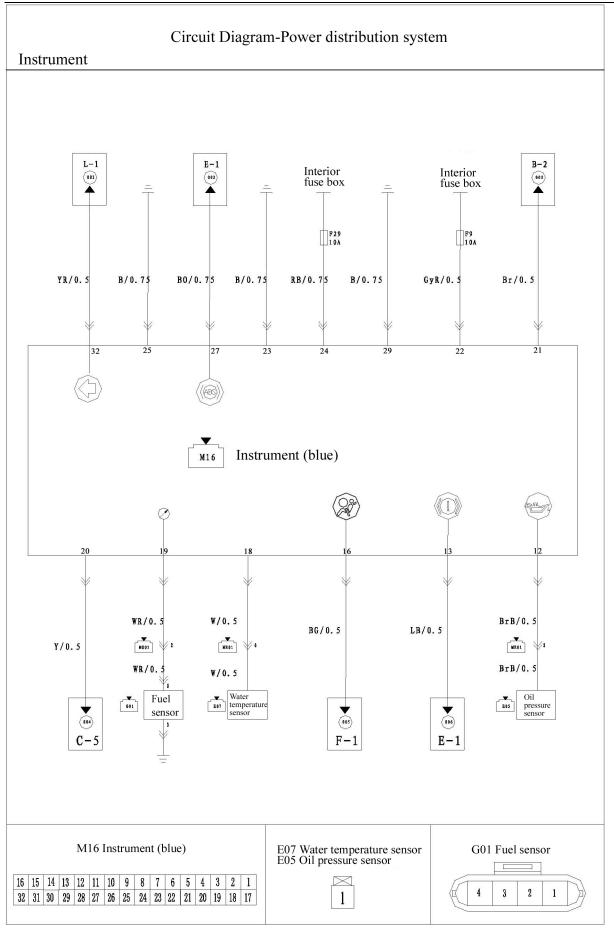


#### Circuit Diagram-Power distribution system Turn signal lamp and hazard warning lamp Interior fuse box Interior fuse box F8 10A F28 GW/1.25 G 0 3 GW/0.75 GW/1.25 GW/1.25 BY/1.25 B/0. 85 30 Warning Warning lamp relay lamp switch 0W/0.5 OFF ON ILL (+) ILL (-87a 86 Gy0/0.5 YB/1.25 YR/1.25 YR/1.25 YW/1.25 008 Y/1.25 P-1 Y/1.25 10 B/1.25 YB/1.25 G 0 2 YR/1.25 YB/1.25 YR/1.25 YR/0.5 YB/0.5 YB/1.25 YR/0.75 YB/0.5 ML01 8 YR/0.5 YB/0.5 001 001 Left rear turn signal lamp Right rear turn Q-3 B/1.25 и41 5 G 0 3 $\langle GO \rangle$ M35 Warning lamp switch M02 Left headlamp M24 Right headlamp M25 Left side turn signal lamp M36 Right side turn signal lamp M20 Combination switch 1 3 2 3 4 3 2 1 2 1 8 7 6 5 8 7 $6 \times 5$ 10 9 8 7 6 5


### Circuit Diagram-Power distribution system Small lamp 0W/0.5 N27 Interior fuse box R/1.25 OW/0.5 XX4 R/0.5 R/1.25 OR/1.25 WILL Right rear small lamp Small lamp 0W/0.5 Na3 86 BO/0.5 P/1.25 0 W / 0.5 N35 Warning lamp switch small lamp 006 ▼ 0₩/0.75 Front fog lamp relay coil control end F19 0R/1.25 4 Connecting via OR/1.25 OR/1.25 TO3 Right license plate lamp 0W/0.5 DOS Left front power window switch small lamp OW/0.5 Front A/C control panel small lamp 0/1.25 Left rear small lamp B/1. 25 B/0. 75 0W/0.5 xa03 xa03 Rear A/C control panel small lamp 0W/0.5 M12 | Rear ceiling lamp switch small lamp 0 W / 0. 5 W22 | | | Rear fog lamp switch small lamp Lt 01 Left tail lamp harness is butt jointed with left back door T03 Left license plate lamp T04 Right license plate lamp D03 Left door window switch M63 Connected to short-circuit device 3 10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 5

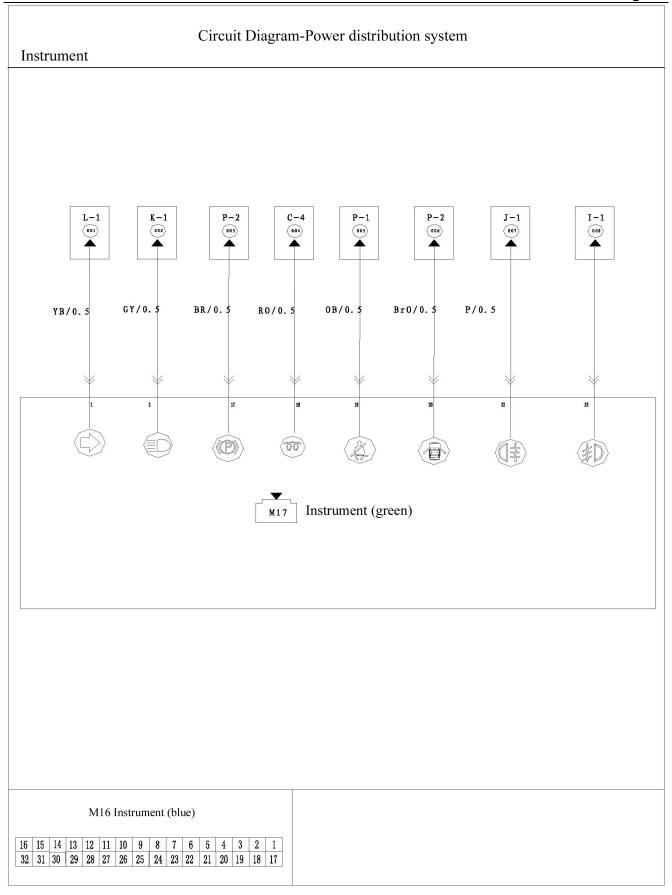


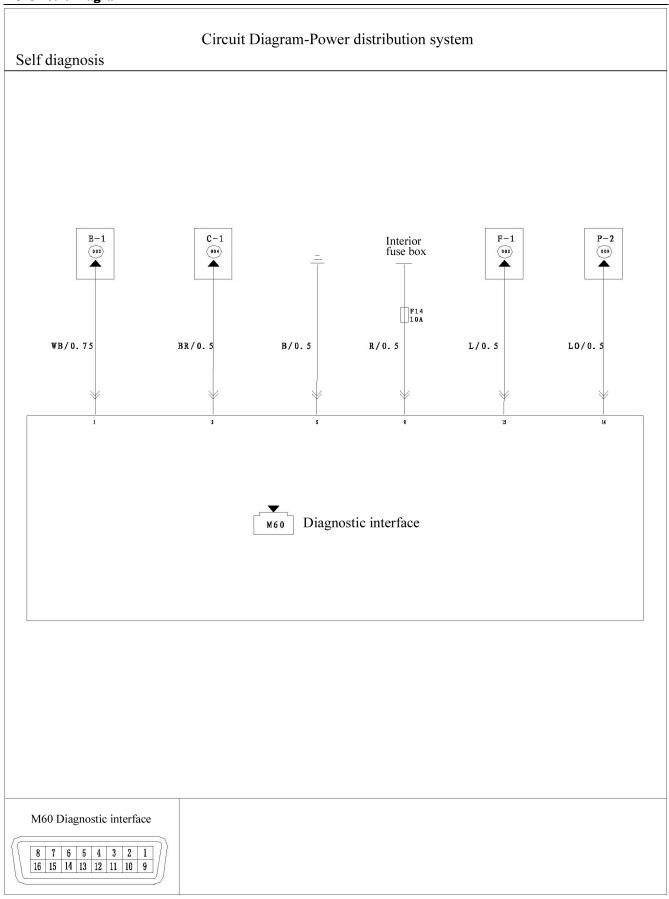



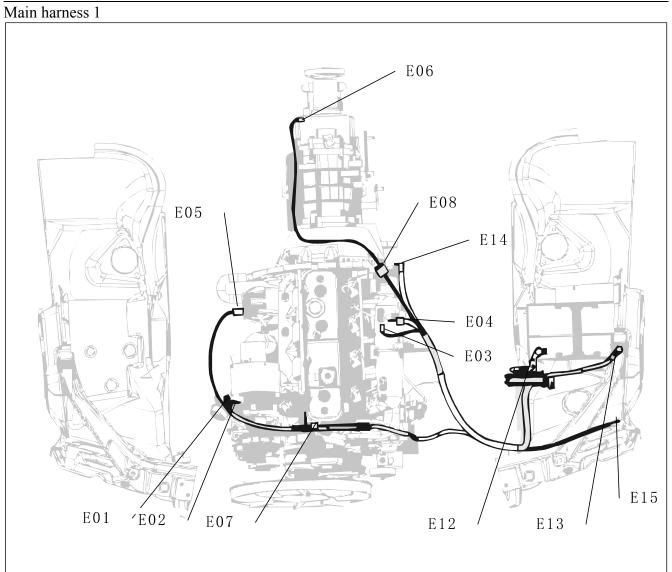



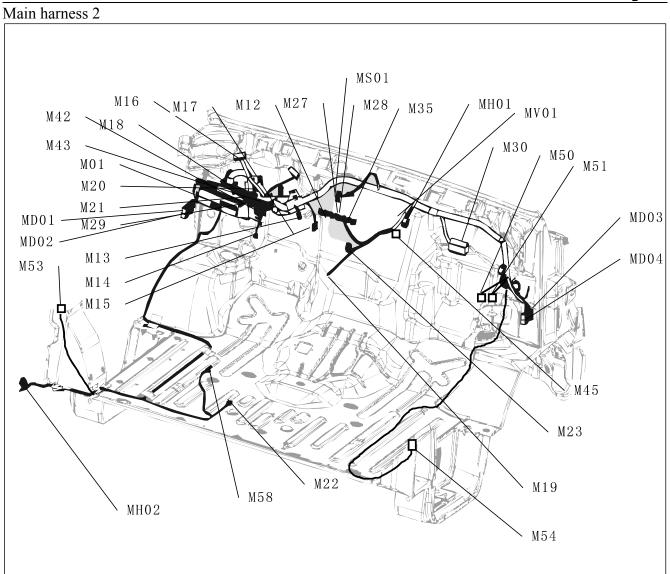


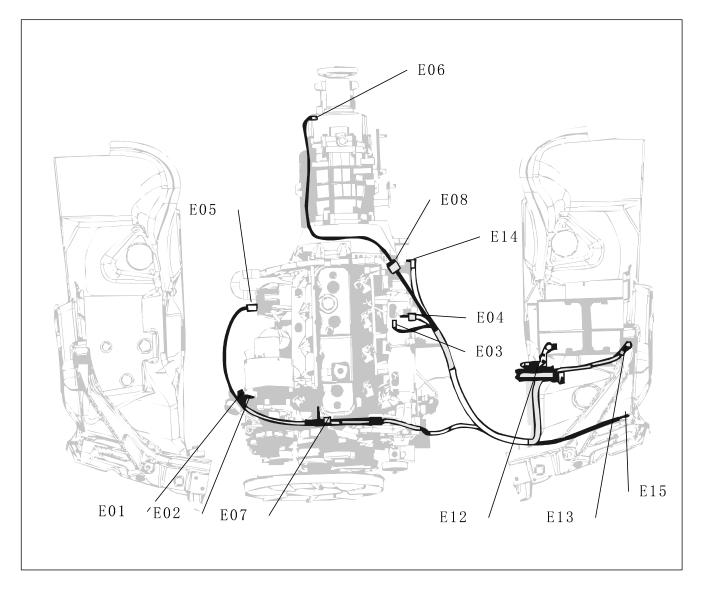


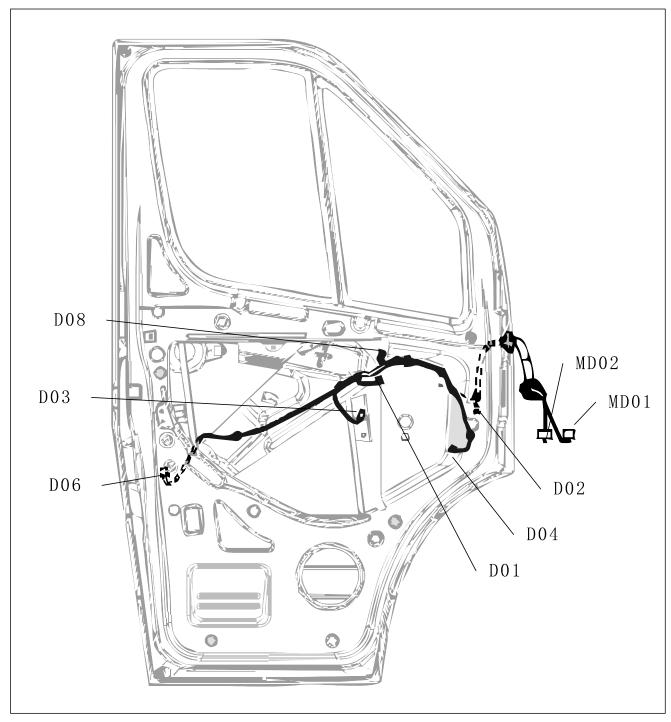


# Circuit Diagram-Power distribution system Instrument (101) **A** (992) **A** YO/0.5 B/0.5 YR/0.5 RB/0.75 OW/0.5 P/0.5 Instrument (blue) M16 Instrument (blue) 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17





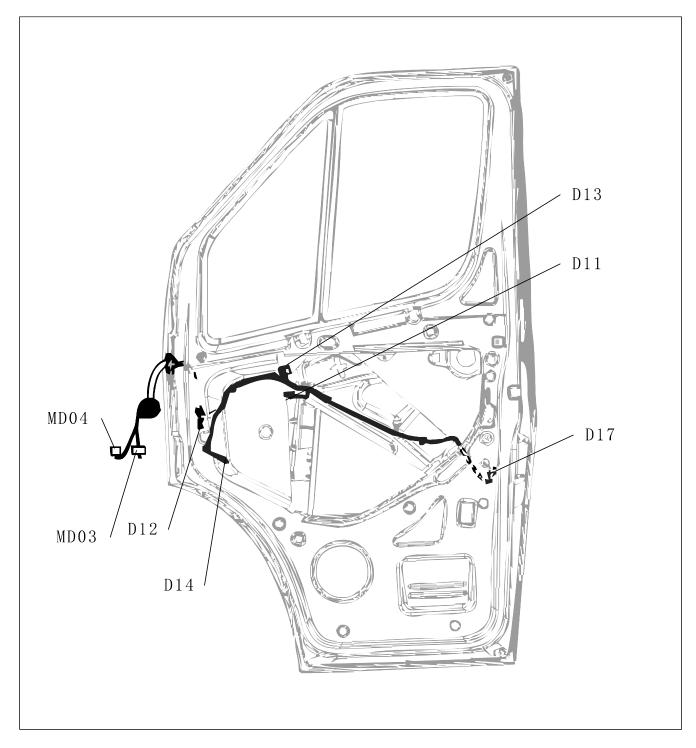

| Main harness specific | ation                        |                     |                                       |
|-----------------------|------------------------------|---------------------|---------------------------------------|
| Identification code   | Name                         | Identification code | Name                                  |
| M01                   | Relay box                    | M42                 | Key and faulted door switch           |
| M02                   | Left front fog lamp          | M43                 | Buzzer                                |
| M03                   | Left headlamp                | M45                 | Rear air heater                       |
| M04                   | Left electric horn           | M50                 | BCM controller interface 1            |
| M05                   | Oil-water separator sensor   | M51                 | BCM controller interface 2            |
| M06                   | Oil temperature sensor       | M52                 | Right electric horn                   |
| M07                   | Heater                       | M53                 | Left door switch                      |
| M08                   | Brake fluid level switch     | M54                 | Right door switch                     |
| M09                   | Front wiper motor            | M58                 | Driver's seat belt switch             |
| M10                   | Odometer sensor              | MH01                | Connected to front A/C harness        |
| M12                   | Rear ceiling lamp switch     | MH02                | Connected to rear A/C harness         |
| M13                   | Dual brake switch            | MD01                | Connected to left door harness 1      |
| M14                   | Clutch switch                | MD02                | Connected to left door harness 2      |
| M15                   | Electronic accelerator pedal | MD03                | Connected to right door harness 1     |
| M16                   | Instrument 1                 | MD04                | Connected to right door harness 2     |
| M17                   | Instrument 2                 | MV01                | Connected to airbag harness           |
| M18                   | Ignition switch              | MB01                | Connected to ABS harness              |
| M19                   | Cigarette lighter            | ML01                | Connected to left tail lamp harness 1 |
| M20                   | Combination switch 1         | ML02                | Connected to left tail lamp harness 2 |
| M21                   | Combination switch 2         | ML11                | Connected to right tail lamp harness  |
| M22                   | Hand brake switch            | MG01                | Connected to fuel tank harness        |
| M23                   | Radio CD-player              | MS01                | Connected to loud speaker harness     |
| M24                   | Right headlamp               | ME01                | Connected to engine harness           |
| M25                   | Left side turn signal lamp   | ME02                | Connected to engine harness           |
| M26                   | Front washer motor           | ME03                | Connected to engine harness           |
| M27                   | Front fog lamp switch        | ME04                | Connected to engine harness           |
| M28                   | Rear fog lamp switch         | ME05                | Connected to engine harness           |
| M29                   | Combination switch 3         |                     |                                       |
| M30                   | Engine ECU                   |                     |                                       |
| M31                   | GCU-1                        |                     |                                       |
| M32                   | GCU-2                        |                     |                                       |
| M33                   | GCU-3                        |                     |                                       |
| M34                   | Right front fog lamp         |                     |                                       |
| M35                   | Warning lamp switch          |                     |                                       |
| M36                   | Right side turn signal lamp  |                     |                                       |
| M37                   | A/C compressor               |                     |                                       |
| M38                   | High/low pressure switch     |                     |                                       |
|                       |                              |                     |                                       |



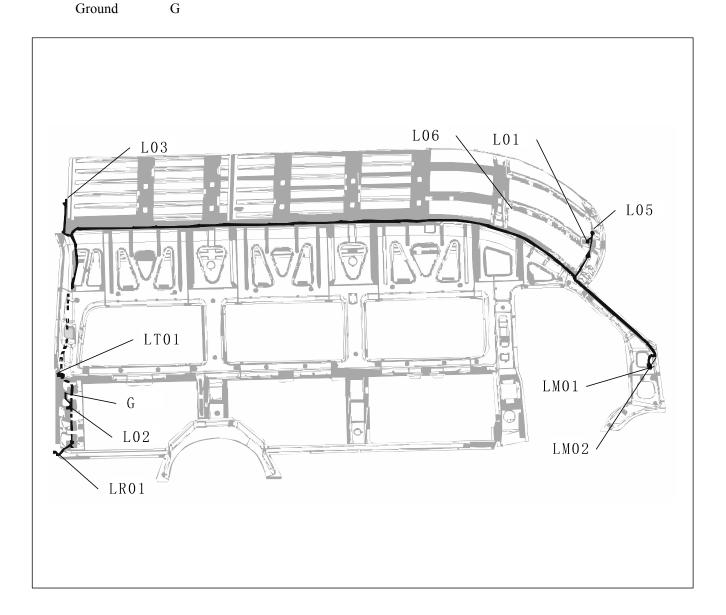



# EC Circuit Diagram Engine compartmen

| Engine compartment harness specification |                                       |  |  |
|------------------------------------------|---------------------------------------|--|--|
| Identification code                      | Name                                  |  |  |
| E01                                      | Connected to generator control        |  |  |
| E02                                      | Connected to generator positive pole  |  |  |
| E03                                      | Connected to starter control          |  |  |
| E04                                      | Connected to starter positive pole    |  |  |
| E05                                      | Connected to oil pressure switch      |  |  |
| E06                                      | Connected to reversing lamp switch    |  |  |
| E07                                      | Connected to water temperature sensor |  |  |
| E08                                      | Connected to preheating harness       |  |  |
| E12                                      | Connected to battery positive pole    |  |  |
| E13                                      | Connected to battery negative pole    |  |  |
| E14                                      | Engine ground                         |  |  |
| E15                                      | Vehicle body ground                   |  |  |
| EM01                                     | Connected domain harness              |  |  |
|                                          |                                       |  |  |



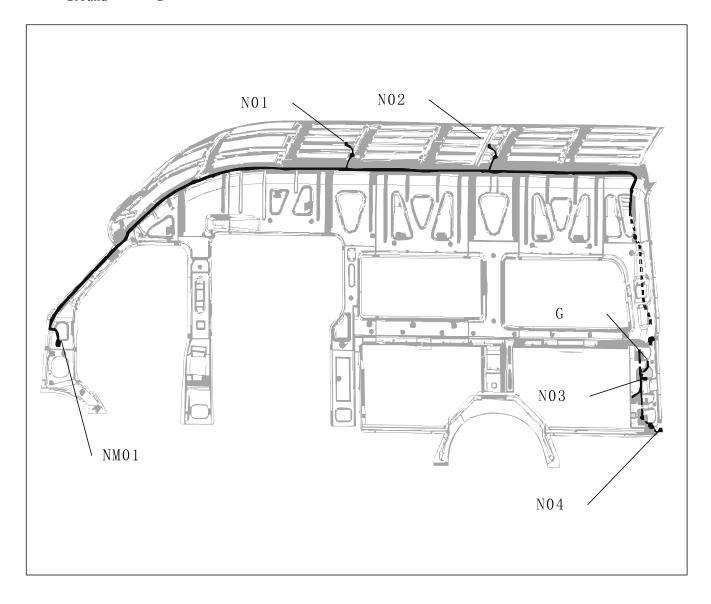

| Left front door harness specification |                                  |  |  |
|---------------------------------------|----------------------------------|--|--|
| Identification code                   | Name                             |  |  |
| D01                                   | Left window regulator motor      |  |  |
| D02                                   | Left electric rear view mirror   |  |  |
| D03                                   | Window regulator main switch     |  |  |
| D04                                   | Left door loud speaker           |  |  |
| D06                                   | Left door lock actuator          |  |  |
| D08                                   | Electric rear view mirror switch |  |  |
| MD01                                  | Connected to left main harness   |  |  |
| MD02                                  | Connected to left main harness   |  |  |
|                                       |                                  |  |  |




#### **EC Circuit Diagram**

| Right front door harness specification |                                 |  |
|----------------------------------------|---------------------------------|--|
| Identification code                    | Name                            |  |
| D11                                    | Right power window motor        |  |
| D12                                    | Right electric rear view mirror |  |
| D13                                    | Power window auxiliary switch   |  |
| D14                                    | Right door loud speaker         |  |
| D16                                    | Right door lock actuator        |  |
| MD03                                   | Connected to right main harness |  |
| MD04                                   | Connected to right main harness |  |
|                                        |                                 |  |

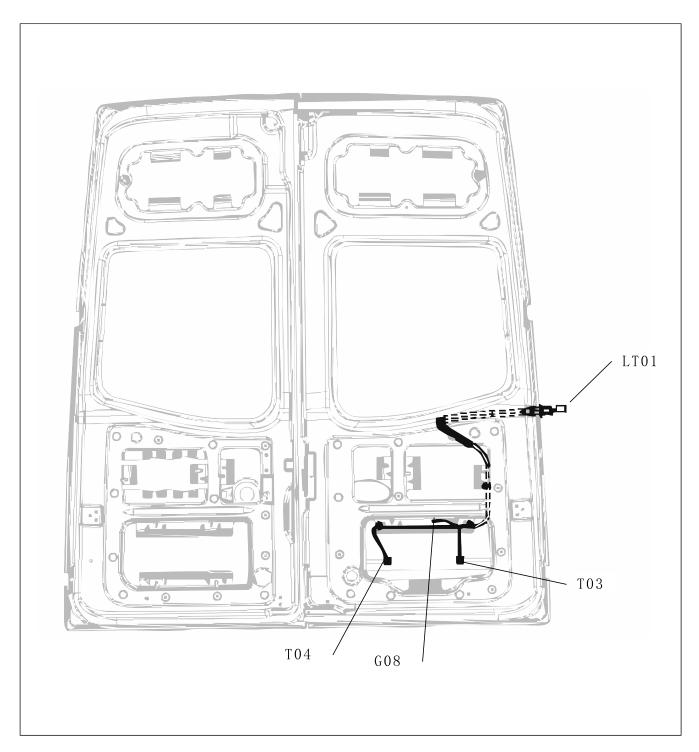



| Left tail lamp harness specification |                                      |  |
|--------------------------------------|--------------------------------------|--|
| Identification code                  | Name                                 |  |
| L01                                  | Front ceiling lamp                   |  |
| L02                                  | Left rear combination lamp           |  |
| L03                                  | High-mounted brake lamp              |  |
| L04                                  | Reversing radar ECU                  |  |
| L05                                  | Antenna amplifier                    |  |
| L06                                  | Rear blower                          |  |
| LR01                                 | Connected to reversing radar harness |  |
| LT01                                 | Connected to left back door harness  |  |
| LM01                                 | Connected to main harness 1          |  |
| LM02                                 | Connected to main harness 2          |  |
| Cassard                              | C                                    |  |



## EC Circuit Diagram Right tail lamp harr

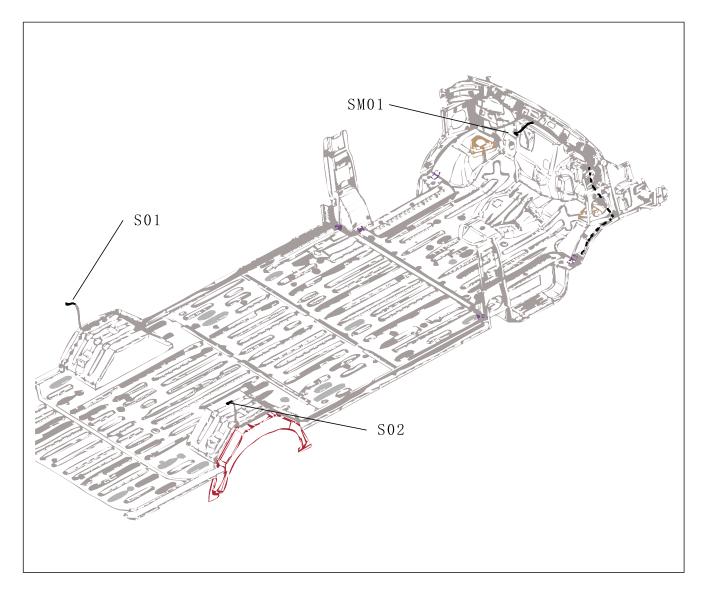
| Right tail lamp harness specification |                                 |  |
|---------------------------------------|---------------------------------|--|
| Identification code                   | Name                            |  |
| N01                                   | Intermediate ceiling lamp       |  |
| N02                                   | Rear ceiling lamp               |  |
| N03                                   | Right rear combination lamp     |  |
| N04                                   | Right rear fog lamp             |  |
| NM01                                  | Connected to right main harness |  |
|                                       |                                 |  |


G Ground

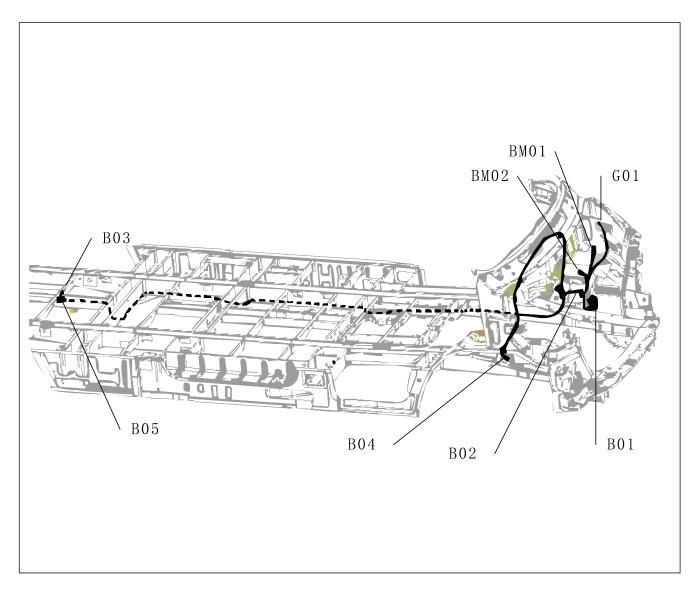


## Left back door harness specification

| Identification code | Name                           |
|---------------------|--------------------------------|
| T03                 | Left license plate lamp        |
| T04                 | Right license plate lamp       |
| LT01                | Connected to left roof harness |


Ground G




## EC Circuit Diagram

Rear loud speaker harness specification

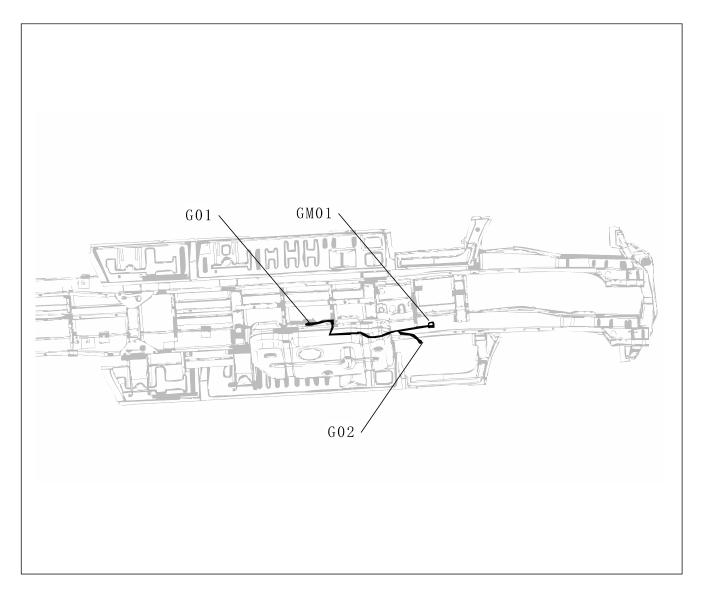
| Identification code | Name                      |
|---------------------|---------------------------|
| S01                 | Left rear loud speaker    |
| S02                 | Right rear loud speaker   |
| SM01                | Connected to main harness |



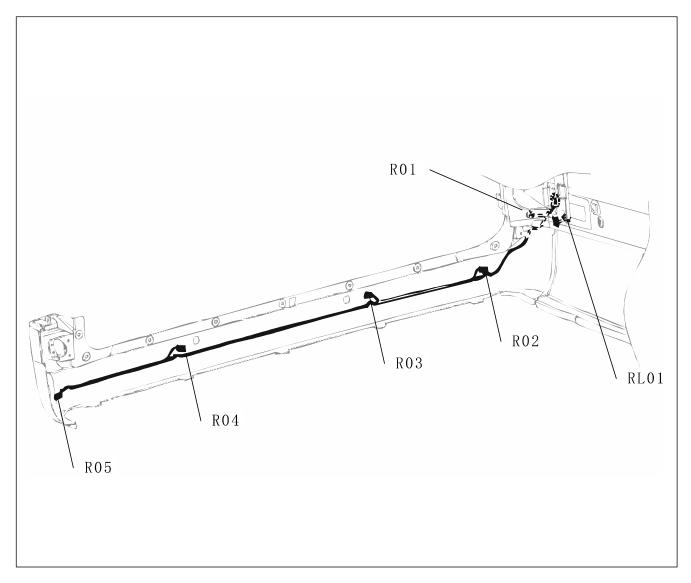
| ABS harness specification |                                |  |
|---------------------------|--------------------------------|--|
| Identification code       | Name                           |  |
| B01                       | ABS system control module      |  |
| B02                       | Left front wheel speed sensor  |  |
| B03                       | Right front wheel speed sensor |  |
| B04                       | Right front wheel speed sensor |  |
| B05                       | Right rear wheel speed sensor  |  |
| BM01                      | Connected to fuse box          |  |
| BM02                      | Connected to main harness 1    |  |
| Ground                    | G01                            |  |



## **EC Circuit Diagram**


## Fuel tank harness specification

Identification code Name


G01 Fuel sensor

G02 Condenser fan motor

GM01 Connected to main harness 1



| Reversing radar harness specification |                                     |  |
|---------------------------------------|-------------------------------------|--|
| Identification code                   | Name                                |  |
| R01                                   | Left rear fog lamp                  |  |
| R02                                   | Left external probe                 |  |
| R03                                   | Left intermediate probe             |  |
| R04                                   | Right intermediate probe            |  |
| R05                                   | Right external probe                |  |
| RL01                                  | Connected to left tail lamp harness |  |
|                                       |                                     |  |



**Preface** 

This SUNRAY Service Manual is hereby compiled by the Customer Service

Department of JAC to help the technical service personnel correctly understand and

get familiar with SUNRAY products of JAC INTERNATIONAL better and to provide

them with the ability of quick repair and proper maintenance. This manual comprises

five volumes: Engine Control, Engine Mechanical, Chassis, Body Electrical, and

Body Accessories.

The Chassis Volume details the technical standards on removal/installation, testing,

debugging and diagnosis for systems and components of SUNRAY long-wheelbase

vehicle chassis.

When replacement is necessary, only genuine spare parts recommended by JAC can

be adopted. During maintenance, please conduct tightening in strict accordance with

tightening torque specified in the Manual. If locking device is damaged during

removal, please replace it with new one.

No part of this manual can be reproduced or used in any form or by any mean without

written permission. All Rights Reserved.

JAC INTERNATIONAL

March 2011

## **Chassis Volume Contents**

## Clutch

| Clutch                                             |     |
|----------------------------------------------------|-----|
| Explosive View of Clutch.                          |     |
| Introduction of Clutch.                            |     |
| Clutch                                             |     |
| Operating Principle                                |     |
| Inspection and Maintenance.                        |     |
| Fault Symptom Table                                |     |
| Removal and Installation                           |     |
| Clutch                                             |     |
| Specification                                      |     |
| Specification                                      | 14  |
| Tightening Torque.                                 | 14  |
| Manual Transmission                                |     |
|                                                    |     |
| Manual Transmission                                |     |
| Explosive View of Manual Transmission.             |     |
| Introduction of Manual Transmission.               |     |
| Manual transmission                                |     |
| Inspection and confirmation.                       |     |
| Fault Symptom Table                                | 18  |
| Removal/Installation                               |     |
| Manual Transmission                                |     |
| Specifications                                     |     |
| Tightening Torque                                  | 43  |
| Care and Maintenance                               | 44  |
|                                                    |     |
| Brake System                                       |     |
| Brake System                                       | 46  |
| Explosive View.                                    |     |
| Introduction of Brake.                             |     |
| Diagnosis and Testing                              |     |
| Brake System                                       | 49  |
| Inspection and confirmation.                       |     |
| Fault Symptom Table.                               |     |
| Removal/Installation                               |     |
| Removal/installation of brake disc                 |     |
| Removal/installation of brake caliper assembly     |     |
| Removal/installation of rear wheel brake shoe      |     |
| Parking brake adjustment.                          |     |
| Removal/installation of parking brake lever        |     |
| Removal/installation of parking brake cable        |     |
| Replacement of parking brake cable                 |     |
| Removal/installation of brake pedal.               |     |
| Removal/installation of brake master cylinder      |     |
| Removal/installation of vacuum pump.               |     |
| Removal/installation of vacuum booster             |     |
| Air bleeding for hydraulic pressure brake system.  |     |
| 7 in olecaning for hydraunic pressure orake system | / 1 |

## **Chassis Volume Contents**

| Anti-lock Brake System (ABS)         |     |
|--------------------------------------|-----|
| ABS system                           | 74  |
| Diagnosis and Testing                |     |
| ABS system                           | 79  |
| Operating principle                  | 79  |
| Inspection and confirmation.         | 81  |
| Fault Symptom Table                  | 85  |
| Removal/Installation                 |     |
| ABS system                           | 101 |
| Wheel speed sensor                   | 103 |
| Transmission Shaft                   |     |
| Transmission Shaft                   | 106 |
| Explosive View of Transmission Shaft |     |
| Introduction of Transmission Shaft   |     |
| Diagnosis and Testing                |     |
| Transmission Shaft                   |     |
| Inspection and Confirmation          |     |
| Fault Symptom Table.                 |     |
| Removal/Installation                 |     |
| Removal of Transmission shaft        | 100 |
| Installation of Transmission shaft   |     |
| Front Suspension Front Suspension    | 112 |
| Front Suspension.                    |     |
| Diagnosis and Testing                |     |
| Front Suspension                     | 114 |
| Inspection and Confirmation          |     |
| Fault symptom Table                  | 115 |
| Removal and Installation             |     |
| Removal and Installation of Subframe | 116 |
| Specification                        | 131 |
| Tightening Torques.                  |     |
| Rear Axle                            |     |
| Rear axle                            |     |
| Explosive View of Rear Axle.         |     |
| Introduction of Rear Axle.           |     |
| Diagnosis and Testing                |     |
| Rear axle                            |     |
| Operating principle                  |     |
| Inspection and Confirmation.         |     |
| Fault symptom Table                  |     |
| Removal/Installation                 |     |
| Rear axle                            | 141 |
| Differential                         |     |
| Specification                        |     |
| Specification                        | 148 |
| Tightening torque                    |     |

| Steering System                                   |     |
|---------------------------------------------------|-----|
| Steering System                                   | 152 |
| Explosive View of Steering System                 |     |
| Introduction of Steering System                   |     |
| Diagnosis and Testing                             |     |
| Steering System                                   | 154 |
| Operating Principle                               | 155 |
| Inspection and confirmation                       |     |
| Fault Symptom Table                               | 159 |
| Removal and Installation                          |     |
| Removal and Installation of Steering System.      |     |
| Removal and Installation of steering wheel        |     |
| Wheels and Tires                                  |     |
| Wheels and Tires                                  | 174 |
| Explosive View of Wheels and Tires.               |     |
| Precaution for Tire Usage                         |     |
| Diagnosis and Testing                             |     |
| Removal/Installation Instruction of Tire Assembly | 176 |
| Fault Symptom Table                               | 177 |
| Removal/installation                              |     |
| Removal/installation of wheel and Tires           | 178 |
| Four-Wheel Alignment                              |     |
| Four-Wheel Alignment                              | 184 |
| Preparation before four-wheel alignment.          |     |
| Diagnosis and Testing                             |     |
| Four-Wheel Alignment                              | 185 |
| Function of each angle                            | 185 |
| Common fault symptom                              |     |
| Adjustment                                        |     |
| Four/wheel alignment                              |     |

## **Attached List—SUNRAY Special Service Tools**

## Clutch

Applied models: SUNRAY products manufactured by JAC

| Subject                                                                    | Page |
|----------------------------------------------------------------------------|------|
| Instruction and Operation                                                  |      |
| Clutch                                                                     |      |
| Diagnosis and Testing                                                      |      |
| Clutch Operating Principle Inspection and Maintenance Fault Symptom Table. |      |
| Removal and Installation                                                   |      |
| Clutch                                                                     | 7    |
| Specification                                                              |      |
| Specification                                                              |      |

### **Instruction and Operation**

### Clutch

System diagram:

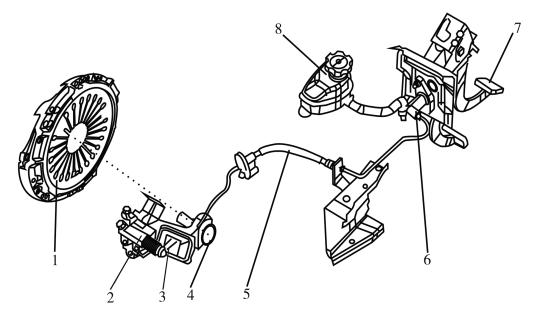
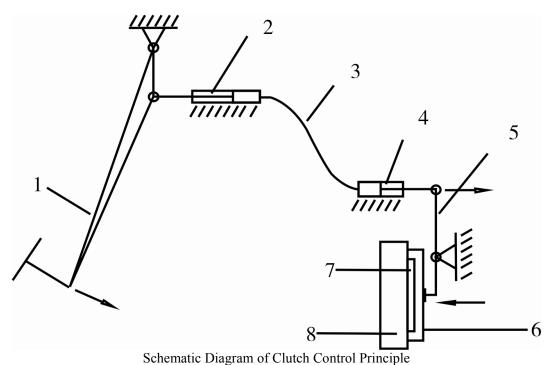




Diagram of Clutch Control System

1.Clutch 2.Clutch release cylinder 3.Release fork 4.Release bearing 5.Clutch line
6.Clutch master cylinder 7.Clutch pedal 8.Fluid reservoir



1.Clutch pedal 2.Clutch master cylinder 3.Clutch hydraulic line 4.Clutch release cylinder 5.Release fork 6.Pressure plate 7.Driven disc 8.Flywheel

### **Instruction and Operation**

### **Operating Principle**

The clutch control is realized via remote hydraulic control of clutch engagement and release for the power transmission and cutting-off. Specific implementations are as follows:

In clutch release: The driver steps on the clutch pedal 1 and push the special clutch hydraulic fluid stored in the master cylinder via the push rod connecting the pedal and the clutch master cylinder 2 to flow through the line 3 consisting of pipes and hoses and enter the release cylinder 4. The release fork 5 pushes the release bearing shaft forward and then pushes the diaphragm spring of clutch pressure plates 6 separated. Then, the chamber clearance between the driven disc 7 and flywheel 8 becomes larger. Because of the decreased friction force, the driven disc 7 can not transmit power to the input shaft of the transmission, the power is cut off.

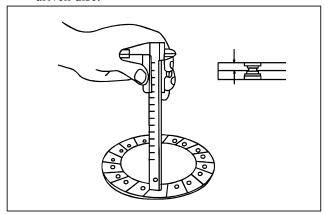
In clutch engagement: The driver releases the clutch pedal slowly, the pressure applied on the diaphragm spring separated finger of clutch pressure plates 6 decreases and the spring returns gradually. With relevant level effect, the fluid chamber of the slave cylinder becomes smaller while the fluid chamber of the master cylinder becomes larger and the clutch pedal is lifted slowly; At the same time, the distance between the pressure plate 6 and flywheel becomes smaller that the chamber clearance among the driven disc 7, flywheel 8 and pressure plate 6 becomes smaller. Because of the increased friction force, the driven disc 7 starts power transmission to the input shaft of the transmission, the power is engaged.

### **Inspection and Maintenance**

Clutch:

- 1. Clutch pressure plate
- Inspect the end of the diaphragm spring for wears and altitude difference. In the case of obvious wears and altitude difference out of the limit value, replace the clutch pressure plate.

Limit value: 0.5mm


- ② Inspect the surface of the pressure plate for wears, cracks and discoloration.
- 3 Inspect rivets of the pressure plate for looseness. In the case of loose rivets, replace the clutch pressure plate.
- 2. Clutch driven disc

Attention:

It is not allowed to clean the clutch driven disc with petrol!

- Inspect its surface for loose rivets, signal side contact, degradation due to burns and adherent grease. In the case of such problems, replace the clutch driven disc.
- ② Measure the rivet settlement. In the case of settlement out of the limit value, replace the clutch

driven disc.



Limit value: 0.3mm

- ③ Inspect the torsion spring for looseness, breakage. In the case of such problems, replace the clutch driven disc.
- ④ Install the clutch driven disc onto the input shaft, inspect it for its sliding condition and rotation direction for looseness. In the case of poor sliding, clean and reinspect it after installation. In the case of obvious looseness, replace the clutch driven disc or input shaft or replace both simultaneously.
- 3. Clutch release bearing

Attention:

Inspect the bearing for burns, damages, abnormal noise, and unsmooth rotation.

Inspect the release bearing and diaphragm spring or inspect the contact surface of the release fork for abnormal wears. In case of such problems, carry out replacement.

4. Release fork

In the case of abnormal wears between the release fork and the contact surface with the bearing, carry out replacement.

Clutch release cylinder:

Release cylinder:

- 1. Inspect the inner surface of the release cylinder for rusting and damages.
- 2. Measure the inner diameter of the release cylinder with a cylinder gauge at three places (bottom, intermediate part and upper part). In the case of the clearance with the piston outer circumference out of the limit value, replace the release cylinder assembly.

Limit value: 0.15mm

Clutch hydraulic fluid

Attention:

Do not carry out operations to this system with a vacuum pump or any other evacuation power devices. Inspect the fluid level of the clutch hydraulic fluid, please ensure the normal fluid level.

Air bleeding of the line:

Attention:

After the removal of clutch line, clutch master cylinder,

### **CL Clutch**

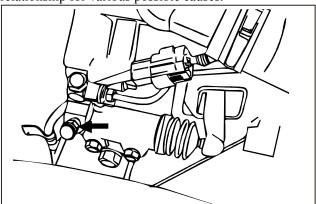
clutch slave cylinder and hydraulic release bearing or in the case of spongy clutch pedal, carry out air bleeding for the system.

- Loosen bleed bolts of the clutch release cylinder. 1.
- Step on the clutch pedal slowly until complete air bleeding has been done.
- Step on the pedal completely, maintain the status 3. and tighten the bleed bolts.
- Refill with hydraulic fluid for the clutch hydraulic 4. system.

### Attention:

Keep the fluid level in the fluid reservoir between MIN and MAX marks all the time.

- Repeat the abovementioned steps until there is clear clutch hydraulic fluid draining out without any bubbles.
- Confirm normal operation of the clutch.
- Start the engine, step on the clutch pedal and shift into the reverse gear after 2 seconds. In the case of large noise during gear selection, step the clutch pedal to the floor for 5 times in order to carry out system air bleeding.
- Wait for 30 seconds and reinspect the clutch operation. In the case of remained large noise, repeat air bleeding.


Fault diagnosis

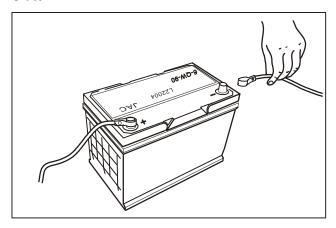
Performance diagnosis for the clutch assembly and

clutch control system should be carried out experienced vehicle maintenance technicians.

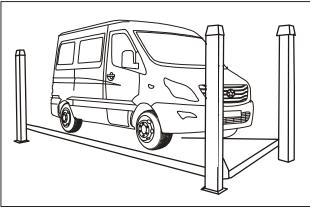
After proper diagnosis, carry out adjustment or part replacement according to corresponding troubleshooting and proper steps of specific procedures in the service manual. For all parts to be replaced, only authorized parts of JAC shall be applied. For damaged clutch pressure plates or driven discs, they are not repairable and it is necessary to replace corresponding assemblies. Numbers in the diagnosis table have no relations with

the inspection sequence. There is no precedence relationship for various possible causes.

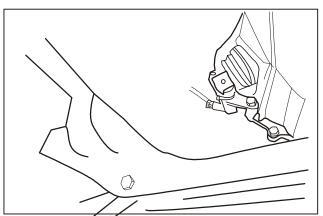



### Common fault diagnosis table

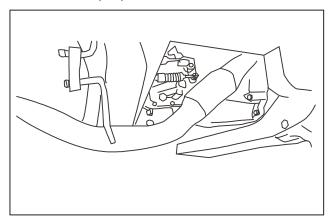
| Fault Symptom     | Possible Cause of Fault                                                                                                                                                                                                          | Troubleshooting                                                                                                                 |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Incapable release | Incapable release of the clutch means unable functioning of the clutch and the power transmitted from the engine can not be cut off.                                                                                             |                                                                                                                                 |  |
|                   | Inspect for following conditions:                                                                                                                                                                                                |                                                                                                                                 |  |
|                   | Deformation in clutch release lever                                                                                                                                                                                              |                                                                                                                                 |  |
|                   | 2. Deformation in diaphragm spring                                                                                                                                                                                               | Replace deformed, worn and fractured                                                                                            |  |
| Telease           | 3. Punsture in diaphragm spring support ring                                                                                                                                                                                     | parts. Adjust clutch pedal control system.                                                                                      |  |
|                   | 4. Improper adjustment of clutch pedal control system                                                                                                                                                                            |                                                                                                                                 |  |
|                   | 5. Seizure of clutch friction lining with flywheel or clutch pressure plate                                                                                                                                                      |                                                                                                                                 |  |
|                   | Incomplete clutch release may lead to incapable cutting-off of power transmitted from the engine and the shift lever will be hard to operate due to continuous rotation of clutch friction linings and transmission input shaft. | Replace deformed, worn and fractured parts or parts out of specified dimension. In the case of poor matching of clutch friction |  |
|                   | Inspect for following conditions:                                                                                                                                                                                                | lining with the operation of transmission input shaft spline, replace the clutch friction                                       |  |
|                   | Deformation in clutch friction lining. In the rotation of the lining, there will be swing.                                                                                                                                       | lining and if necessary, replace transmission input shaft.                                                                      |  |
| Incomplete        | 2. Damage in clutch friction lining                                                                                                                                                                                              | In the case of damaged clutch friction                                                                                          |  |
| release           | 3. Mismatching of clutch friction lining spline and transmission input shaft or damage in spline tooth surface                                                                                                                   | lining or clutch friction lining out of specified dimension, replace it.                                                        |  |
|                   | 4. Seizure of clutch friction lining with flywheel or clutch pressure                                                                                                                                                            | Replace inapplicable clutch thrust bearing.                                                                                     |  |
|                   | plate  5. Thickness of flywheel/clutch pressure plate/ clutch friction lining out of specified dimension                                                                                                                         | Adjust clutch system, remove unnecessary clearances and eliminate mechanical failures.                                          |  |
|                   | Mechanical failure or improper adjustment in clutch pedal control system                                                                                                                                                         | Reinstall improperly-assembled parts.                                                                                           |  |
|                   | Incomplete clutch engagement may lead to incapable power transmission of the engine to the transmission input shaft and clutch friction linings will slip.                                                                       | Replace deformed, worn and fractured parts.                                                                                     |  |
|                   | Inspect for following conditions:                                                                                                                                                                                                | Replace clutch friction linings or faulted                                                                                      |  |
|                   | 1. Smudginess in clutch friction lining due to engine oil or grease                                                                                                                                                              | clutch assembly.                                                                                                                |  |
| Incomplete        | 2. Damage in clutch friction lining                                                                                                                                                                                              | Carry out proper adjustment of clutch pedal                                                                                     |  |
| engagement        | 3. No free travel for clutch pedal                                                                                                                                                                                               | free travel.                                                                                                                    |  |
|                   | 4. Deformation or damage in diaphragm spring / clutch pressure plate / clutch release lever / clutch friction lining spline                                                                                                      | Adjust clutch system, remove unnecessary clearances and eliminate mechanical failures.                                          |  |
|                   | 5. Mechanical failure or improper adjustment in clutch pedal control system                                                                                                                                                      | Reinstall improperly-assembled parts.                                                                                           |  |
|                   |                                                                                                                                                                                                                                  | Replace deformed, worn and fractured parts or parts out of specified dimension and specification.                               |  |
|                   | Clutch friction lining slipping may lead to incapable normal power transmission of the engine.                                                                                                                                   | Carry out the same troubleshooting with "Incomplete release" and "Incomplete                                                    |  |
|                   | Inspect for following conditions:                                                                                                                                                                                                | engagement"                                                                                                                     |  |
| Slipping          | 1. Wear in clutch friction lining.                                                                                                                                                                                               | Turn off the engine, cool the clutch housing (in the case of overhigh temperature in the                                        |  |
|                   | 2. Smudginess in clutch friction lining due to engine oil or grease                                                                                                                                                              | housing) and carry out further diagnosis.                                                                                       |  |
|                   | 3. Incomplete clutch engagement                                                                                                                                                                                                  | Carry out correct installation for specified                                                                                    |  |
|                   | 4. Thickness of flywheel/clutch pressure plate/ clutch friction lining out of specified dimension, friction surface out of specified specification                                                                               | clutch.  Adjust clutch system, remove unnecessary                                                                               |  |
|                   | 5. Overhigh temperature of clutch housing due to improper driving                                                                                                                                                                | clearances and eliminate mechanical failures.                                                                                   |  |
|                   | 6. Installation of improper clutch                                                                                                                                                                                               | Reinstall improperly-assembled parts.  It is not allowed for the driver to step on the                                          |  |


## **CL Clutch**

| Fault Symptom | Possible Cause of Fault                                                                                                                                    | Troubleshooting                                                                                                |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
|               | Inspect for following conditions:                                                                                                                          | Replace deformed, worn and fractured parts.                                                                    |  |
| Noise         |                                                                                                                                                            | Install specified clutch friction lining.  In the case of poor balance in some parts, replace clutch assembly. |  |
|               | <ul><li>3. Fault in clutch thrust bearing</li><li>4. Damage in torsion damping spring of clutch friction lining</li></ul>                                  | Adjust clutch pedal control system.  Reinstall improperly-assembled parts.                                     |  |
| Shudder       | There may be clutch shudder in the case of incapable smooth engagement of the clutch friction lining with the flywheel.  Inspect for following conditions: | Replace clutch assembly.                                                                                       |  |
|               | <ol> <li>Clutch friction lining damping spring out of specified specification</li> <li>Clutch friction lining out of specified specification</li> </ol>    |                                                                                                                |  |
|               | 3. Smudginess in clutch friction lining due to engine oil or grease                                                                                        |                                                                                                                |  |


## Removal and Installation Clutch



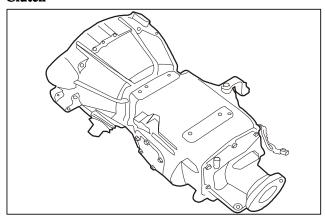

1. Disconnect the negative cable of battery.



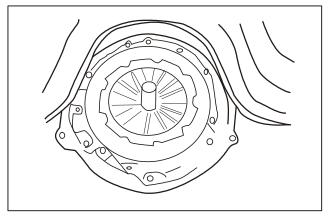
2. Lift the vehicle.



- 3. Remove the clutch slave cylinder.
  - Remove bleed bolts of clutch slave cylinder and drain system brake fluid completely.
  - Remove the clutch slave cylinder



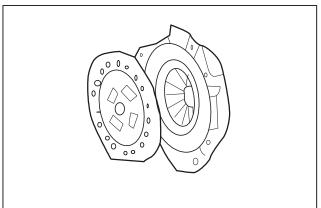

4. Remove the shift cable assembly.


Attention:

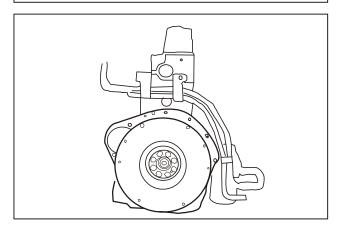
Remove the shift cable and fixit on one side.

### Clutch



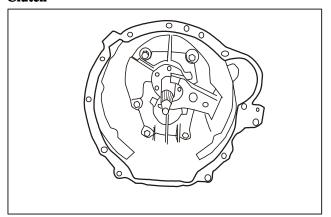

- 5. Remove the rear support pad of the transmission. Jack up the transmission with a jack.
- 6. Remove bolts at the side of connection between the transmission rear flange plate and the propeller shaft.
- 7. Remove the starter and the bolts at the side of connection between the transmission and generator. Move the removed transmission backward.



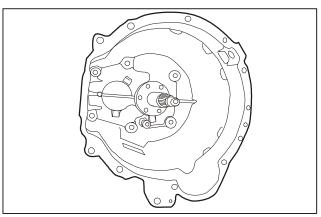

- 8. Insert special tools in the center of pressure plate.
  - Remove mounting bolts of the pressure plate assembly and pay attention to the installation position.

#### Attention:

In the processing of removal, there should be one holding up the pressure plate assembly to avoid pricks to people.

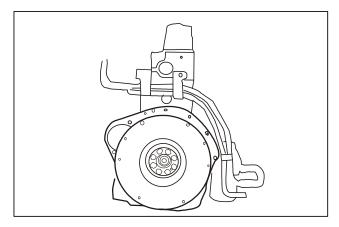



9. Remove pressure plates and friction linings and place them horizontally on the ground. Do not smudge them and it is not allowed to wipe the pressure plates and friction linings with oily cloth.




10. Remove mounting bolts of the flywheel. Pay attention to the removal process of the flywheel and it is not allowed to fix the gear ring or crankshaft position sensor target wheel with a screwdriver.

### Clutch

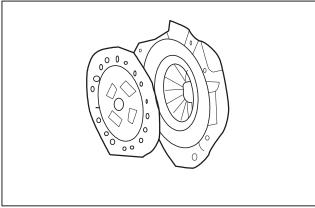



11. Remove the release bearing. Attention: Do not make the lubricating grease to contact with the clutch assembly.

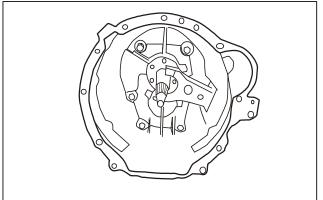


- 12. Remove the release fork.
  - Remove the dust boot at the outside of the release fork.
  - Snap the release fork. Attention: the release fork is clipped on the support pin and pay attention to the spring force to avoid injury in hands.

### **Installation of Clutch**

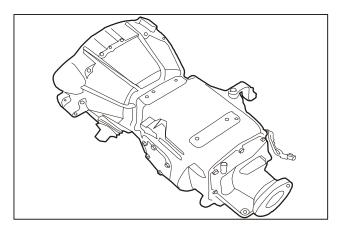


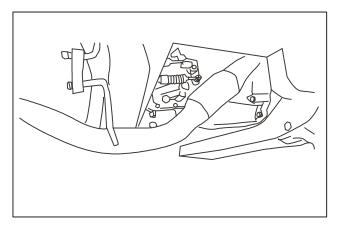


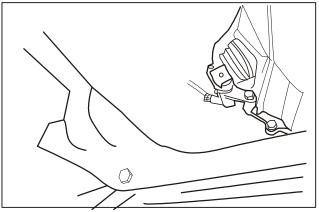


1. Install the flywheel onto the crankshaft and pay attention to the fixed pin there.

### Attention:

There should be another man for cooperation in the installation and pay attention to safety.



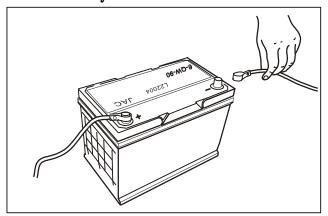


2. Insert the special tool into the saddle bore of guide bearing at the rear end of crankshaft. Set the new friction lining and pressure plate into the special tool. Install the pressure plate assembly in place. In the process of bolt tightening, pay attention to tighten the bolts one by one diagonally. Pull out the special tool at last.



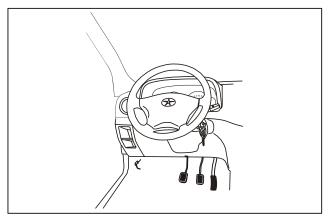

- 3. Install the release lever into the clutch housing and clamp the release lever. Finally, install a dust boot in the rear of the installed release lever.
- 4. Apply a layer of lubricating grease on the inner side of the release bearing and install the release bearing into the transmission input shaft.

### **Installation of Clutch**





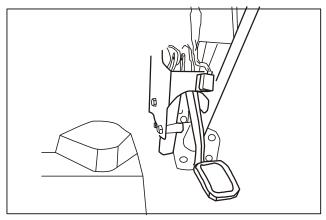




- 5. Install the transmission in the clamping jaw to corresponding position and install a bolt there without tightening.
- 6. Turn the transmission and install the transmission input shaft into the center of the installed clutch assembly.
- 7. Shake the transmission to inspect whether the transmission input shaft is installed in place. Install and tighten connecting bolts between the transmission and engine with attention to the tightening torque. Install the starter into the transmission assembly.
- 8. Install the mount pad in the rear of transmission and tighten it. Install the propeller shaft to the flange plate of the transmission output shaft with attention to the installation position.
- 9. Install the transmission gear shift mechanism cable in place. Pay attention to the cotter pin involved in the installation process and replace the used cotter pin with a new one.

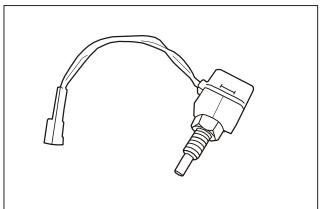
- 10. Clamp the moving side of the removed clutch slave cylinder into the release lever and fix the slave cylinder with bolts.
- 11. After installation of the slave cylinder, lower the vehicle and carry out air bleeding for the clutch hydraulic system.
- 12. Connect the negative cable of battery.

### Clutch master cylinder



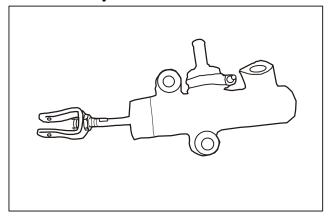

1. Disconnect the negative cable of battery.




2. Remove the lower protective plate of driver's instrument panel.

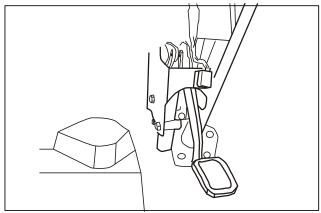
### **Attention:**

Pay attention not to damage the instrument clip during its removal.

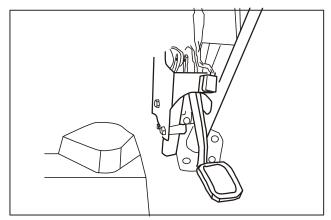



- 3. Drain brake fluid in the brake fluid reservoir.
- 4. Remove three mounting bolts of the clutch master cylinder and do not take down the cylinder after bolt removal.
- 5. Remove output and input oil pipes of the clutch master cylinder.
- 6. Remove the cotter pin of the clutch master cylinder and pull out the cotter pin.

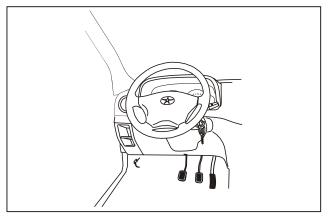



- 7. Disconnect the clutch switch plug.
- 8. Remove the clutch switch with an open end wrench with attention of installation position.

### Clutch master cylinder




### Installation


- 1. Clean the clutch master cylinder completely.
- 2. In the installation of output and input hoses of the master cylinder, confirm that they are well tightened.
- 3. Inspect the master cylinder oil pipe for deformation or crush.



- 4. Align the master cylinder to screw holes and carry out tightening according to standard torque.
- 5. Insert the fixed pin of the master cylinder and fix it with a new cotter pin.



6. Screw the clutch switch into pedal position and inspect for its proper installation position with a multimeter.



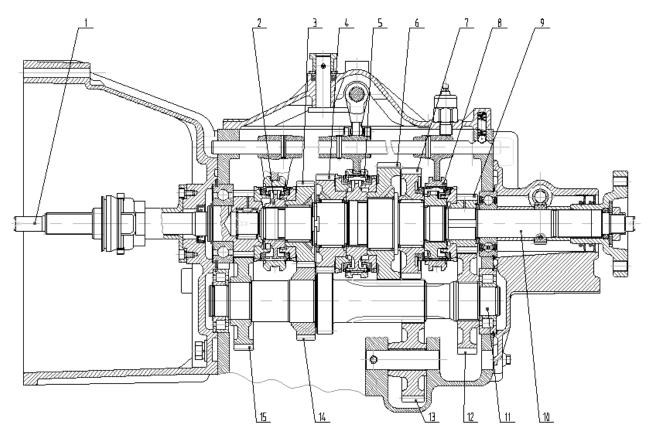
- 7. Install the lower protective plate on the driver's instrument panel.
- 8. Connect the negative cable of battery.

## **CL Clutch**

## **Specification**

## **Tightening Torque**

| Part name                                                  | Tightening torque Nm | Quantity |
|------------------------------------------------------------|----------------------|----------|
| Clutch master cylinder bolt and nut cap                    | 23~29                | 3        |
| Nut for installing the master cylinder to the vehicle body | 23~29                | 4        |
| Clutch slave cylinder bolt                                 | 120~140              | 3        |
| Clutch hose support bolt                                   | 23~29                | 1        |
| Clutch air bleeder pipe bolt                               | 23~29                | 1        |
| Clutch hose punching bolt                                  | 45~50                | 1        |
| Air bleeder outlet oil pipe joint                          | 23~29                | 1        |
| Pressure plate mounting bolt                               | 45~50                | 6        |


## **Manual Transmission**

Applied models: SUNRAY products manufactured by JAC

| Subject                             | Page |
|-------------------------------------|------|
| Instruction and Operation           |      |
| Manual Transmission                 | 16   |
| Introduction of Manual Transmission | 16   |
| Diagnosis and Testing               |      |
| Manual transmission                 | 17   |
| Inspection and confirmation         |      |
| Fault Symptom Table                 | 18   |
| Removal/Installation                |      |
| Manual Transmission.                | 19   |
| Specifications                      |      |
| Specifications                      | 43   |
| Tightening Torque                   | 43   |
| Care and Maintenance                | 44   |

### **Instruction and Operation**

SUNRAY vehicles adopt synchronizer manual-shift mechanical transmissions of good shifting flexibility, good hand feel, low noise, compact structure, large carrying capacity as well as good sealing performance, which consist of five forward gears and one reverse gear. All gears are of helical teeth. Except for the reverse gear that adopts direct transmission through sleeve, the other gears adopt three-cone (single cone, three-cone only for 1st/2nd gear) synchronizer. Shifting mechanism is of cable-type remote control.



Principles of motion:

1st gear

Engine $\rightarrow$ Clutch $\rightarrow$ Input shaft  $1\rightarrow$ Main gear of countershaft  $15\rightarrow$ Countershaft  $11\rightarrow$ 1st driving gear  $6\rightarrow$ 1st/2nd gear synchronizer  $5\rightarrow$ Output shaft 10

2<sup>nd</sup> gear

Engine  $\rightarrow$  Clutch  $\rightarrow$  Input shaft 1 $\rightarrow$  Main gear of countershaft 15 $\rightarrow$  Countershaft 11 $\rightarrow$ 2<sup>nd</sup> driving gear 4 $\rightarrow$ 1st/2nd gear synchronizer 5 $\rightarrow$  Output shaft 10

3rd gear

Engine  $\rightarrow$  Clutch  $\rightarrow$  Input shaft  $1\rightarrow$  Main gear of countershaft  $15\rightarrow$  Countershaft  $11\rightarrow 3^{rd}$  gear of countershaft  $14\rightarrow 3^{rd}$  driving gear  $3\rightarrow 3rd/4th$  gear synchronizer  $2\rightarrow$  Output shaft 10

4th gear

Engine→Clutch→Input shaft 1→3rd/4th gear synchronizer 2→Output shaft 10

5<sup>th</sup> gear

Engine $\rightarrow$ Clutch $\rightarrow$ Input shaft  $1\rightarrow$ Main gear of countershaft  $15\rightarrow$ Countershaft  $11\rightarrow$ 5<sup>th</sup> gear of countershaft  $12\rightarrow$ 5<sup>th</sup> driving gear  $9\rightarrow$ 5th/reverse gear synchronizer  $8\rightarrow$ Output shaft 10

Reverse gear

Engine→Clutch→Input shaft 1→Main gear of countershaft 15→Countershaft 11→Reverse gear 13→Reverse driving gear 7→5th/reverse gear synchronizer 8→Output shaft 10

## **Instruction and Operation**

### **Control**

Gear selector lever and gear shift lever can be controlled through controlling the control handle inside cab to realize gear shifting. Different directions shown on the control handle grip corresponds to different gear select and shift positions. The control handle shall return to neutral position automatically after each time of gear removal. Gear selection can only be performed after the control handle is returned to the neutral position.

- 1. In order to shift gear, depress the clutch pedal fully to make the transmission out of engine torque and then control the gear shift lever quickly to shift gear. Please adopt low speed gear when starting.
- 2. Please adopt low speed gear during vehicle climbing, running downhill or turning. Don't let the vehicle idling with clutch released.
- 3. In case it is difficult to control the control handle, please stop and inspect. Don't apply it violently.

## Kilometers applicable to each forward gear of transmission:

| Gear<br>Position | 1st gear | 2 <sup>nd</sup> gear | 3 <sup>rd</sup> gear | 4th gear | 5 <sup>th</sup> gear |
|------------------|----------|----------------------|----------------------|----------|----------------------|
| Kilometers       | 0~15     | 20~30                | 35~45                | 50~60    | 65~75                |

### Attention:

- 1. Gear shifting of transmission should be performed within relevant kilometer range.
- 2. The applicable kilometers may vary when the transmission is equipped to different vehicles.

### Principle of gear shifting

Under the forward running status, the requirements of gear shifting is as follows: gear shifting from 1<sup>st</sup> gear to 5<sup>th</sup> gear step by step for speeding up, gear shifting from 5<sup>th</sup> gear to 1<sup>st</sup> gear step by step for speeding down; reverse gear can be shifted to in 3 seconds of pause after the clutch pedal is depressed under motionless state of vehicle; don't apply reverse gear under running state and don't apply forward gears under reversing state. Don't use the control handle of transmission as an armrest, in order to avoid early wear of shift fork.

# Attention: In case of any emergency occurs during running state, you may perform gear shifting without following this principle.

### Meaning of transmission name:



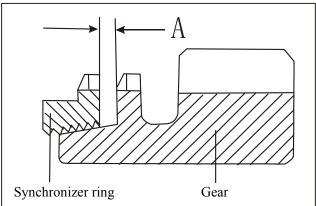
### **Inspection and Confirmation**

- 1. Check input shaft assembly
- 1) Check input shaft for gear teeth fracture, pitting, severe wear or scuffing of tooth surface. If any, please replace the input shaft.
- Check input shaft spline for any severe wear or damage. If any, please replace the input shaft.
- 3) Rotate bearing by hand to check for non-flexible rotation or sticking. If any, please replace the

bearing.

### Note:

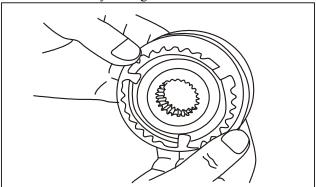
Please check the stop ring on bearing during replacement of bearing. If it is deformed, please replace it.


2. Check output shaft assembly

Check input shaft for gear teeth fracture, pitting, severe wear or scuffing of tooth surface. If any, please replace the output shaft.

#### Note:

Rotate bearing by hand to check for non-flexible rotation or sticking. If any, please replace the bearing.


- 3. Check synchronizer ring
- 1) Check tooth surface of synchronizer ring for any damage.
- 2) Check conical surface for any damage or wear; check if the screw is crushed.



3) When the synchronizer ring is pressed close to gear, check clearance "A". If "A" is below the limit, please replace the ring.

### Limit value: 0.5mm

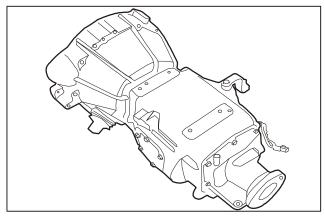
- 4. Check synchronizer gear sleeve and gear hub
- Assemble the synchronizer gear sleeve and gear hub together and check for smooth sliding but no sticking.
- 2) Check front and read end of inner surface of gear sleeve for any damage.



Attention: In case the synchronizer gear sleeve or gear hub is in need of replacement, they should be replaced as a whole.

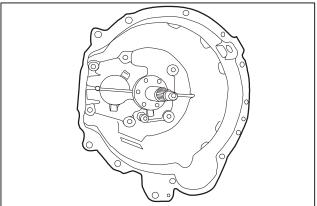
## **MT Manual Transmission**

## **Instruction and Operation**

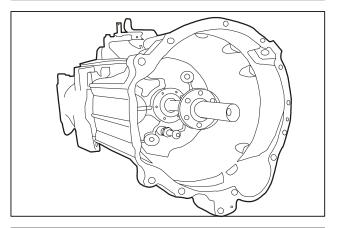

## Fault diagnosis

## Common fault diagnosis table

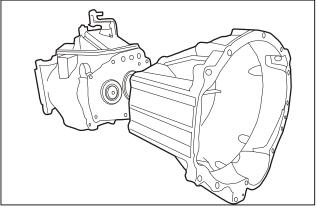
| Fault Symptom                                                                                                                              | Possible Cause                                                                  | Solution                                                                                                                                                                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Jumping back to neutral position under running state                                                                                       | Excessive wear of shift fork shaft arc, elastic deformation of lock ball spring | Check if the operating system has pushed the gear shift rocker arm of transmission into place; or with the transmission removed, push the shift fork into gear by hand to check gear meshing status. |  |
|                                                                                                                                            | Excessive wear of shift fork working face                                       | In case of incomplete meshing, please check shift fork for deformation or working face excessive wear.                                                                                               |  |
|                                                                                                                                            | Excessive wear of joint surface of shift fork gear ring or gear sleeve          | In case of complete meshing, please check wear condition of inverted cone of gear sleeve and engaged gear.                                                                                           |  |
|                                                                                                                                            | Axial looseness of gear                                                         | If excessive clearance is felt, please check fork shaft groove and guide spring for any wear or failure.                                                                                             |  |
| Difficulty in gear shifting, loud impact sound in gear shifting, or difficulty in shifting to certain gear with normal operation of clutch | Severe wear of synchronizer ring                                                | Replace synchronizer ring.                                                                                                                                                                           |  |
| Noise generated in transmission  1. Regular impact sound  2. Uniform noise                                                                 | Caused by breakage of individual gear tooth                                     | Check relevant part and remove it.                                                                                                                                                                   |  |
|                                                                                                                                            | Backlash increase or gear damage                                                | Remove, check and clean or replace damaged gear.                                                                                                                                                     |  |
|                                                                                                                                            | Bearing wear                                                                    | Remove, check and clean or replace damaged bearing.                                                                                                                                                  |  |
|                                                                                                                                            | Insufficient lube oil                                                           | Change oil or add new oil.                                                                                                                                                                           |  |
| Oil leak                                                                                                                                   | Adding too much oil, too high oil level                                         | Remove oil filler plug to check oil level.                                                                                                                                                           |  |
|                                                                                                                                            | Excessive wear or damage of oil seal                                            | Replace oil seal.                                                                                                                                                                                    |  |
|                                                                                                                                            | Uneven application of sealant or damage of sealing paper pad                    | Remove parts relevant to each joint surface and apply sealant evenly, or replace paper pad.                                                                                                          |  |
|                                                                                                                                            | Failure of vent plug                                                            | Replace vent plug.                                                                                                                                                                                   |  |
|                                                                                                                                            | Joint surface bump not shaved in time                                           | Remove parts relevant to each joint surface to have the bump point shaved.                                                                                                                           |  |
| Abnormal spoilage of bearing                                                                                                               | Too dirty lube oil                                                              | Change oil.                                                                                                                                                                                          |  |
|                                                                                                                                            | Inadequate lubrication or nonconforming or inferior lube oil                    | Check oil level, add or change oil.                                                                                                                                                                  |  |
|                                                                                                                                            | Unqualified bearing adopted                                                     | Replace bearing.                                                                                                                                                                                     |  |


### Removal/Installation

### **Manual transmission**



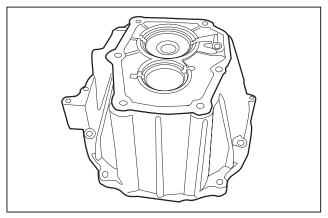

- 1. Remove manual transmission.
- Oil drainage


Attention: Remove oil drain plug with wrench and drain oil through this plug instead of other parts.

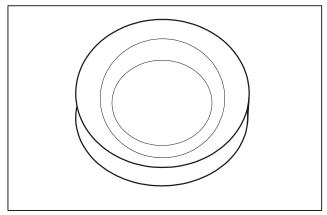


2. Remove release bearing from input shaft front cap.

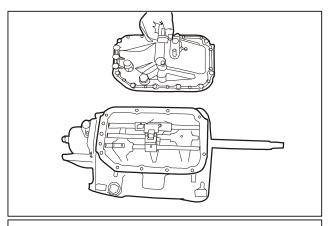



3. Remove input shaft front cap from transmission.



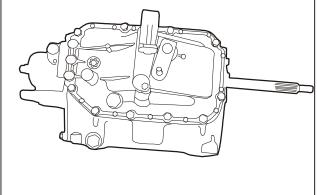

4. Remove clutch housing.

Attention: If the transmission housing is assembled tightly with clutch housing, a rubber hammer or copper rod can be applied to knock on the housing edge to make them become loose.


### Manual transmission

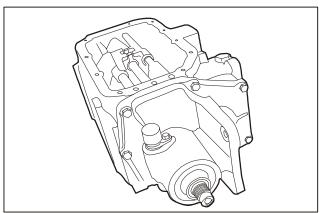


- 5. Remove clutch housing.
  - Place it upside down on cardboard horizontally.

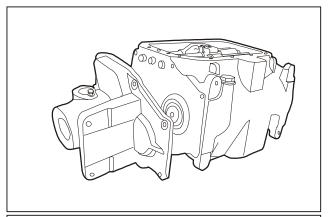



6. Remove input shaft oil seal from transmission.



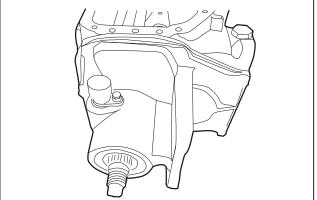

7. Remove top cover from transmission.

Attention: If the transmission housing is assembled tightly with clutch housing, a rubber hammer or copper rod can be applied to knock on the housing edge to make them become loose.

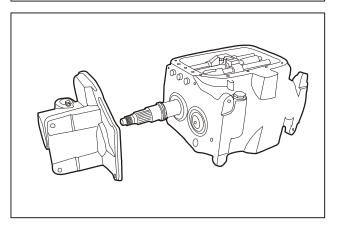



8. Remove gear shift rocker arm assembly from transmission.

### Manual transmission

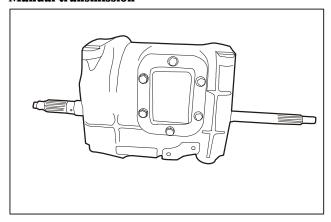



9. Use pneumatic gun or wrench to remove output shaft bolt of transmission and knock out flange nut.

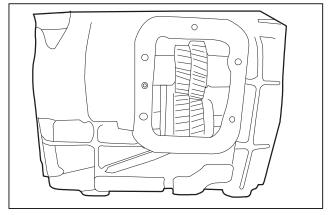



10. Remove rear cover of transmission.

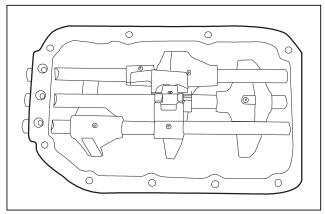
Attention: If the transmission housing is assembled tightly with clutch housing, a rubber hammer or copper rod can be applied to knock on the housing edge to make them become loose.




11. Remove vehicle speed sensor.




12. Remove vehicle speed sensor gear and bushing.

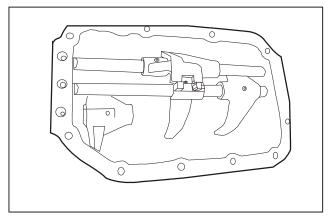

### Manual transmission



- 13. Remove side cover from transmission.
  - Turn over the transmission.
  - Remove bolts from side cover.



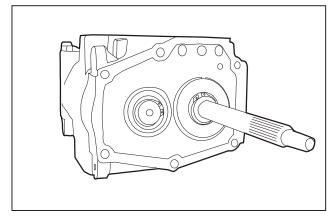
14. Remove side cover from transmission.



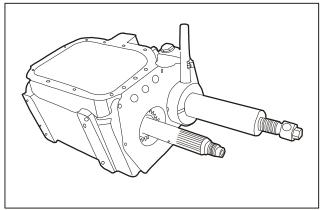

15. Remove gear shift fork from transmission.



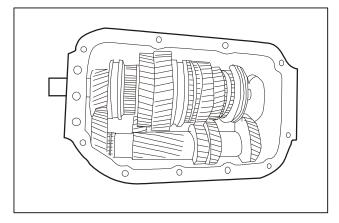
- 16. Remove gear shift block from transmission.
  - Punch out the spring pin by using punch and remove each shift fork, shift block and shift fork shaft.


### Manual transmission



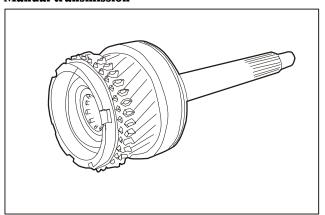

17. Remove gear selector fork from transmission.

### Attention:

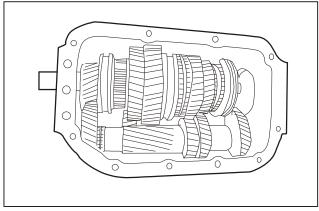

Please notice the position of steel balls. This transmission has 7 steel balls and 1 steel locking piece, among which, 3 steel balls are self-locking devices and the others are interlocking devices.



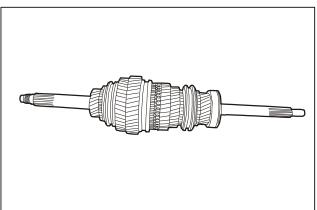
18. Remove all bearing circlips by using circlip pliers.




19. Pull out bearings except for input shaft bearing cap with SST.

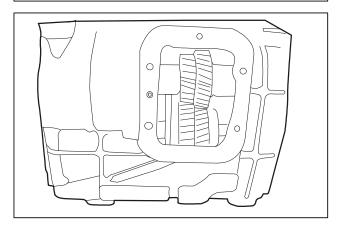



20. Remove input shaft of transmission.


### Manual transmission



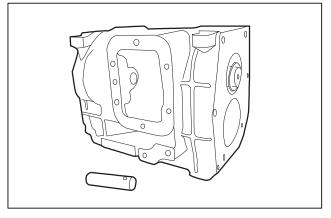
21. Remove output (input) shaft of transmission and place it on cardboard horizontally.



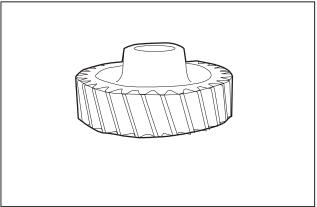

22. Remove output shaft of transmission.



23. Remove output shaft of transmission.

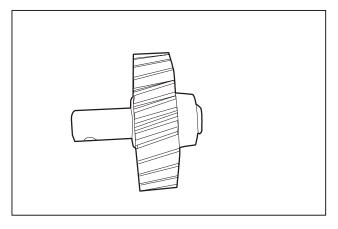

Assemble the output shaft and input shaft of transmission together and place them on clean cardboard horizontally.




24. Remove reverse gear shaft pin of transmission.

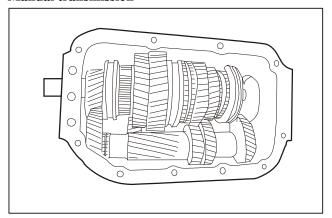
### Manual transmission

25. Use a rubber hammer or copper rod to knock on the reverse gear shaft gently.

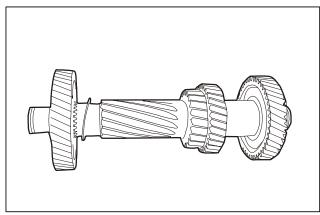



26. Pull out the reverse gear shaft pin and punch out the reverse gear shaft.

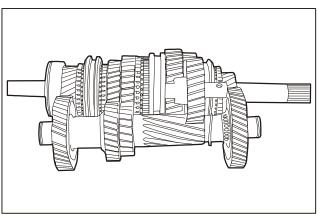



27. Remove reverse gear of transmission.

Place it on clean cardboard horizontally.

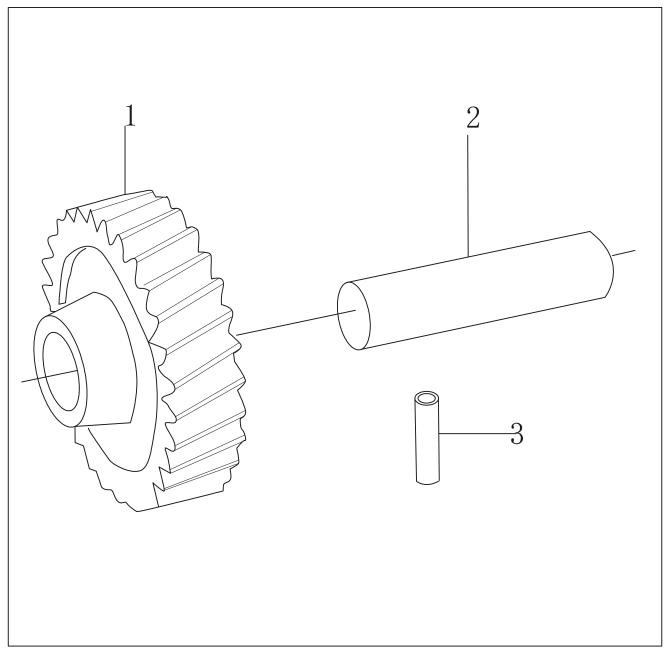



28. Assemble the reverse gear and reverse gear shaft as a whole.


### **Manual transmission**



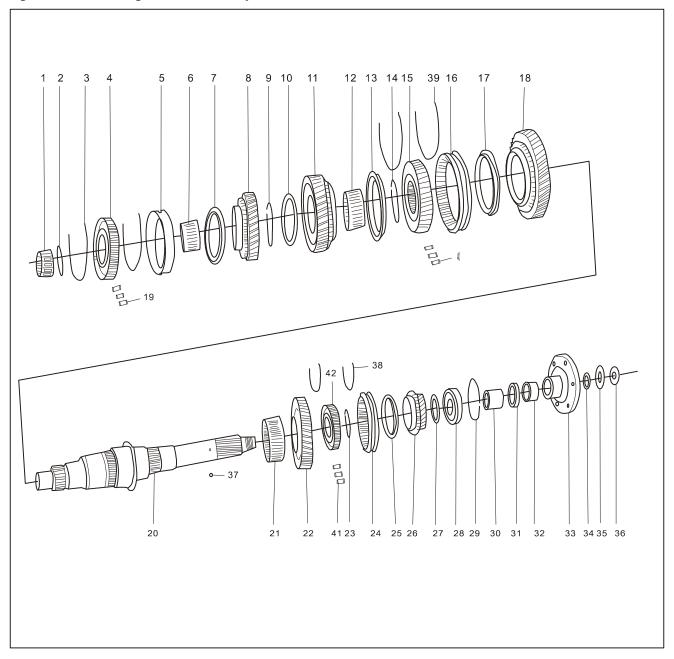
29. Loosen the 5<sup>th</sup> gear circlip with circlip pliers and remove the fixed circlip from the 5<sup>th</sup> driving gear.




30. Adjust the position of 5<sup>th</sup> gear of countershaft and remove countershaft of transmission.



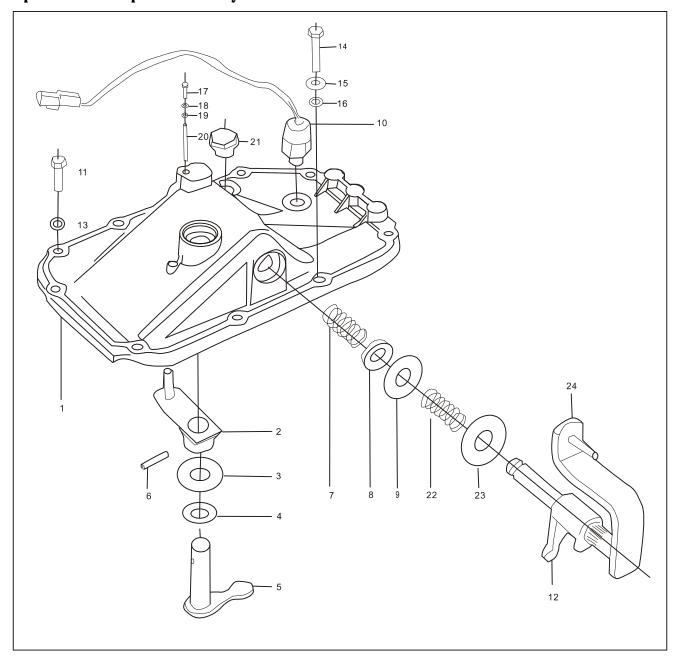
31. Transmission gearing diagram


## **Exploded View of Reverse Gear Shaft**



Reverse Gear Shaft Parts List

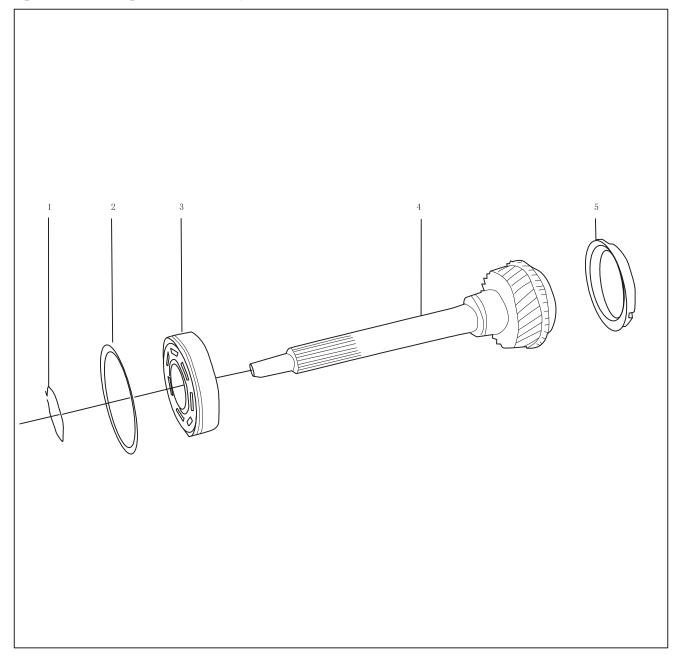
| S/N | Name                   | Qty. |
|-----|------------------------|------|
| 1   | Reverse gear assembly  | 1    |
| 2   | Reverse gear shaft     | 1    |
| 3   | Reverse gear shaft pin | 1    |


## **Exploded View of Output Shaft Assembly**



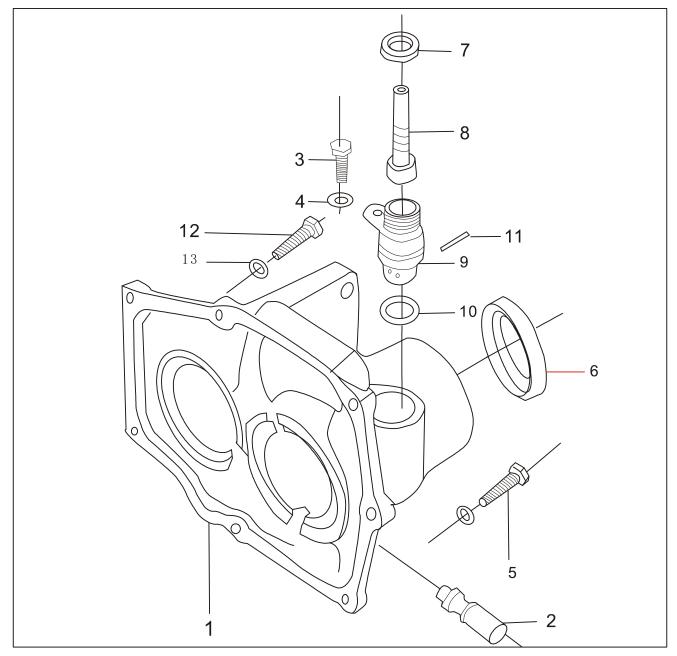
## **Output Shaft Parts List**

| S/N | Name                                          | Qty. | S/N | Name                                       | Qty. |
|-----|-----------------------------------------------|------|-----|--------------------------------------------|------|
| 1   | Output shaft head needle roller bearing       | 1    | 27  | Thrust washer of 5 <sup>th</sup> gear      | 1    |
| 2   | Circlip                                       | 1    | 28  | Ball bearing                               | 1    |
| 3   | 3rd/4th gear synchronizer spring              | 2    | 29  | Stop ring                                  | 1    |
| 4   | 3rd/4th gear synchronizer gear hub            | 1    | 30  | Front spacer bush of odometer driving gear | 1    |
| 5   | 3rd/4th gear synchronizer gear sleeve         | 1    | 31  | Odometer driving gear                      | 1    |
| 6   | needle roller bearing                         | 1    | 32  | Rear spacer bush of odometer driving gear  | 1    |
| 7   | 3rd/4th gear synchronizer ring                | 1    | 33  | Flange                                     | 1    |
| 8   | 3 <sup>rd</sup> gear assembly of output shaft | 1    | 34  | O-ring                                     | 1    |
| 9   | Circlip                                       | 1    | 35  | Conical spring washer                      | 1    |
| 10  | Thrust washer of 2 <sup>nd</sup> gear         | 1    | 36  | Output shaft nut                           | 1    |
| 11  | 2 <sup>nd</sup> gear assembly of output shaft | 1    | 37  | Steel ball                                 | 1    |
| 12  | Needle roller bearing                         | 2    | 38  | 3rd/4th gear synchronizer spring           | 2    |
| 13  | 1st/2nd gear synchronizer ring                | 1    | 39  | 1st/2nd gear synchronizer spring           | 2    |
| 14  | Circlip                                       | 1    | 40  | 3rd/4th gear synchronizer slider           | 3    |
| 15  | 1st/2nd gear hub                              | 1    | 41  | Reverse/5th gear synchronizer slider       | 3    |
| 16  | 1st/2nd gear sleeve                           | 1    | 42  | Reverse/5th gear synchronizer gear hub     | 1    |
| 17  | 1st/2nd gear synchronizer ring                | 1    | 43  |                                            |      |
| 18  | 1st gear assembly of output shaft             | 1    | 44  |                                            |      |
| 19  | 3rd/4th gear synchronizer slider              | 3    | 45  |                                            |      |
| 20  | Output shaft                                  | 1    | 46  |                                            |      |
| 21  | Needle roller bearing                         | 1    | 47  |                                            |      |
| 22  | Reverse gear assembly of output shaft         | 1    | 48  |                                            |      |
| 23  | Circlip                                       | 1    | 49  |                                            |      |
| 24  | Reverse/5th gear synchronizer gear sleeve     | 1    |     |                                            |      |
| 25  | 3rd/4th gear synchronizer ring                | 1    |     |                                            |      |
| 26  | 5 <sup>th</sup> gear assembly of output shaft | 1    |     |                                            |      |


## **Exploded View of Top Cover Assembly**



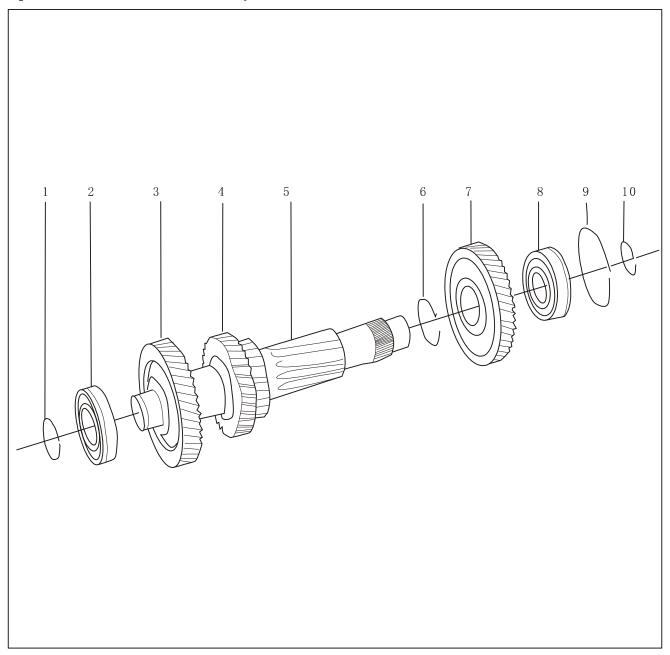
## **Top Cover Assembly Parts List**


| S/N | Name                                    | Qty. | S/N | Name                                 | Qty. |
|-----|-----------------------------------------|------|-----|--------------------------------------|------|
| 1   | Transmission cover                      | 1    | 14  | Hexagon bolt                         | 2    |
| 2   | Outer gear selector rocker arm assembly | 1    | 15  | Large washer                         | 2    |
| 3   | Flat washer                             | 1    | 16  | Spring washer                        | 8    |
| 4   | Oil seal                                | 1    | 17  | Hexagon bolt                         | 1    |
| 5   | Inner gear selector rocker arm          | 1    | 18  | Flat washer                          |      |
| 6   | Spring pin                              | 1    | 19  | Washer                               | 1    |
| 7   | Reverse/5th gear damping spring         | 1    | 20  | Knurled pin                          | 1    |
| 8   | Oil seal                                | 1    | 21  | Oil filler plug assembly             | 1    |
| 9   | Flat washer                             | 1    | 22  | 1st/2nd gear damping spring          | 1    |
| 10  | Reversing lamp switch                   | 1    | 23  | Flat washer                          | 1    |
| 11  | Hexagon bolt                            | 8    | 24  | Outer gear shift rocker arm assembly | 1    |
| 12  | Inner gear shift rocker arm             | 1    |     |                                      |      |
| 13  | Spring washer                           | 8    |     |                                      |      |

## **Exploded View of Input Shaft Assembly**

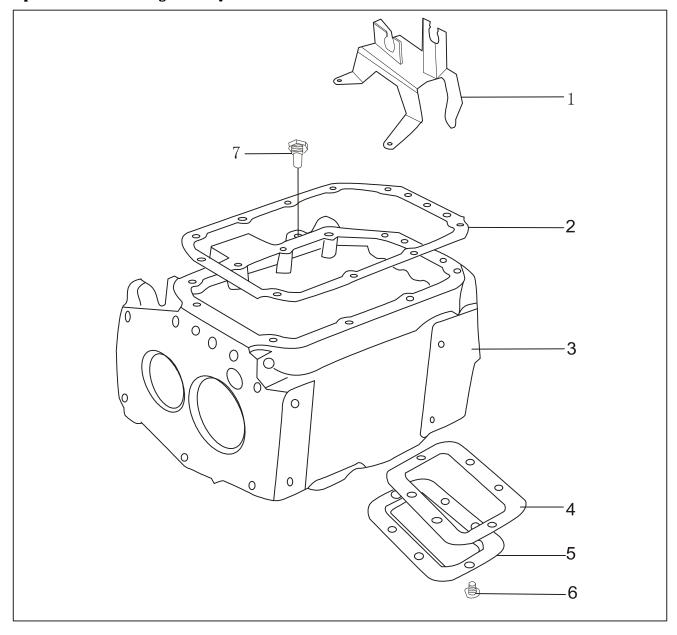


| S/N | Name                       | Qty. | S/N | Name                           |
|-----|----------------------------|------|-----|--------------------------------|
| 1   | Circlip                    | 1    | 5   | 3rd/4th gear synchronizer ring |
| 2   | Stop ring                  | 1    |     |                                |
| 3   | Ball bearing (input shaft) | 1    |     |                                |
| 4   | Input shaft assembly       | 1    |     |                                |


## **Exploded View of Transmission Rear Cover**

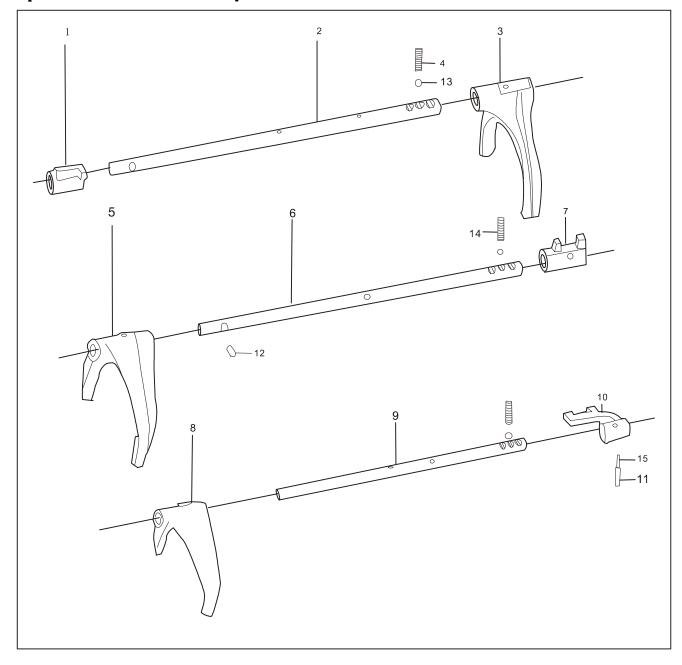


| S/N | Name          |   | S/N | Name                  | Qty. |
|-----|---------------|---|-----|-----------------------|------|
| 1   | Rear cover    | 1 | 9   | Odometer guide sleeve | 1    |
| 2   | Vent plug     | 1 | 10  | O-ring                | 1    |
| 3   | Hexagon bolt  | 1 | 11  | Spring pin            | 1    |
| 4   | Spring washer | 1 | 12  | Hexagon bolt          | 5    |
| 5   | Hexagon bolt  | 2 | 13  | Spring washer         | 7    |
| 6   | Oil seal      | 1 |     |                       |      |
| 7   | Oil seal      | 1 |     |                       |      |
| 8   | Odometer gear | 1 |     |                       |      |


**Instruction and Operation** 

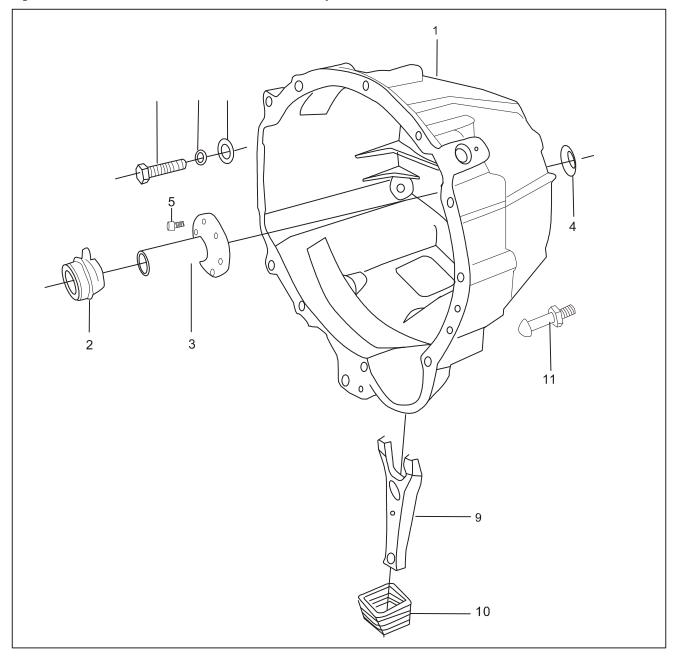
## **Exploded View of Countershaft Assembly**




| S/N | Name                      |   | S/N | Name                     | Qty. |
|-----|---------------------------|---|-----|--------------------------|------|
| 1   | Circlip                   | 1 | 6   | Circlip                  | 1    |
| 2   | Cylinder roller bearing   |   | 7   | 5th gear of countershaft | 1    |
| 3   | Main gear of countershaft | 1 | 8   | Cylinder roller bearing  | 1    |
| 4   | 3rd gear of countershaft  |   | 9   | Stop ring                | 1    |
| 5   | Countershaft              | 1 | 10  | Circlip                  | 1    |

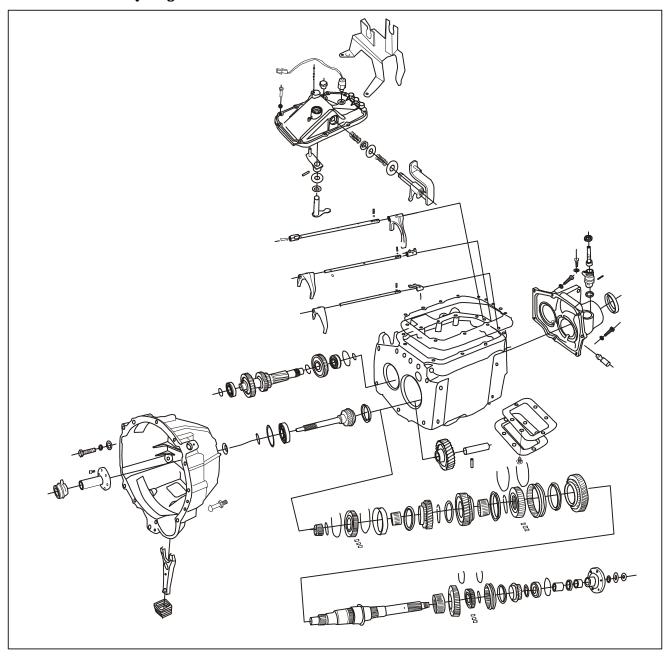
## **Exploded View of Housing Assembly**



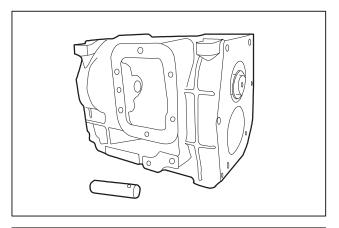

| S/N | Name                            | Qty. |
|-----|---------------------------------|------|
| 1   | Flexible shaft bracket assembly | 1    |
| 2   | Liner                           | 1    |
| 3   | Housing                         | 1    |
| 4   | Side cover liner                | 1    |
| 5   | Side cover of transmission      | 1    |
| 6   | Side cover bolt                 | 6    |
| 7   | Oil drain plug assembly         | 1    |

## **Exploded View of Shift Fork Assembly**



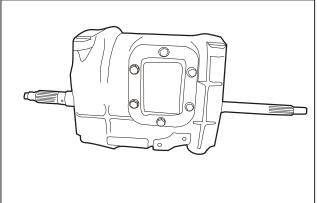

| S/N | Name                              |   | S/N | Name                          | Qty. |
|-----|-----------------------------------|---|-----|-------------------------------|------|
| 1   | 5th/reverse gear shift block      | 1 | 9   | 1st/2nd gear shift fork shaft | 1    |
| 2   | 5th/reverse gear shift fork shaft | 1 | 10  | 1st/2nd gear shift block      | 1    |
| 3   | 5th/reverse gear shift fork       |   | 11  | Spring pin                    | 6    |
| 4   | Lock ball spring                  | 2 | 12  | Interlocking lifting pin      | 1    |
| 5   | 3rd/4th gear shift fork           | 1 | 13  | Steel ball                    | 7    |
| 6   | 3rd/4th gear shift fork shaft     | 1 | 14  | Lock ball spring              | 1    |
| 7   | 3rd/4th gear shift block          | 1 | 15  | Spring pin                    | 5    |
| 8   | 1st/2nd gear shift fork           | 1 |     |                               |      |

## **Exploded View of Transmission Front Cover Assembly**

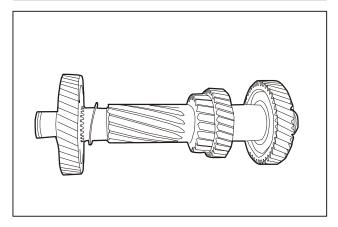



| S/N | Name                            | S/N | Name                  | Qty. |
|-----|---------------------------------|-----|-----------------------|------|
| 1   | Clutch housing                  | 7   | Spring washer         |      |
| 2   | Release bearing                 | 8   | Flat washer           | 1    |
| 3   | Input shaft front cap           | 9   | Release fork assembly | 1    |
| 4   | Oil seal                        | 10  | Release fork shield   | 1    |
| 5   | Hexagonal socket head cap screw | 11  | Ball joint bracket    | 1    |
| 6   | Bolt (Clutch housing)           |     |                       |      |

## Transmission Assembly Diagram

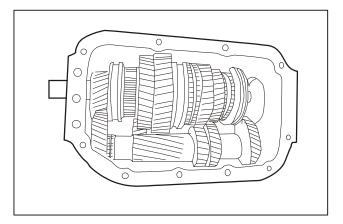



#### **Transmission**

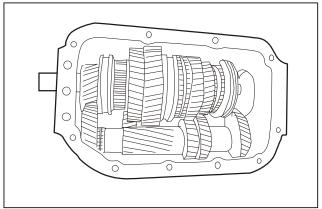



#### Installation

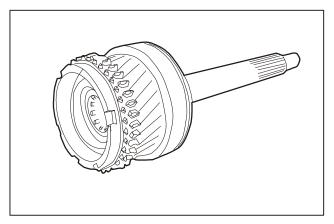
- 1. Place transmission housing onto a clean cardboard.
- 2. Install reverse gear and reverse gear shaft onto transmission housing.



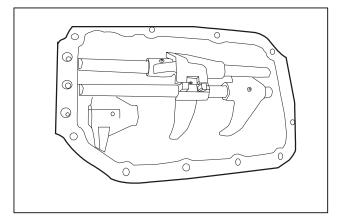

3. Install side cover and reverse gear shaft pin of transmission in place and tighten to the specified torque.




4. Install transmission countershaft into the transmission housing.

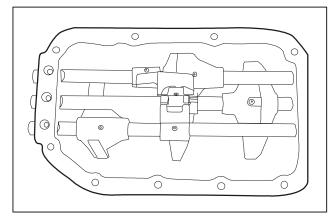

#### **Transmission**



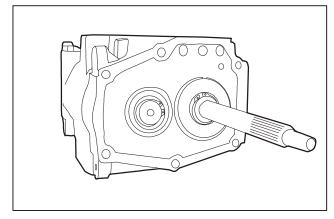

5. Install the fixed circlip of 5<sup>th</sup> driving gear of transmission countershaft in place.



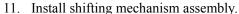
6. Install output shaft of transmission into transmission housing.



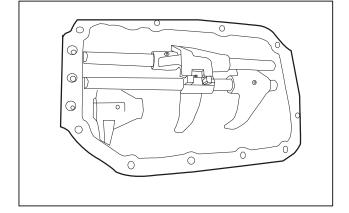

7. Install guide bearing of input shaft of transmission in place.

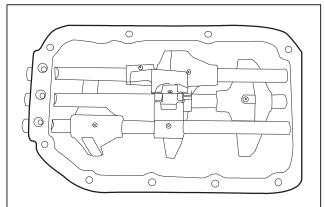



- 8. Install shifting mechanism assembly.
  - Maintain each gear and synchronizer at neutral position.
  - Install interlocking steel ball into transmission housing.
  - Install gear shift shaft into transmission housing gently.


#### **Transmission**

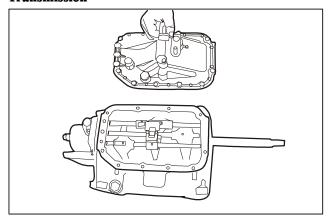



- 9. Install gear shift control mechanism assembly.
  - Install the self-locking device of gear shift control mechanism in place.

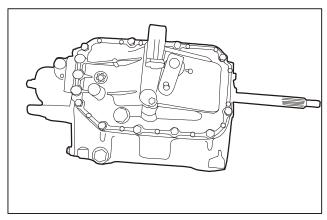



- 10. Knock the input shaft gently into transmission. Attention:
  - During the installation of input shaft, use rubber hammer to knock gently on symmetric position on input shaft support bearing.
  - Install inside and outside circlips into input shaft of transmission.
  - Install the countershaft bearing into transmission. Please notice the mounting direction of both side bearing inner rings, with the one without ledge facing inward of transmission. During installation, use hammer to knock on transmission bearing gently and evenly into transmission housing.




- Maintain each gear and synchronizer at neutral position.
- Install interlocking steel ball into transmission housing.
- Install gear shift shaft into transmission housing gently.

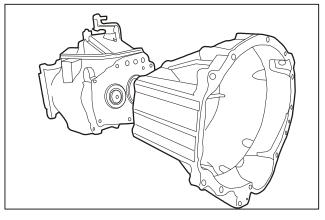




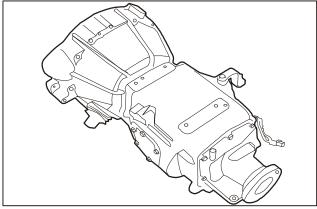

12. Install gear shift control mechanism assembly. Install the self-locking device of gear shift control mechanism in place.

#### **Transmission**




Install top cover of transmission.
 Maintain gear shift control mechanism and gear shift shaft at reverse gear position.




14. Install gear shift control mechanism onto the top cover of transmission.

#### Attention:

In order to avoid deformation during installation of transmission cover, please tighten bolts on middle part first and then bolts on both sides in symmetry. (Check for normal gear shifting after installation)



- 15. Assemble clutch housing onto transmission housing.
- Tighten outer bolts and front cover mounting bolts of input shaft. Please tighten bolts on middle part first and then bolts on both sides or tighten diagonally.



16. Tighten output shaft flange of transmission to the specified torque.

## **Maintenance Parameters**

## **Tightening torque**

| Position                                                   | Technical Requirement (N.m) |
|------------------------------------------------------------|-----------------------------|
| Connection between clutch housing and transmission housing | 68.6~93.2                   |
| Reversing lamp switch                                      | 29.4~39.2                   |
| Rear cover, transmission cover bolts                       | 25~35                       |
| Bracket bolt                                               | 25~35                       |
| Side cover bolt                                            | 14~24.5                     |
| Vent plug                                                  | 10.8~18.6                   |
| Oil filler plug and oil drain plug                         | 39.2~58.8                   |
| Output shaft nut                                           | 160~210                     |
| Gear shift shaft dowel hole bolt                           | 9.8~14.7                    |
| Odometer shaft sleeve                                      | 9.8~14.7                    |
| Release fork ball joint support                            | 30~42                       |
| Input shaft front cap                                      | 9.8~14.7                    |

Main technical parameters

| wiam teeminear     | parameters           |                                         |  |  |  |
|--------------------|----------------------|-----------------------------------------|--|--|--|
| Туре               |                      | Five forward gears and one reverse gear |  |  |  |
| Control type       |                      | Remote control                          |  |  |  |
| Rated input torque |                      | 300N.m                                  |  |  |  |
| Assembly mass      |                      | About 78Kg                              |  |  |  |
|                    | Gear position        | Speed ratio                             |  |  |  |
|                    | 1st gear             | 4.717                                   |  |  |  |
| Connad matic       | 2 <sup>nd</sup> gear | 2.513                                   |  |  |  |
| Speed ratio        | 3 <sup>rd</sup> gear | 1.679                                   |  |  |  |
|                    | 4 <sup>th</sup> gear | 1.00                                    |  |  |  |
|                    | 5 <sup>th</sup> gear | 0.784                                   |  |  |  |
| Reverse gear       |                      | 4.497                                   |  |  |  |

#### **MT Manual Transmission**

#### Care and maintenance

#### **Transmission maintenance**

- 1. Transmission operation and maintenance should be conducted in accordance with application and maintenance requirements for commercial vehicles, which are generally divided into three technical maintenance stages.
- 2. Check, change (or add) transmission oil regularly.

Regular Inspection and Maintenance Schedule for Transmission

Mileage and time (by the month) are both indicated for each item, whichever occurs first.

○ Check point, tighten or adjust; ★ Change lube oil

|                    | Service interval (based on odometer reading or number of months, which occurs first) |           |                  |         |   |    |    |    |    |    |    |    |    |    |    |
|--------------------|--------------------------------------------------------------------------------------|-----------|------------------|---------|---|----|----|----|----|----|----|----|----|----|----|
| Item               | Nun                                                                                  | ber of mo | onths            |         | _ | 3  | 6  | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 |
|                    | Odometer reading×1000km                                                              |           |                  | 1       | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |    |
| Transmission insi  | de insp                                                                              | ection    |                  |         |   |    |    |    |    |    |    |    |    |    |    |
| Check gear oil lev | Check gear oil level inside transmission                                             |           |                  |         |   | 0  |    | 0  |    | 0  |    | 0  |    | 0  |    |
| Change gear        | ear oil                                                                              | il inside | Normal condition | service |   | *  |    | *  |    | *  |    | *  |    | *  |    |
| transmission       |                                                                                      |           | Severe condition | service |   | *  |    | *  | *  | *  | *  | *  | *  | *  |    |
| Other inspections  |                                                                                      |           |                  |         |   |    |    |    |    |    |    | •  |    |    |    |

Note: "Severe service condition" includes items listed below:

- 1. Running in dusty areas or frequently exposed in salty atmosphere or saline water.
- 2. Running on bumpy, water-logging roads or on mountain road.
- 3. Running in cold areas.
- 4. Engine idling for a long time or frequent short distance running in cold seasons.
- 5. Frequent application of brakes and emergency brake.
- 6. Towing vehicle.
- 7. Under high temperature over 32°C, the time of vehicle running slowly in congested urban areas exceeding 50% of total running time.
- 8. Under high temperature over 30°C, the time of vehicle running at high speed over 120km/h exceeding 50% of total running time.
- 9. Overloading.

#### Lubrication and seal

| Item                                                        | Lube Oil/Sealant                                        | Qty.     |
|-------------------------------------------------------------|---------------------------------------------------------|----------|
| Transmission gear oil                                       | Gear oil In summer 80W/90 GL-4<br>In winter 75W/90 GL-4 | 2.7L     |
| Release bearing bore of transmission                        | Grease                                                  | Adequate |
| Transmission oil seal                                       | Grease                                                  | Adequate |
| Mating face between transmission housing and clutch housing | TONSAN®1596F                                            | Adequate |
| Mating face between transmission housing and rear cover     | TONSAN®1596F                                            | Adequate |

# **Brake System**

Applied models: SUNRAY products manufactured by JAC

| Subject                                          | Page |
|--------------------------------------------------|------|
| Instruction and Operation                        |      |
| Brake System                                     | 46   |
| Explosive View                                   | 46   |
| Introduction of Brake                            | 47   |
| Diagnosis and Testing                            |      |
| Brake System                                     | 49   |
| Inspection and confirmation.                     |      |
| Fault Symptom Table                              |      |
| Removal/Installation                             |      |
| Removal/installation of brake disc               | 50   |
| Removal/installation of brake caliper assembly   | 54   |
| Removal/installation of rear wheel brake shoe    | 56   |
| Parking brake adjustment                         | 59   |
| Removal/installation of parking brake lever      | 60   |
| Removal/installation of parking brake cable      |      |
| Replacement of parking brake cable               |      |
| Removal/installation of brake pedal              |      |
| Removal/installation of brake master cylinder    |      |
| Removal/installation of vacuum pump              |      |
| Removal/installation of vacuum booster           |      |
| Air bleeding for hydraulic pressure brake system | 71   |

SUNRAY vehicles' brake system adopts cross type brake line and the front disc/rear drum brake type.



1. Brake master cylinder

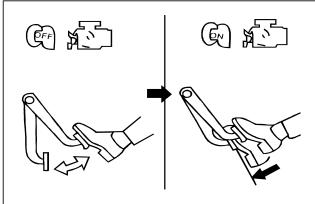
2. Hydraulic distribution valve

#### **Operating principle**

#### **Brake fluid**

## Inspection of brake fluid level:

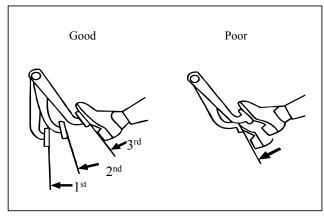
- Check if the brake fluid level in oil reservoir is within the specified range (between MAX and MIN signs). In case of too low fluid level, please check oil reservoir periphery and brake system for any leak.
- 2. Start the vehicle with parking brake lever released to observe whether the brake warning lamp goes out. If not, please check the parking brake switch and brake fluid level switch for any fault.


## Brake master cylinder On-vehicle inspection:

Check mounting surfaces of master cylinder and oil reservoir, as well as brake pipe connectors for any leak. Instruction and Operation

## Inspection of vacuum booster

1. Operation inspection


Shut down the engine and repeatedly depress the brake pedal for several times to make the vacuum inside the vacuum booster equivalent to atmospheric pressure. With the brake pedal depressed to the end and engine started, check if the clearance between brake pedal and floor decreases once the vacuum up to the standard degree.



Attention:

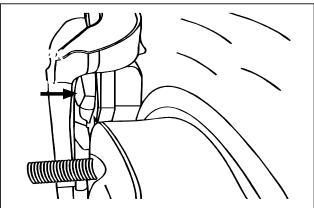
Please depress the brake pedal with an interval of 5 seconds.

2. Air tightness inspection



Start the engine and let it idling for 1 minute, and shut down the engine once the vacuum established in the vacuum booster. Depress the brake pedal normally to remove the vacuum.

Please check if the clearance between brake pedal and floor increases gradually.


Depress the brake pedal with engine running and then hold the brake pedal depressed to realize flameout. Please check if there is any change in pedal travel after holding it for 30 seconds.

## Front disc brake caliper On-vehicle inspection:

1. Check brake shoes for any wear.

#### Attention:

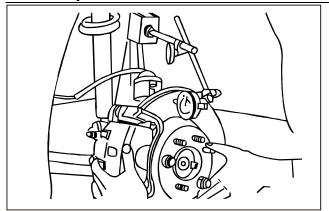
Standard thickness: 12mm Wear limit thickness: 2mm



#### Inspection of brake disc:

1. Visual inspection

Check brake disc surface for uneven abrasion, crack or sever damage. If any, please replace the brake disc.

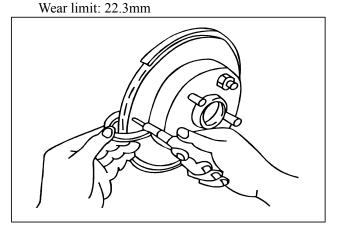

2. Inspection of runout

(1) Fix the brake disc onto the wheel hub.

#### **Attention:**

Before measurement, please ensure proper axial clearance of wheel bearing.

#### **BR Brake System**

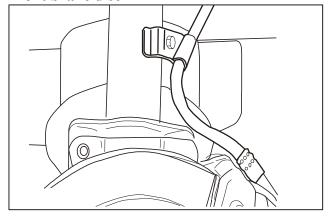



- ② Check the runout with dial indicator. (It is preferable to conduct measurement at points 10mm distant from the disc edge)
  Runout limit: 0.05mm
- ③ If the disc runout exceeds the specified value, please replace or reprocess it accordingly.
- 3. Thickness inspection

Check the thickness of brake disc with a micrometer.

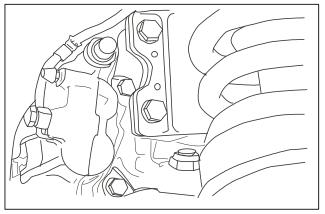
If the thickness is less than the wear limit, please replace the brake disc.

Standard thickness: 24.3mm




## **Fault Diagnosis**

## Common fault diagnosis table

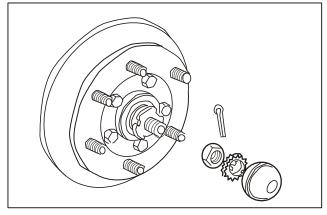

| Fault Symptom                                                               | Possible Cause                                                         | Solution                |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|
| Vehicle pulled to one side when braking                                     | Insufficient left/right tire pressure                                  | Adjust                  |
|                                                                             | Improper front wheel alignment                                         | Adjust                  |
|                                                                             | Poor contact of brake shoe                                             | Adjust                  |
|                                                                             | Grease or oil existed on brake shoe surface                            | Replace                 |
|                                                                             | Improper installation of brake wheel cylinder                          | Adjust                  |
|                                                                             | Failure of auto-regulating mechanism                                   | Adjust                  |
| Insufficient brake force                                                    | Low level or contamination of brake fluid                              | Replenish or change     |
|                                                                             | Air existed in brake system                                            | Bleed air out of system |
|                                                                             | Failure of vacuum booster                                              | Adjust                  |
|                                                                             | Poor contact of brake shoe                                             | Adjust                  |
|                                                                             | Grease or oil existed on brake shoe surface                            | Replace                 |
|                                                                             | Failure of auto-regulating mechanism                                   | Adjust                  |
|                                                                             | Overheating of brake rotary parts due to sluggish of brake shoe        | Adjust                  |
|                                                                             | Restriction of brake line                                              | Adjust                  |
| Pedal travel increase<br>(decrease of clearance<br>between pedal and floor) | Air existed in brake system                                            | Bleed air out of system |
|                                                                             | Leak of brake fluid                                                    | Adjust                  |
|                                                                             | Failure of auto-regulating mechanism                                   | Adjust                  |
|                                                                             | Excessive clearance between pushrod and brake master cylinder          | Adjust                  |
| Brake hysteresis                                                            | Parking brake not fully released                                       | Release                 |
|                                                                             | Improper adjustment of parking brake                                   | Adjust                  |
|                                                                             | Wear of brake pedal return spring                                      | Replace                 |
|                                                                             | Restriction of return opening of brake master cylinder                 | Adjust                  |
|                                                                             | Insufficient lubrication of sliding parts                              | Lubricate               |
|                                                                             | Defective check valve or piston return spring of brake master cylinder | Replace                 |
|                                                                             | Insufficient clearance between pushrod and brake master cylinder       | Adjust                  |
| Insufficient parking braking                                                | Damage of rear brake shoe                                              | Replace                 |
|                                                                             | Grease or oil existed on rear brake shoe surface                       | Replace                 |
|                                                                             | Parking brake cable stuck                                              | Adjust                  |
|                                                                             | Failure of auto-regulating mechanism                                   | Adjust                  |
|                                                                             | Excessive travel of parking brake handle                               | Adjust                  |

#### Front brake disc



#### Removal

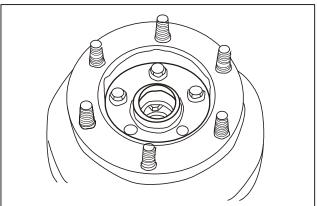
- 1. Have the vehicle lifted and remove the front wheel.
- 2. Remove the brake hose from the shock absorber.



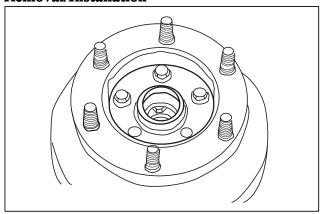

#### Note:

Loosen the brake caliper to certain degree ready for removal instead of removing it completely.

3. Remove the brake caliper.

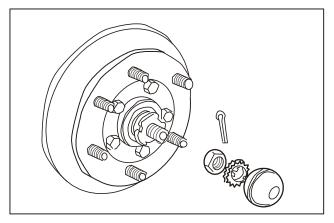

Hang up the brake caliper properly in order to avoid damage of brake hose.




#### **Caution:**

Bearing preload adjusting nut is of right hand thread.

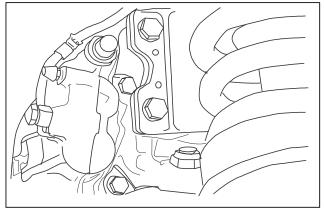
- 4. Remove the brake disc assembly:
  - Remove the dust cover.
  - Remove the split pin and nut retainer.
  - Loosen the adjusting nut of wheel bearing.
  - Remover the brake disc assembly.



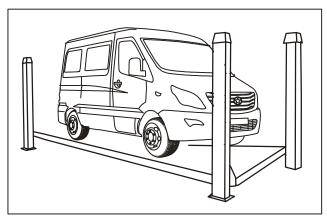

- 5. Remove the wheel hub from the wheel disc. Bend the lock lug on the set bolt down.
- 6. Clean the contact surface between wheel hub and disc.



#### Installation


1. Install the wheel hub onto the brake disc. Bend the lock lug on the set bolt up.

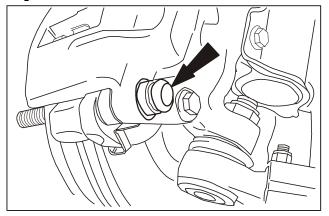



#### **Caution:**

The left hand side bearing adjusting nut is of left hand thread.

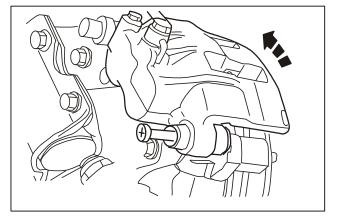
- 2. Reinstall the hub bearing:
  - Reinstall the washer and brake disc assembly, as well as the outer bearing.
  - Reinstall the wheel bearing adjusting nut.



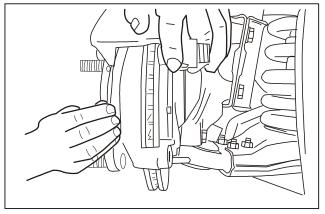

- 3. Reinstall the brake caliper.
- 4. Install the brake hose onto the shock absorber.
- 5. Check the front disc runout as required.



- 6. Set the axial clearance of wheel bearing:
  - Tighten the adjusting nut of wheel bearing and rotate the wheel at the same time to make it closely fitted against the bearing.
  - Rotate the adjusting nut by 180 degree and shake the wheel to make the hang properly fitted.
  - Push and pull the wheel horizontally to check the bearing axial clearance. If no clearance can be felt, adjust the adjusting nut to make the axial clearance within 0.002~0.05mm.
- 7. Use new split pin to reinstall the nut lock piece and the dust cover.
- 8. Reinstall the wheel.
- 9. Lower the vehicle.


#### **BR Brake System**

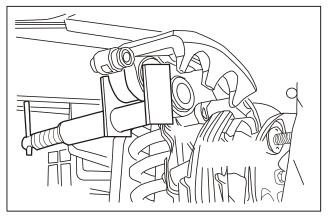
## Replacement of front brake disc




#### Removal

- 1. Have the vehicle lifted to remove the front wheel.
- 2. Remove the plastic cap of brake caliper sliding pin.

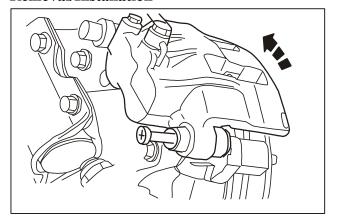


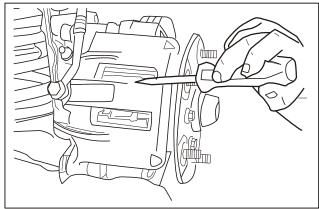

- 3. Make the brake disc exposed:
  - Remove the guide pin bolt of brake caliper.
  - Upturn the brake caliper.

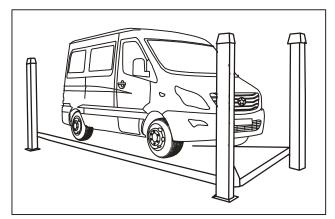


#### Note:

The ablated or damaged piston bush should be replaced.


4. Remove the inner/outer brake pad.



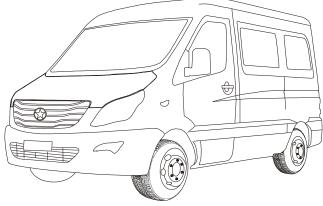


#### Note:

Resetting of wheel cylinder piston shall make the brake fluid returned to the fluid reservoir of master cylinder.

5. Push the wheel cylinder piston carefully to the original position.

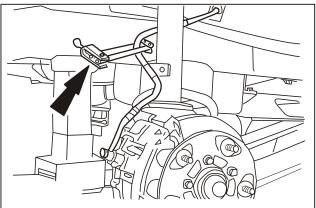







- 6. During the installation of new brake lining, please remove the snap ring of brake lining from the brake caliper.
- 7. Clear any dirt within the mounting areas.

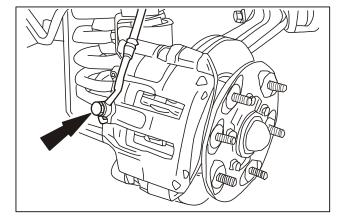
#### Installation


- 1. Install new snap ring onto new brake lining.
- 2. Check if two brake linings are of the same type.
- 3. During the installation of new brake lining, please remove the interleaving paper from the acoustic lining.
- 4. Reinstall inner/outer brake lining.
- 5. Reinstall the brake caliper assembly:
  - Install the brake caliper assembly.
  - Install the guide pin bolt of brake caliper.
  - Install the plastic cap of brake caliper guide pin.
- 6. Adjust the slider of brake plate.
- 7. Reinstall the wheel and lower the vehicle.
- 8. Check the brake fluid level of master cylinder. If insufficient, please add brake fluid to the standard position.

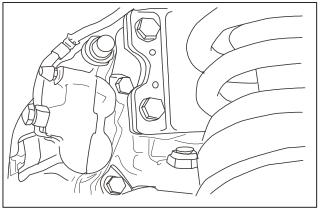
#### Brake caliper assembly



#### Removal


1. Have the vehicle lifted and remove the front wheel.




#### Note:

Clamp the brake hose with SST in order to avoid damage of brake hose.

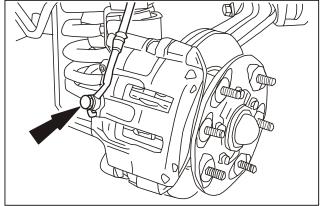
2. Clamp the brake hose.



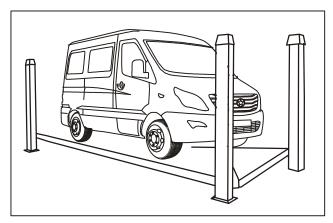
3. Remove the brake hose from the caliper.
Put on the seal plug to avoid excessive leak of brake fluid or contamination of dust.



#### Note:

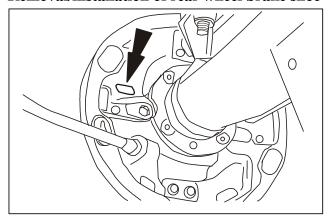

Loosen the upper mounting bolt of caliper until the brake caliper can be removed.

4. Remove the brake caliper assembly.



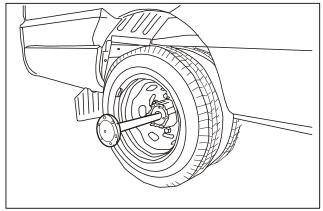

#### Installation

1. Reinstall the brake caliper.




- 2. Connect the brake hose to the brake caliper.
- 3. Fix the brake hose onto the shock absorber.
- 4. Bleed air out of brake line in accordance with specification.

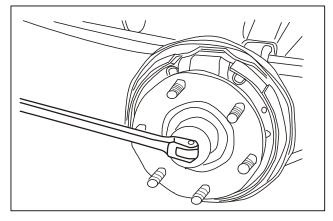



5. Install the wheel and lower the vehicle. Depress the brake pedal to adjust brake clearance.

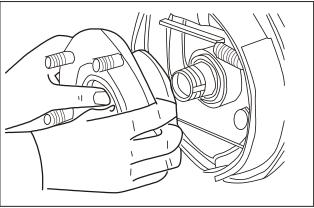
## Removal/installation of rear wheel brake shoe



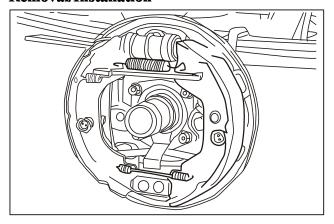
#### Removal

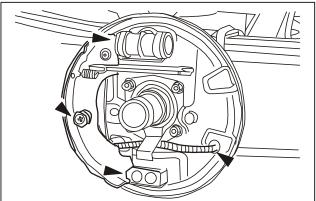

- 1. Release the parking brake lever, have the vehicle lifted and remove the rear wheel.
- 2. Remove the automatic regulator.
- 3. Mark properly on the wheel hub and rim for removal of hub.

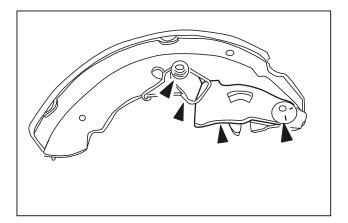


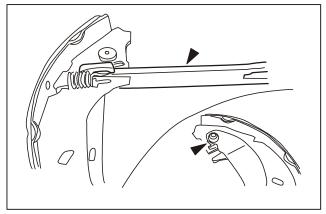

#### **Caution:**

Don't make the axle casing oil seal damaged.


4. Remove the axle shaft.





5. Remove flange nuts.




6. Remove the flange.





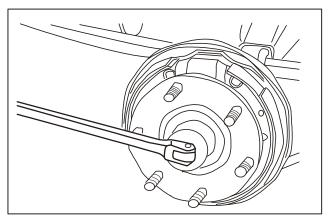




#### 7. Remove the leading shoe:

- Remove the lock pin and its spring cap.
- Remove the brake shoe lower end from the support.
- Loosen the lower return spring.
- Remove the brake shoe upper end from the wheel cylinder.
- Loosen the upper return spring.

#### 8. Remove the trailing shoe:


- Remove the lock pin and its spring cap.
- Remove the trailing shoe from the wheel cylinder and support.
- Disconnect the parking brake cable.

## 9. Disassemble the leading shoe:

- Remove retainer ring from the inside of brake shoe.
- Remove washer and spring from the fulcrum pin.
- Remove spring and retainer ring from the ratchet.
- Remove ratchet and washer from brake shoe.

#### 10. Disassemble the trailing shoe:

- Remove return spring and strut from parking brake lever and brake shoe.
- Remove retainer ring, fulcrum pin, washer and tie rod from brake shoe.



#### Installation

- 1. Clean the support plate and apply ABS fluid onto the bonding point between brake bottom plate and brake shoe.
- 2. Assemble the trailing shoe.
  - Apply grease onto parking brake lever and brake shoe.
- 3. Reconnect the parking brake cable to the lever.
- 4. Reinstall the trailing shoe.
- 5. Assemble the leading shoe.
  - Apply grease between the adjusting ratchet and the fulcrum pin.
- 6. Reinstall the leading shoe.
- 7. Install the upper/lower return spring of brake shoe.
- 8. Install the brake shoe lock pin, and the fixed pin and clip of spring.

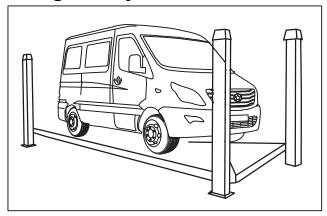
#### Note:

Please don't make the brake lining contaminated by any oil or grease. If any, please wipe it clean with sand paper.

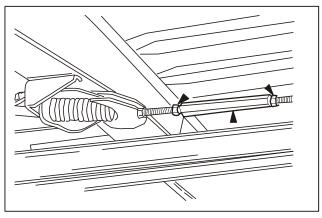
9. Reinstall the flange.

#### Note:

The annular mark on the left side flange nut of vehicle indicates the nut is of left hand thread.


10. Retighten the flange nut.

#### **Caution:**


Don't make the half axle oil seal damaged.

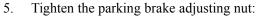
- 11. Reinstall the half axle:
  - Install the spacer.
  - Install a new O-ring.
  - Install a new oil seal.
  - Install the half axle.
- 12. Reinstall the brake drum.
- 13. Reinstall the tire and lower the vehicle.

## Parking brake adjustment

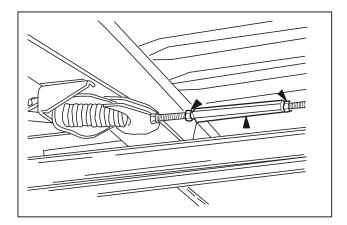


1. Release the parking brake and have the vehicle lifted.

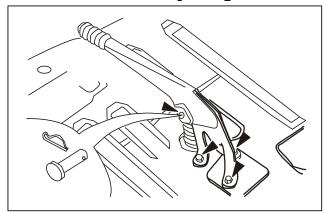


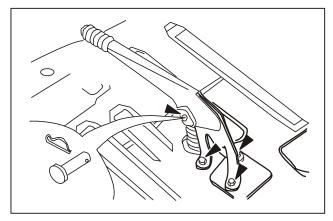

- 2. Release the parking brake regulator.
  - Loosen the lock nut.
  - Rotate the regulator.
- 3. Depress the brake pedal to ensure proper automatic regulation.
- 4. Pull up the parking brake lever until it gets stuck at the 3<sup>rd</sup> tooth.

#### Note:


Ensure thread length on both sides are the same and the thread can be observed through the hole of regulator.

#### Note:


The parking brake lever can be pulled up by four to six teeth after the last regulation is finished.



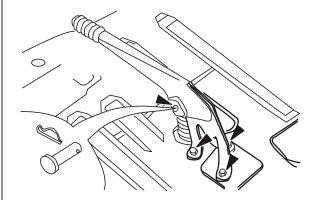

- Tighten the adjusting nut by hand.
- Tighten the adjusting nut.

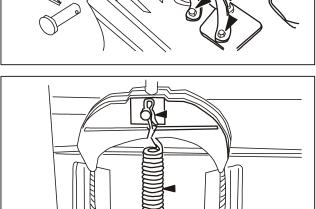


## Removal/installation of parking brake lever






#### Removal


- 1. Loosen the parking brake lever.
- 2. Remove the wavy dust shield of parking brake.
- 3. Remove the parking brake lever assembly:
  - Remove the spring clip and the clevis pin for fixing cable.
  - Remove the mounting bolts from parking brake lever.

#### Installation

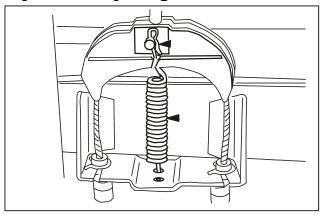
- 4. Reinstall the parking brake assembly:
  - Tighten the mounting bolts of parking brake lever.
  - Install the spring clip and the clevis pin for fixing the main cable.
  - Install the wavy dust shield of parking brake.

## Removal/installation of parking brake cable



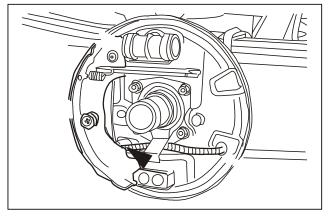


#### Removal

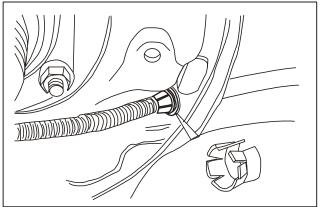

- 1. Loosen the parking brake lever.
- 2. Remove the spring clip and the clevis pin from the main cable and remove the cable from the parking brake lever.

- 3. Separate the main cable from the equalizer:
  - Remove the spring clip and the clevis pin.
  - Remove the return spring from the equalizer.
- 4. Remove the main cable.

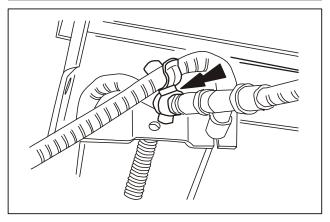
### Installation


- 1. Reinstall all parts in the reverse order of removal.
- 2. Regulate the parking brake in accordance with specification when necessary.

## Replacement of parking brake cable

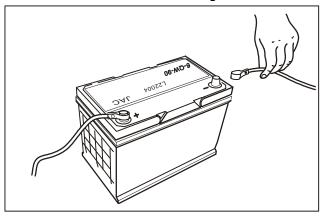



#### Removal:


- 1. Loosen the parking brake lever.
- 2. Remove the main cable from the equalizer:
  - Remove the spring clip and the clevis pin.
  - Remove the return spring from the equalizer.

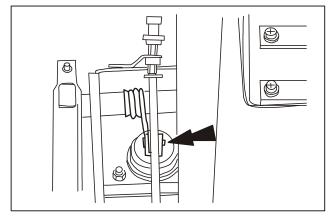


- 3. Remove the rear brake drum.
- 4. Remove the rear cable from the brake shoe control lever.

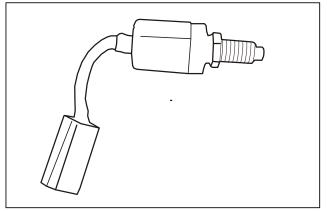



5. Remove the rear cable from the brake bottom plate.

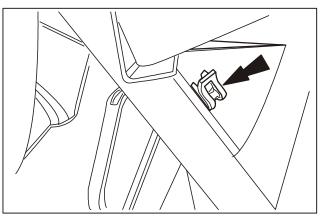



- 6. Remove the cable from the bracket hook. Installation
- 1. Reinstall all parts in the reverse order of removal.
- 2. Regulate the parking brake in accordance with specification when necessary.

## Removal/installation of brake pedal

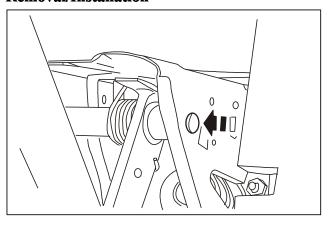



#### Removal

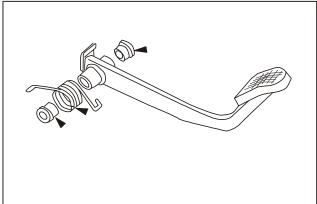

1. Disconnect the negative cable of battery.



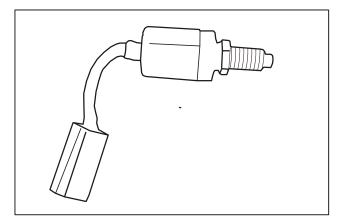
2. Remove the clevis pin and spring clip from the vacuum booster control rod of brake pedal.




- 3. Remove the brake switch:
  - Disconnect the harness connector.
  - Remove the brake switch.



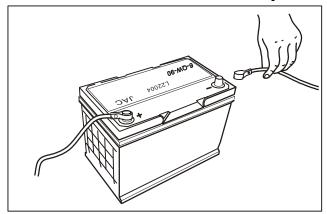

4. Remove the brake and clutch pedal spider clip from the pedal bracket.

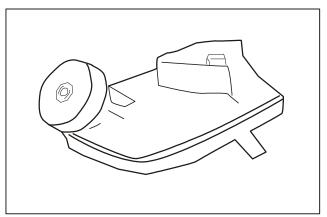

## Removal/Installation

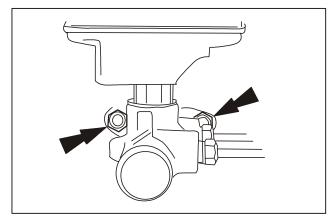


- 5. Remove the brake pedal:
  - Push the spider to the direction of clutch pedal.
  - Remove the brake pedal.




- 6. Remove the pedal bushing and spring:
  - Remove the pedal bushing.
  - Remove the spring.





## Installation

- 1. Reinstall all parts in the reverse order of removal.
- 2. Reinstall and regulate the brake switch:
  - Screw in the switch.
  - Reconnect the harness connector.

## Removal/installation of brake master cylinder





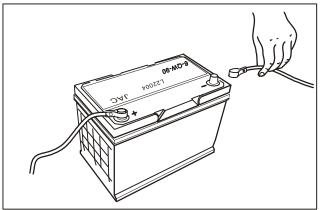


#### **Caution:**

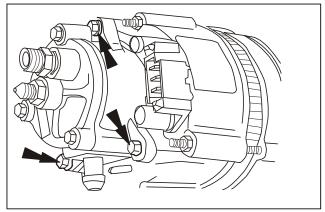
Don't the make the brake fluid splashing onto the paint surface. In case of any, please wash the surface with clean water immediately.

#### Removal

1. Disconnect the negative cable of battery.


- 2. Remove the brake fluid reservoir cap:
  - Disconnect the fluid level alarm harness connector.
  - Remove the fluid reservoir cap.
- 3. Remove the clutch master cylinder pipe and drain the brake fluid out of the master cylinder fluid reservoir.
- 4. Remove the brake line from brake master cylinder and block the pipe with plug to avoid contamination by dirt.

#### **Caution:**


Please ensure the air in vacuum booster is fully bled before the removal of brake master cylinder. Remove the vacuum pipe from the booster for air bleeding.

- 5. Remove the master cylinder.
- 6. Install it in the reverse order of removal. Remember to perform air bleeding after installation. Please bleed air out from system in accordance with specification.

## Removal/installation of vacuum pump







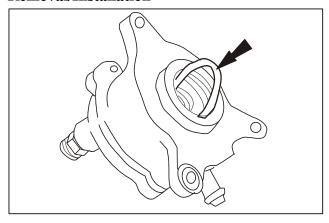
#### **Caution:**

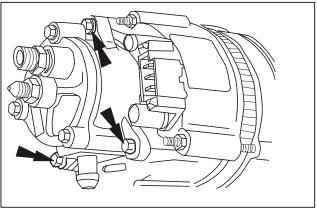
Don't the make the brake fluid splashing onto the paint surface. In case of any, please wash the surface with clean water immediately.

#### Removal

1. Disconnect the negative cable of battery.

2. Remove the vacuum pipe from the pump.


#### Note:


Plug the pipe orifice to avoid contamination by dirt.

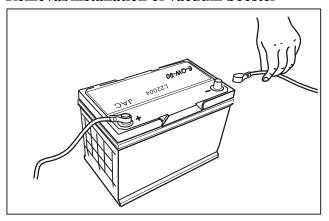
3. Remove the oil inlet pipe and the oil return pipe from the pump.

4. Remove the vacuum pump.

## Removal/Installation





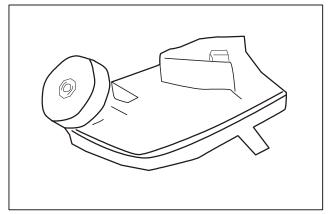

5. Remove the seal ring between generator and vacuum pump.

## Installation

1. Reinstall the seal ring between generator and vacuum pump.

- 2. Reinstall the vacuum booster.
- 3. Reinstall the oil inlet pipe and the oil return pipe onto the pump.
- 4. Connect the vacuum pipe onto the pump.
- 5. Connect the negative cable of battery.

## Removal/installation of vacuum booster

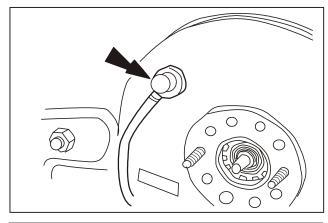



#### **Caution:**

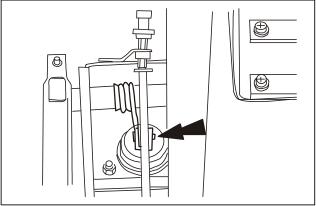
Don't the make the brake fluid splashing onto the paint surface. In case of any, please wash the surface with clean water immediately.

#### Removal

1. Disconnect the negative cable of battery.

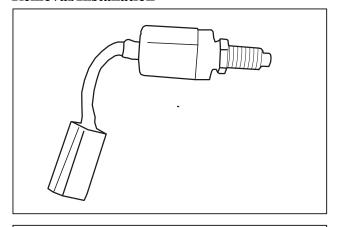



- 2. Disconnect the harness connector of the brake fluid level warning switch.
- 3. Disconnect the brake fluid circuit.

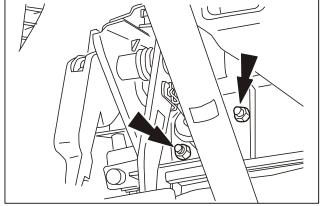

#### Note:

Plug the pipe orifice to avoid contamination by dirt.

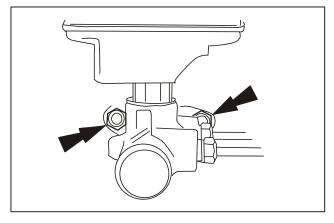
4. Remove the brake line from the master cylinder.



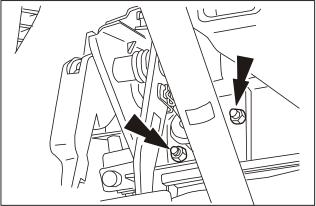

5. Remove the vacuum booster hose connector carefully.




6. Remove the clevis pin and spring clip from the vacuum booster control rod of brake pedal.


## Removal/Installation

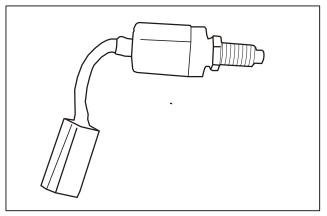



- 7. Remove the brake switch.
  - Remove the harness connector.

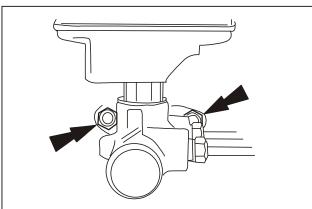


8. Remove the booster and master cylinder assembly.



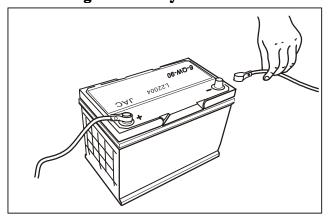

9. Separate the booster from the master cylinder.




## Installation

- 1. Install the vacuum booster.
- 2. Install the booster control rod onto the brake pedal.

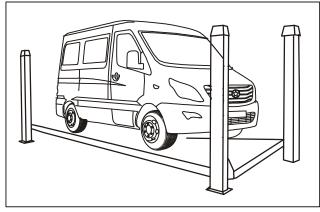
## Removal/Installation



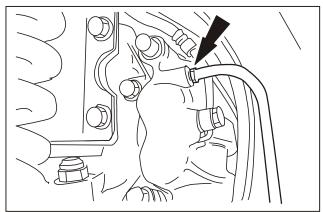

3. Reinstall and debug the brake switch.



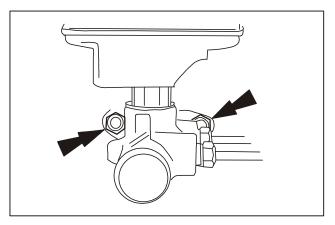
- 4. Reinstall the master cylinder onto the booster. Ensure proper position and clean joint surface for sealing washer of vacuum pump.
- 5. Reconnect the brake line.
- 6. Reconnect the brake line with the master cylinder.
- 7. Install the vacuum booster pipe connector.
- 8. Connect the brake fluid level warning sensor connector.
- 9. Connect the negative cable of battery.
- 10. Bleed air out of brake system in accordance with specification.


## Air bleeding for brake system




#### **Caution:**

Don't the make the brake fluid splashing onto the paint surface. In case of any, please wash the surface with clean water immediately.


1. Disconnect the ground wire of battery.



2. Have the vehicle lifted.

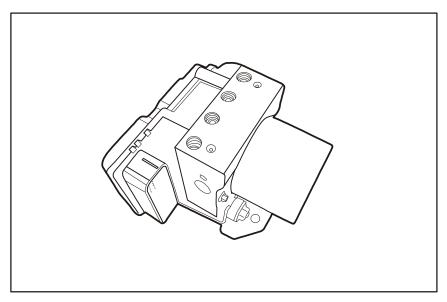


- 3. Connect the oil drain pipe to the air vent of four wheels.
- 4. Loosen the bleeder screw.



#### Note:

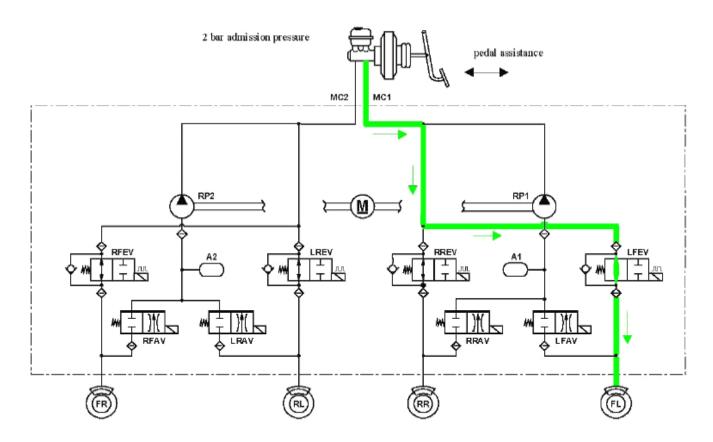
Keep the brake fluid reservoir cap clean.


- 5. Open the brake fluid reservoir cap.
- 6. Bleed air out of the front circuit.

Fill the fluid reservoir with brake fluid with the brake pedal fully depressed, release the brake pedal immediately and then hold the brake pedal depressed. Loosen the bleeder screw of wheel cylinder to bleed air out of system. Perform air bleeding for wheels in the order of left rear, right front, right rear and left front. Tighten the bleeder screw once no air bubble is observed.

## Anti-lock Brake System (ABS)

## Anti-lock brake system (ABS)


BOCSH 8 ABS is adopted for JAC multifunctional commercial vehicles.



ABS Hydraulic Assembly

## **Operating principle**

## Connection Diagram of ABS Brake Line (Diagonal Layout)



#### Precautions for ABS system diagnosis

As ABS is a safety related component, the following precautions should be observed in addition to general safety and preventive measures that should be taken in the course of maintenance and diagnosis.

- Maintenance for ABS system should be conducted by specially trained technicians that mastering the maintenance skills and only genuine parts manufactured by the original manufacturers should be applied for replacement.
- 2. Before conducting diagnosis over ABS system, the conventional brake system should operate normally.
- 3. Before and during travelling, ABS ECU shall perform continuously monitoring over ABS related electrical components to see if they can operate normally.
- 4. ABS and EBD lamps shall be lit when the ignition switch is turned on and go out in several seconds based on no fault existed in system.
- 5. The following two conditions indicate that there is fault detected in the system:
  - ① The warning lamp keeps on after the ignition switch is turned on;
  - ② The warning lamp doesn't go out after it is turned on during travelling.
    - Under those conditions, the driver can still apply conventional brake but should minimize the applied braking force to avoid wheel locking. Therefore, please be attentive to drive carefully after the warning lamp is lit. Please go to the service shop for maintenance of ABS system as soon as possible in order to avoid occurrence of more faults and traffic accidents.
- 6. ABS hydraulic governor with ECU consists of the following parts:
  - ① ABS ECU: Including reflux pump motor relay and solenoid valve relay;
  - ② Solenoid valves (8): Including 4 oil inlet valves and 4 oil outlet valves;
  - ③ Reflux pump and pressure accumulator;
  - ④ Others: Motor, bolts and so on. They can only be replaced as a whole instead of being

removed for overhaul or partly/separately replaced. BOSCH Company won't provide separate spare parts, won't provide maintenance warranty for the disassembled ABS with hydraulic controller, as well as won't bear any responsibility for consequences caused by removal overhaul or part/separate replacement.

- 7. Connectors for ABS ECU:
  - ① The ignition switch must be turned off before the removal of connectors for ABS ECU;
  - ② Keep the connectors for ABS ECU dry and clean without any foreign matter;
  - The connectors for ABS ECU must be installed in position with bottom parallel to the base;
  - The connectors for ABS ECU must be installed in position with lateral part vertical to the base.
- 8. ABS hydraulic governor with ECU should be grounded properly. If not, water and moisture shall permeate into connectors of ABS ECU via pore path of harness under the capillary (syphon) effect, leading to failure.
- Please ensure ABS brake line properly connected, because ABS ECU is unable to diagnose whether the brake line is properly connected or not and to realize failure protection. Wrong connection may possibly lead to severe accidents.
  - MC1: Connected with brake line 1 of brake master cylinder;
  - MC2: Connected with brake line 2 of brake master cylinder
  - FL: Connected with brake line of left front brake wheel cylinder;
  - FR: Connected with brake line of right front brake wheel cylinder;
  - RL: Connected with brake line of left rear brake wheel cylinder;
  - RR: Connected with brake line of right rear brake wheel cylinder.
- 10. Ensure each wheel speed sensor wiring properly connected.

## Fault diagnosis procedures for ABS with EBD

| S/N | Operation                                                                          |                      |                                  |  |  |
|-----|------------------------------------------------------------------------------------|----------------------|----------------------------------|--|--|
| 1   | Drive the vehicle into repair shop.                                                | Go to the next step. |                                  |  |  |
| 2   | Customer problem analysis                                                          | Go to the next step. |                                  |  |  |
| 3   | Dead diamentis trouble and (DTC)                                                   | With DTC             | Go to Step 4                     |  |  |
| 3   | Read diagnostic trouble code (DTC).                                                | No DTC               | Go to Step 9                     |  |  |
| 4   | Record DTC and clear fault memory.                                                 | Go to the next step. |                                  |  |  |
|     | Verify and reproduce fault: Simulation of fault occurrence status. Read DTC again. | With DTC             | Current DTC. Go to Step 8        |  |  |
| 5   |                                                                                    | No DTC               | History DTC. Go to Step 6        |  |  |
| (   |                                                                                    | Yes                  | Intermittent fault. Go to Step 7 |  |  |
| 6   | Is it relevant to fault symptom?                                                   | No                   | Eliminated fault. Go to Step 9   |  |  |
| 7   | Perform fault simulation again.                                                    | Go to the next ste   | p.                               |  |  |
| 8   | Perform troubleshooting based on DTC list. Go to Step 10.                          | Go to the next ste   | p.                               |  |  |
| 9   | Perform troubleshooting based on fault symptom list.                               | Go to the next step. |                                  |  |  |
| 10  | Ensure the fault is eliminated.                                                    | Go to the next step. |                                  |  |  |
| 11  | Prevention of recurrence.                                                          | Go to the next step. |                                  |  |  |
| 12  | End                                                                                |                      |                                  |  |  |

#### **Diagnosis**

1. Preliminary inspection

Inspect those easily accessible components that may lead to ABS system fault. Faults can be determined quickly through visual and appearance inspection, in no need of further diagnosis.

- (a) Ensure the vehicle is equipped with wheels and tires of recommended size. Coaxial tires should be of the same pattern and tread depth.
- (b) Check the hydraulic governor, brake line and connector for leak.
- (c) Check ABS fuses 10A, 25A and 40A. Only the fuses of correct rating should be applied.
- (d) Ensure the battery is fully charged.
- (e) Check battery connection for corrosion or terminal looseness.
- (f) Perform visual and appearance inspection for electrical components listed below:
  - Check ABS component harnesses and pins for wrong connection, damage due to clamping or cutting.
  - ② Check whether the harnesses are arranged close to high voltage or heavy current devices, such as:
    - High voltage ignition component;
    - Motor and generator;
    - Stereo amplifier optional equipped.

IMPORTANT: High voltage or heavy current devices are likely to make induced noise generated in circuit interfering normal operation of circuit.

- ③ Check connectors of ABS system relevant components for poor connection or check pins for incomplete insertion into connector shells.
- 4 ABS components are sensitive to electromagnetic interference (EMI). If any intermittent fault is suspicious, please check whether the optional equipped anti-theft devices, lamps or mobile phones are properly

installed.

- (g) ABS is a kind of active safety system, which mainly functions to maintain vehicle's steerability and driving stability in the course of braking and to minimize the braking distance through obtaining the maximum deceleration. With the adoption of ABS for braking, there is little but uniform tire wear, for adhesion applied between tire and road surface is realized based on adhesion coefficient limit. However, ABS is unable to avoid skidding of vehicle completely if the vehicle speed at turning exceeds the limit or the vehicle is running at high speed on slippery road.
- (h) ABS sound

When the vehicle is running for about 15Km/h after the start of engine, there is a short buzz generated in the engine compartment, which is the sound of ABS self-checking but not abnormal noise. Kinds of sound in the course of ABS functioning include:

- Operation sound of motor, solenoid valve and reflux pump inside ABS hydraulic unit;
- Sound generated from vibration of brake pedal;
- Suspension knock sound arisen by braking during ABS operation.
- Excessive noise during system self-checking or ABS functioning may be caused by:
- Looseness of ABS fixation;
- Looseness of ABS bracket;
- Damage or missing of plastic washers on ABS bracket;
- Looseness of brake relevant connection or fixation;
- Brake line connection direction nonconforming to delivery status;
- Air bubbles in brake line.

•

#### **ABS Operating principle:**

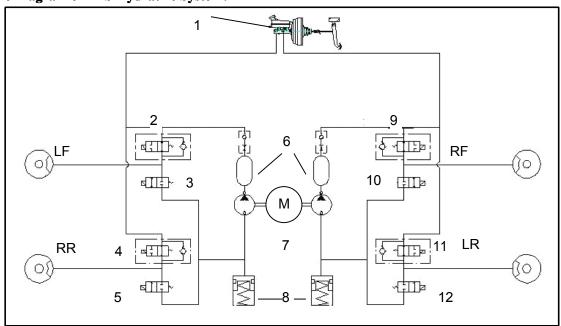
ABS shall enter antilock brake mode once wheel skidding is detected during braking. In the course of antilock braking, the hydraulic circuit pressure of each wheel is under control to avoid wheel skidding. Each wheel is equipped with individual hydraulic line and valve. ABS is able to reduce, maintain or increase the hydraulic pressure of each wheel braking. However, it is unable to increase the hydraulic pressure to a certain level that exceeds the pressure delivered by the master cylinder during braking. In the course of antilock braking, a series of quick vibration of brake pedal can be felt. The pedal vibration shall appear during antilock braking and disappear during conventional braking or after complete stop of vehicle. Operation noise can be heard due to quick cycle use of solenoid valve. When antilock braking is applied on dry road, intermittent sharp noise shall generate right before wheel skidding. Those noises and pedal vibration under antilock braking are normal symptoms. Operation of brake pedal during conventional braking should be the same as that of vehicle without ABS system. Maintain balance pedal force can both ensure the vehicle stability and the shortest stopping distance.

#### 1. Pressure maintenance

Once wheel skidding is detected, ABS control module shall close the oil inlet valve and then make the oil outlet valve in the hydraulic assembly closed to isolate the system, which can keep the brake pressure stable and avoid boosting or reducing of hydraulic pressure.

#### 2. Pressure reducing

Under the pressure maintenance mode, wheel skidding can still be detected by ABS control module to reduce the affected wheel pressure. Keep the oil inlet valve closed and oil outlet valve open. The redundant fluid/pressure shall be temporarily stored into the accumulator in hydraulic assembly until the pump motor is able to return the brake fluid into oil reservoir of master cylinder.


#### 3. Pressure boosting

If decrease of wheel skidding is detected by ABS control module under pressure maintenance or pressure reducing mode, the ABS control module shall boost the affected wheel pressure through applying the pressure of master cylinder. Keep the oil inlet valve open and oil outlet valve closed. Pressure from master cylinder shall be partly or fully applied onto wheels.

#### 4. Operating procedures of ABS

During vehicle running, each wheel speed sensor shall produce a voltage signal in proportion to wheel speed. ABS control module shall make judgment based on the received wheel speed data; if more than one wheels decelerate rapidly (compared with reference vehicle speed), it is determined as skidding. ABS control module shall activate the module as required to control over the brake pressure of each wheel to achieve optimization.

### Schematic Diagram of ABS Hydraulic System:



Schematic Diagram of ABS Hydraulic System

1. Master cylinder 2. Oil inlet valve (LF) 3. Oil outlet valve (LF) 4. Oil inlet valve (RR) 5. Oil outlet valve (RR) 6. Damper 7. Oil return pump 8. Accumulator 9. Oil inlet valve (RF) 10. Oil outlet valve (RF) 11. Oil inlet valve (LR) 12. Oil outlet valve (LR)

## **Diagnosis and Testing**

#### **Diagnosis**

Checking instrument warning lamp

- (a) Release the parking brake lever.
- (b) Check the warning lamp.

With the ignition switch turned on, check if ABS and EBD warning lamps is lit and then go out in a few seconds.

#### Remarks:

• With the parking brake applied, the EBD

- warning lamp shall be lit (details based on actual conditions).
- As for some vehicle models, EBD warning lamp shall be lit if brake fluid level is too low (details based on actual conditions).
- In case of abnormal operation of warning lamps, please perform troubleshooting for ABS or EBD warning lamp circuit.

| S/N | Operation Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                 | EBD Warning<br>Lamp | ABS Warning<br>Lamp |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| 1   | With the ignition switch turned on, ABS and EBD warning lamps should be lit.  If the system is normal, the warning lamps shall go out in about 3 seconds.                                                                                                                                                                                                                                                                                          | ON                  | ON                  |
| 2   | The system is normal after self-checking.                                                                                                                                                                                                                                                                                                                                                                                                          | OFF                 | OFF                 |
| 3   | ① There is current DTC not removed in ABS. ABS stops operation but EBD is still operating. For example: Only one wheel speed sensor failed. ② There are current DTCs of wheel speed sensor and reflux pump in ABS. With the vehicle speed below 12Km/h, ABS warning lamp is lit but ABS stops operation. With the vehicle speed no below 12Km/h, ABS warning lamp goes out after no fault is detected and the current DTC becomes the history DTC. | ON                  | OFF                 |
| 4   | ① Diagnosis on ABS by diagnostic instrument.  With the vehicle speed below 10Km/h, all diagnoses of ABS function normally.  With the vehicle speed over 10Km/h, two lamps go out once the system is detected to be normal and diagnosis is cut off automatically if the ABS controls normally.  ②EBD failure.  Both ABS and EBD stop operation.  For example: Over three wheel speed sensors failed.                                               | ON                  | ON                  |
| 5   | Too low brake fluid level or unreleased parking brake lever (details based on actual conditions).  Both ABS and EBD electrical components operate normally.                                                                                                                                                                                                                                                                                        | OFF                 | ON                  |

#### **Detection by diagnostic instrument**

Remarks:

Data of switches, sensors, actuators and so on can be read through data stream of diagnostic instrument without removal/installation of any element.

Therefore, the reading of data stream before troubleshooting is one of the methods for shortening maintenance time.

Functions of diagnostic instrument shall be determined based on actual development of customer's instrument. Please refer to corresponding instruction manual of diagnostic instrument for certain vehicle for details.

The diagnostic contents (BOSCH diagnostic instrument) listed below is only for reference.

- (a) Connect the diagnostic instrument to data link connector (DLC).
- (b) Turn on the ignition switch.
- (c) Read data stream based on display of diagnostic instrument.

Remarks: Apply the diagnostic instrument to test ABS, which should be performed in road test. DTC can be cleared when necessary to ensure normal operation of

ABS and conventional brake system.

Please finish the following procedures before the replacement of ABS:

- 1. Dynamic self-checking: ABS lamp won't go out when the ignition switch is turned on again after some faults (such as wheel speed sensor signal reliability failure or motor failure) are eliminated and the lamp shall go out after ABS dynamic self-checking is qualified with the vehicle speed no less than 15Km/h.
- Cross validation: Install the removed ABS onto a normal vehicle equipped with the same ABS model, with ABS harness connectors connected but no oil pipe in need of connection, and ensure ABS connectors and wheel speed sensors are firmly and reliably connected. Start the vehicle to run for a few circles to enable ABS dynamic self-checking.
  - If the ABS lamp goes out, there is no failure in ABS.
  - If the lamp keeps on, there is failure in ABS. The ABS may be replaced.

| Item                                 | Display Valve/Range                                | Normal State                                                  | Remarks                                                    |
|--------------------------------------|----------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|
| Left front wheel speed               | 1.75Km/h~350Km/h                                   | Actual wheel speed                                            |                                                            |
| Right front wheel speed              | 1.75Km/h~350Km/h                                   | Actual wheel speed                                            |                                                            |
| Left rear wheel speed                | 1.75Km/h~350Km/h                                   | Actual wheel speed                                            |                                                            |
| Right rear wheel speed               | 1.75Km/h~350Km/h                                   | Actual wheel speed                                            |                                                            |
| Battery voltage                      | 0∼+20.40V                                          | 9.3~16.9V                                                     |                                                            |
| Left front oil inlet valve           | ON/OFF                                             | With ignition switch turned on:                               | Relevant to ABS conditions:                                |
| Left front oil outlet valve          | ON/OFF                                             | Power failure                                                 | Pressure boosting:                                         |
| Right front oil inlet valve          | ON/OFF                                             | Other conditions: Based on control                            | Oil outlet valve - power failure                           |
| Right front oil outlet valve         | ON/OFF                                             |                                                               | Oil outlet valve - power failure Pressure maintenance:     |
| Left rear oil inlet valve            | ON/OFF                                             |                                                               | Oil inlet valve - continuity                               |
| Left rear oil outlet valve           | ON/OFF                                             |                                                               | Oil outlet valve - power failure                           |
| Right rear oil inlet valve           | ON/OFF                                             |                                                               | Pressure reducing:                                         |
| Right rear oil outlet valve          | ON/OFF                                             |                                                               | Oil inlet valve - continuity Oil outlet valve - continuity |
| Brake lamp switch                    | ON/OFF                                             | ON: With brake pedal depressed OFF: With brake pedal released |                                                            |
| Reflux pump motor                    | ON/OFF                                             |                                                               |                                                            |
| Solenoid valve relay                 | ON/OFF                                             | With ignition switch turned on:<br>Continuity                 |                                                            |
| Occupied state of hydraulic governor | Already occupied and normal or BOSCH supply status | Already occupied and normal                                   |                                                            |

#### **Brake bleeding**

Note:

Brake bleeding can be performed in the first and second circuits.

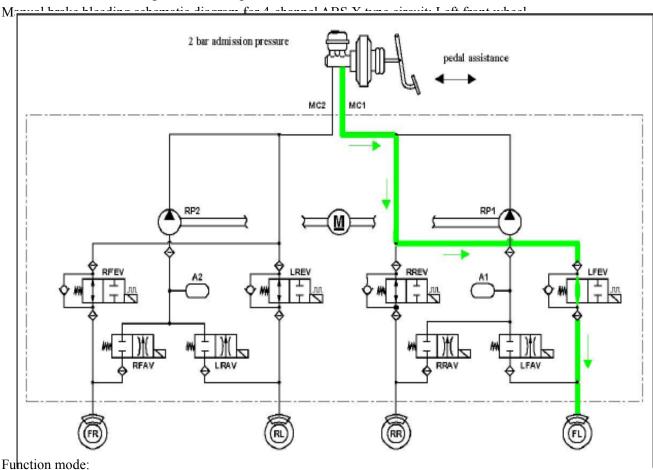
Brake bleeding should be performed after the replacement of brake system components (such as change of brake fluid, replacement of brake system components and hydraulic unit) or when the brake pedal is soft.

The hydraulic unit for replacement must be wet-type ABS hydraulic governor with ECU.

During exhaust, please ensure the brake system is of complete structure and all hydraulic units are properly connected.

Before brake bleeding, shift to P gear (for AMT) or N gear (for MT) and apply the parking brake lever.

Brake fluid is toxic, so please clean your skin if any fluid touches your skin.


#### 1. Manual brake bleeding procedures

#### Step Operation

- 1 Fill the brake fluid reservoir.
  - Repeat the procedures below for bleeding of
- 2 each wheel cylinder in order of left rear, left front, right front and right rear.
- 3 Open the bleed screw.
- 4 Depress and release brake pedal repeatedly.
- 5 Close the bleed screw.
- 6 Release the brake pedal.
- 7 Check the pedal travel.
- 8 If failed, repeat bleeding.
- 9 Check if brake fluid level is within upper and lower limit marks.

Remarks: Brake fluid level in reservoir shall be over the lower limit mark during the whole bleeding process.

#### 2. Manual brake bleeding schematic diagram



The brake fluid flows into wheel cylinder through master cylinder and hydraulic unit. Open the bleed screw on the left front wheel with the screws on other wheels closed. Depress and release brake pedal until air bubbles and impurities are fully drained and the brake fluid is pure. Perform the same process on the other three wheels.

Component activation test

- 1. Component activation test for reflux pump:
  - (1) Turn off the ignition switch.
  - (2) Connect the diagnostic instrument to DLC.
  - (3) Turn on the ignition switch with engine off.
  - (4) Apply the "Component Test" function of diagnostic instrument to activate the reflux pump.

Normal state: Operation sound of reflux pump can be heard.

- 2. Component activation test for solenoid valve: Remarks:
  - Before testing solenoid valve, please test he reflux pump to see if it operates normally.
  - Two repair men are required to finish this test.
  - (1) Turn off the ignition switch.
  - (2) Connect the diagnostic instrument to DLC.
  - (3) One repair man should sit in the vehicle and the vehicle should be lifted by lifter with wheels suspended.
  - (4) Turn on the ignition switch with engine off.
  - (5) Apply the "Component Test" function of diagnostic instrument to activate the solenoid valve as per prompt of diagnostic instrument.
  - (6) Firstly, test the oil inlet valve and oil outlet valve of left front wheel, during which, the repair man in the vehicle should depress the brake pedal with force and hold it.
    - Conventional braking phase:

Normal state: The repair man outside

- cannot rotate the left front wheel by hand.
- Boosting phase: Use diagnostic instrument to access the "boosting phase".
  - Normal state: The repair man outside cannot rotate the left front wheel by hand.
- Pressure maintenance phase: Use diagnostic instrument to access the "pressure maintenance phase".
  - Normal state: The repair man outside cannot rotate the left front wheel by hand.
- Pressure reducing phase: Use diagnostic instrument to access the "pressure reducing phase".
  - Normal state: The repair man outside can rotate the left front wheel by hand.
- (7) Perform testing for right front, left rear and right rear wheels in sequence. The test results should be the same as those of left front wheel.
- 3. Component activation test for ABS and EBD warning lamps
  - (1) Turn off the ignition switch.
  - (2) Connect the diagnostic instrument to DLC.
  - (3) When performing the component activation test for ABS and EBD warning lamps, they should lighten or go out corresponding to the control of diagnostic instrument.

## **DTC List**

#### Attention:

Please turn off the ignition switch before removal of parts.

#### Note:

Please use the diagnostic instrument to read DTC.

If no fault is detected during the detection of components, ABS hydraulic governor with ECU and its ground point/power line should be inspected.

When more than two DTC is in memory, the fault relevant DTC and circuits should be inspected at first.

#### **DTC list**

| DTC   | Detection Item                                                   | Possible Failure Areas                                                                          |  |
|-------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| C0035 | Left front wheel speed sensor circuit fault                      | Left front wheel speed sensor circuit, gear ring or sensor itself                               |  |
| C0040 | Right front wheel speed sensor circuit fault                     | Right front wheel speed sensor circuit, gear ring or sensor itself                              |  |
| C0045 | Left rear wheel speed sensor circuit fault                       | Left rear wheel speed sensor circuit, gear ring or sensor itself                                |  |
| C0050 | Right rear wheel speed sensor circuit fault                      | Right rear wheel speed sensor circuit, gear ring or sensor itself                               |  |
| C0060 | Left front oil outlet valve circuit fault of hydraulic governor  | ABS hydraulic governor with ECU                                                                 |  |
| C0065 | Left front oil inlet valve circuit fault of hydraulic governor   | ABS hydraulic governor with ECU                                                                 |  |
| C0070 | Right front oil outlet valve circuit fault of hydraulic governor | ABS hydraulic governor with ECU                                                                 |  |
| C0075 | Right front oil inlet valve circuit fault of hydraulic governor  | ABS hydraulic governor with ECU                                                                 |  |
| C0080 | Left rear oil outlet valve circuit fault of hydraulic governor   | ABS hydraulic governor with ECU                                                                 |  |
| C0085 | Left rear oil inlet valve circuit fault of hydraulic governor    | ABS hydraulic governor with ECU                                                                 |  |
| C0090 | Right rear oil outlet valve circuit fault of hydraulic governor  | ABS hydraulic governor with ECU                                                                 |  |
| C0095 | Right rear oil inlet valve circuit fault of hydraulic governor   | ABS hydraulic governor with ECU                                                                 |  |
| C0110 | Reflux pump motor fault: Operation or stopping failed            | ABS hydraulic governor with ECU Ground/power supply for ABS hydraulic governor with ECU         |  |
| C0121 | Solenoid valve relay circuit fault                               | ABS hydraulic governor with ECU<br>Ground/power supply for ABS hydraulic governor with ECU      |  |
| C0161 | ABS brake lamp switch circuit fault                              | Brake lamp switch and its circuit ABS hydraulic governor with ECU and its circuit               |  |
| C0245 | General fault of wheel speed sensor                              | Wheel speed sensor circuit, gear ring or sensor itself                                          |  |
| C0550 | ABS ECU fault                                                    | Battery Ground/power supply for ABS hydraulic governor with ECU ABS hydraulic governor with ECU |  |
| C0800 | Voltage out of range                                             | Battery Charging system Power/ground circuit                                                    |  |

Fault symptom table

If fault occurs without fault memory during DTC reading, please check relevant circuits of each fault symptom in order listed below and by referring to relevant fault diagnosis content.

#### Attention:

Before maintenance of ABS, please ensure the conventional brake system operates normally.

When the replacement of ABS hydraulic governor with ECU, sensors or other components is necessary, please turn off the ignition switch firstly.

| Fault Symptom Chec | k Areas |
|--------------------|---------|
|--------------------|---------|

ABS failed to operate

- 1. Check if ABS and EBD warning lamps are lit;
- 2. Read DTC and check for any fault;
- 3. Check power UZ circuit of ignition switch;
- 4. Check brake line for any leak.

ABS poor effect

- 1. Read DTC and check for any fault;
- 2. Check brake line for any leak;
- 3. Apply diagnostic instrument to read "occupied state of hydraulic governor";
- 4. Check the power supply state of battery;
- 5. Ensure the mounting bracket is fixed at normal state (at this time the driving comfort may decrease).

Abnormal ABS and EBD warning lamps

- 1. Read DTC and check for any fault;
- 2. Check the circuits of ABS and EBD warning lamps;
- 3. Check power UZ circuit of ignition switch;
- 4. Check the power supply state of battery;

Diagnostic instrument failed to read DTC

- 1. Check if ABS and EBD warning lamps are lit;
- 2. Check the power line and ground cable of ABS hydraulic governor with ECU;
- 3. Check power UZ circuit of ignition switch;
- 4. Check the power supply state of battery;
- 5. Check the DIAGK cable of ABS hydraulic governor with ECU;
- 6. Check the diagnostic instrument for reliable connection.

## **Diagnosis and Testing**

Intermittent fault diagnosis table

Note: In case one of the following conditions occurs, there is intermittent fault.

Fault does not always occur;

It may probably occur again;

There is history DTC but no current DTC.

#### Inspection

#### Operation

#### Preliminary inspection

- 1. Perform "preliminary inspection" at first;
- 2. Collect information relevant to the arising of intermittent fault from the customer, such as:
- 1) Driving conditions (vehicle speed, brake, warning lamps and road condition) when the fault occurs
- 2) Does the fault occur during the application of electrical equipments added by service shop?
- 3) Has the battery status been checked?
- 4) Have the wheel speed sensor harnesses and gear rings been checked?

# Detection by diagnostic instrument

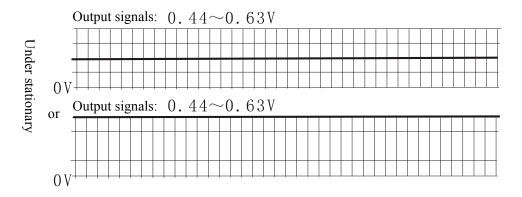
#### Detection procedures:

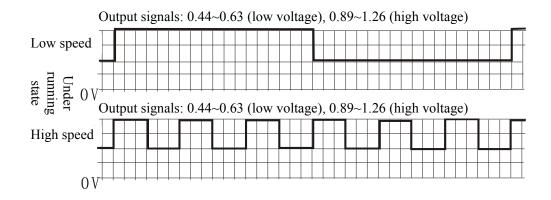
- 1. Operate the suspicious ABS component harnesses and connectors and observe the data stream of measured circuit on the diagnostic instrument. If the reading of diagnostic instrument fluctuates during this operation, please check circuits for loose connection.
- 2. Perform vehicle road test under occurrence of intermittent fault and ask an assistant to observe the suspicious operating parameters on the diagnostic instrument.
- 3. Capture and store data by snapshot once fault occurs. The stored data can be displayed at lower speed to facilitate diagnosis. Oscilloscope can also be applied for signal detection.
- 4. Apply the "Component Test" function of diagnostic instrument to control the suspicious ABS components to test their operation.

#### Warning lamps

The following conditions may lead to intermittent illumination of warning lamps without DTC set.

- 1. Warning indicator circuit is shorted to ground intermittently.
- 2. Ground points of ABS hydraulic governor with ECU or instruments become loose.
- 3. Battery voltage is a little lower or unstable under stationary state of vehicle.


#### Wheel speed sensor


- 1. Visually inspect wheel speed sensors and gear rings for looseness, damage, foreign matters or improper installation. Please replace any damaged component, remove any foreign matter or fix any loosened component accordingly.
- 2. Check the wheel speed sensor for proper wiring and ensure the harnesses of wheel speed sensor are not interfered by mechanical components.
- 3. Monitor the data display of wheel speed sensor on diagnostic instrument with assistance and at the same time perform road test to check if any wheel speed sensor in abnormal speed range is displayed.

#### Additional testing

- 1. Check electrical equipments added by service shop such as mobile phones, anti-theft warning devices, lamps, radio equipments, stereo amplifiers and so on for correct installation.
- 2. Check if any electromagnetic interference (EMI) is caused by failed components (such as relays or solenoid valves) with power on.
- 3. Power-on test for motors and solenoid valves.

1. Wheel speed sensor fault (C0035, C0040, C0045, C0050, and C0245): Wheel speed sensors are applied to detect the wheel speed and transmit relevant signals to ABS ECU. These signals are used for controlling ABS operation. Each wheel is equipped with a sensor and with a 48-tooth gear ring mounted on its axle shaft. This vehicle model mainly adopts the active wheel speed sensors that are activated by 12V DC power voltage supplied by ABS ECU. Wheel speed sensor adopts Hall Effect with nearly constant output amplitude and square wave of 50% duty cycle, with low voltage of 0.5V and high voltage of 1V; its frequency increases with the increase of vehicle speed. ABS ECU shall calculate the wheel speed based on this frequency.





| DTC            | <b>Detection Condition</b>                                            | Set Condition                                                                                                                                                                                                                   | Possible Faulty Areas                                                                                                                                    |
|----------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| C0035          | With the ignition switch turned on                                    | 1) Monitor if the power voltage of sensor is too low;                                                                                                                                                                           | 1. Wheel speed sensor bodies                                                                                                                             |
| C0040<br>C0045 | All conditions                                                        | <ol><li>Monitor if the power wire and signal wire of sensor is<br/>normal.</li></ol>                                                                                                                                            | 2. Wrong connection of wheel speed sensors                                                                                                               |
| C0050          | Wheel speed monitoring  a. Reference vehicle speed within 0 ~ 100Km/h | 1) At least one wheel speed above the reference vehicle speed of 12km/h over 8s (72s is required in case of                                                                                                                     | 3. Wheel speed sensor signals being interfered                                                                                                           |
|                |                                                                       | wheel skidding;  2) Speed difference between wheels on the same side (such as left front and left rear wheels) over 6Km/h, or speed difference between wheels on the same axle (such as left front and right front wheels) when | <ul><li>4. Too large clearance between wheel speed sensor and gear ring (displacement caused by vibration)</li><li>5. Corrosion of wheel speed</li></ul> |
|                |                                                                       | turning over 10Km/h, or speed difference between diagonal wheels (such as left front and right rear wheels) when turning over 14Km/h.                                                                                           | sensors and supports 6. Gear ring fault (dirty, tooth damage)                                                                                            |
|                | Wheel speed monitoring                                                | Speed difference between wheels on the same side over 6% of the reference speed, or speed difference between                                                                                                                    | 7. Tires: size, pressure, pattern and tread depth                                                                                                        |
|                | b. Reference vehicle speed >100Km/h                                   | wheels on the same axle when turning over 6%+4Km/h of the reference speed, or speed difference between diagonal wheels when turning over 6%+8Km/h of the reference speed.                                                       | Connectors flawed, contaminated or affected with damp      Loosened or fractured wheel                                                                   |
|                | Long time monitoring of signal interference                           | 1) In case signals of one or two wheel speed sensors fail, fault shall be detected in 20s (with brake pedal depressed) or 5s (without brake pedal depressed).                                                                   | speed sensors/connecting wires/connectors  10. Sensor circuit shorted to                                                                                 |
|                |                                                                       | 2) In case signals of three or four wheel speed sensors fail, fault shall be detected in 1s.                                                                                                                                    | ground 11.Damaged insulation of sensor                                                                                                                   |
|                | Monitoring of wheel speed difference                                  | Perform monitoring when vehicle speed over 20Km/h and 20s (or 80s in case of wheel skidding) is needed for fault confirmation:                                                                                                  | cables                                                                                                                                                   |
|                |                                                                       | 1) If the vehicle speed is within 20Km/h~100Km/h, the speed difference between the fastest and slowest wheels shall exceed 6%;                                                                                                  |                                                                                                                                                          |
|                |                                                                       | 2) If the vehicle speed is over 100Km/h, the speed difference between the fastest and slowest wheels shall exceed 6Km/h;                                                                                                        |                                                                                                                                                          |
|                |                                                                       | 3) During vehicle turning, vehicle speed difference range shall increase by 4Km/h.                                                                                                                                              |                                                                                                                                                          |
|                | Gear ring monitoring<br>For example: Missing<br>teeth                 | With vehicle speed of $10\!\sim\!60\text{Km/h}$ and no operation of ABS, missing pulse number per rotation of wheel is displayed for over 10 times.                                                                             |                                                                                                                                                          |
|                | Dynamic monitoring                                                    | If the vehicle speed is over $43$ Km/h, no wheel speed signal is received within $10\sim20$ ms in interval of 60ms.                                                                                                             |                                                                                                                                                          |
|                | Monitoring of fast starting speed                                     | 1) With vehicle speed over 12Km/h, the speed of one or two wheels is below 2.75Km/h;                                                                                                                                            |                                                                                                                                                          |
|                | (only for wheel speed<br>sensors of driving<br>wheels)                | 2) If the speed of one wheel decreases below 2.75Km/h with running speed of v1 (over 12Km/h), the fault can be detected when the vehicle speed increases by 18Km/h, viz. speed increase up to v1+18.                            |                                                                                                                                                          |
|                | Monitoring of slow starting speed                                     | If the speed of two wheels is over 12Km/h and the speed of the other one or two wheels is below 5Km/h, 20s is needed for fault confirmation.                                                                                    |                                                                                                                                                          |
|                | With the ignition switch turned on                                    | If one of the following faults appears for over 200ms:                                                                                                                                                                          |                                                                                                                                                          |
|                | All conditions                                                        | Sensor wiring circuit open, open to ground or power supply                                                                                                                                                                      |                                                                                                                                                          |
|                |                                                                       | 2. Loosened sensor connectors                                                                                                                                                                                                   |                                                                                                                                                          |

The current of wheel speed sensor is out of range:

Current <1.1mA or >39mA

Occurrence of fault shall give rise to the following operation:

#### **Braking Strategy**

Relevant wheels cannot be controlled any more because correct wheel speed sensor signals cannot be obtained. When fault occurs, ABS shall make the pressure of front wheels increase and that of rear wheels decrease until the ignition switch is turned off.

If failure of one or two wheel speed sensors is detected in ABS control process, the system shall be converted to EBD emergency control mode until this control process is finished.

If failure of three or four wheel speed sensors is detected,

#### Failure Protection

- The system shall be converted to EBD emergency control mode.
- · ABS warning lamp shall be lit.
- The system shall be converted to EBD emergency control mode.
- Brake system shall enter the conventional braking mode.
- · ABS and EBD warning lamps shall be lit.

Remarks: If the ignition switch is turned on after fault removal, the warning lamp shall go out only when the vehicle speed exceeds 12Km/h.

## **Troubleshooting procedures**

| S/N | Operating Step     | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Detection<br>Result | Next Step                                           |
|-----|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------|
| 1   | Fault confirmation | (a) Connect the diagnostic instrument, read and record DTC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                 | If it is current fault, please go to Step 3         |
|     |                    | <ul> <li>(b) Clear of DTC: Apply diagnostic instrument to clear DTC as per prompt of the instrument.</li> <li>Remarks: DTC cannot be cleared if the battery is removed.</li> <li>Please ensure normal voltage of battery before removing fault.</li> <li>(c) Conduct fault simulation to see if the fault reoccurs.</li> </ul>                                                                                                                                                                                                                                                                                                          | No                  | If it is history fault, please go to the next step. |
| 2   | Intermittent fault | (a) Check wiring between ABS hydraulic governor with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes                 | Go to Step 11                                       |
|     | diagnosis          | ECU and wheel speed sensors and relevant connectors. Please refer to "04-Inspection before diagnosis" for inspection methods and procedures.  (b) Check the free travel of hub bearing.  Normal value of free travel of hub bearing: 0mm  Is the problem solved?                                                                                                                                                                                                                                                                                                                                                                        | No                  | Go to Step 4                                        |
| 3   | Appearance         | (a) Check wiring between ABS hydraulic governor with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes                 | Go to Step 12                                       |
|     | inspection         | <ul> <li>ECU and wheel speed sensors and relevant connectors. Please replace it when necessary.</li> <li>(b) Check tires:</li> <li>1. Check every tire size and perform replacement when necessary.</li> <li>2. Check tires and wheel hubs for any damage; perform repair or replacement when necessary.</li> <li>3. Check tire pressure and make adjustment when necessary.</li> <li>4. Check tire pattern for any abnormal wear (eccentric wear, excess wear, uneven wear and depth); perform replacement or make tire balance, four-wheel alignment and girder correction when necessary.</li> <li>Is the problem solved?</li> </ul> | No                  | Go to the next step.                                |

| S/N | Operating Step                                                                                                                                                                | Operation                                                                                                                                            | Detection<br>Result | Next Step                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------|
| 4   | Using diagnostic                                                                                                                                                              |                                                                                                                                                      | Normal              | Go to Step 8                         |
|     | instrument to read wheel speed data stream  (b) One repair main conduct test run uniformly in a straight line on good road surface and the other one observe the data stream. |                                                                                                                                                      | Abnormal            | Check wheel speed sensors.           |
|     |                                                                                                                                                                               | Normal state: The displayed speed of each wheel is basically the same.  Tip: Allowable error for speedometer is ±10%.                                |                     |                                      |
| 5   | Checking wheel                                                                                                                                                                | (a) Remove the connector of wheel speed sensor to                                                                                                    | Normal              | Go to the next step.                 |
|     | speed sensors                                                                                                                                                                 | measure the internal resistance of wheel speed sensor.  Normal value: $3M\Omega \sim 5M\Omega$                                                       | Abnormal            | Replace relevant wheel speed sensor. |
|     |                                                                                                                                                                               | (b) Measure the wheel speed sensor's resistance to ground.  Normal value: ∞                                                                          |                     | SCHSOI.                              |
| 6   | Ensuring the                                                                                                                                                                  | Use multimeter to measure the cable resistance.                                                                                                      | Normal              | Go to the next step.                 |
|     | wheel speed<br>sensor correctly<br>connected                                                                                                                                  | Normal value: $0\Omega$                                                                                                                              | Abnormal            | Repair or replace it.                |
| 7   | Using oscilloscope<br>to check wheel                                                                                                                                          | <ul><li>(a) Remove the connector from wheel speed sensor.</li><li>(b) One terminal of sensor is connected with 12V battery</li></ul>                 | Normal              | Repair or replace the ABS assembly.  |
|     | speed sensor and its waveform                                                                                                                                                 | s waveform oscilloscope.                                                                                                                             | Abnormal            | Go to the next step.                 |
|     |                                                                                                                                                                               | Attention: Ground cable of oscilloscope must be connected with ground cable of battery.                                                              |                     |                                      |
|     |                                                                                                                                                                               | Please drive carefully and ensure connecting wire not interfered with motion parts of vehicle.                                                       |                     |                                      |
| 8   | Checking wheel                                                                                                                                                                | Wheel speed sensor adopts twisted pair to provide effective                                                                                          | Normal              | Go to the next step.                 |
|     | speed sensor<br>harness                                                                                                                                                       | shield so as to protect sensitive electronic elements from being affected by electrical interference.                                                | Abnormal            | Repair                               |
|     |                                                                                                                                                                               | To avoid performance degradation due to electrical interference, the following requirements should be satisfied during maintaining the twisted pair: |                     |                                      |
|     |                                                                                                                                                                               | (a) Wind the wire by 9 loops every 310mm along the length direction of the wire.                                                                     |                     |                                      |
|     |                                                                                                                                                                               | (b) The external diameter of twisted pair shall be no more than 6.0mm.                                                                               |                     |                                      |
| 9   | Checking the                                                                                                                                                                  |                                                                                                                                                      | Normal              | Go to the next step.                 |
|     | installation of<br>wheel speed<br>sensor                                                                                                                                      |                                                                                                                                                      | Abnormal            | Repair                               |
| 10  | Checking wheel                                                                                                                                                                |                                                                                                                                                      | Normal              | Go to the next step.                 |
|     | speed sensor probe                                                                                                                                                            |                                                                                                                                                      | Abnormal            | Clean or replace it.                 |
| 11  | Checking wheel speed sensor rotor                                                                                                                                             |                                                                                                                                                      | Normal              | Check or replace the ABS assembly.   |
|     |                                                                                                                                                                               |                                                                                                                                                      | Abnormal            | Clean or replace the gear ring.      |
| 12  | Conduct final inspec                                                                                                                                                          | ction to confirm the fault is removed. Clear DTC.                                                                                                    |                     |                                      |

Possible Faulty Areas

electrical fault.

fault.

2. Hydraulic/mechanical

1. Fault of solenoid valve

inside ABS hydraulic

governor with ECU: brake oil circuit fault,

## **Diagnosis and Testing**

Hydraulic governor solenoid valve fault: C0060, C0065, C0070, C0075, C0080, C0085, C0090, C0095

#### Circuit description:

With the ignition switch turned on and ABS solenoid valve relay powered on, battery voltage can be provided to one terminal of solenoid valve of hydraulic governor.

With ignition switch turned off or ABS system disabled, the solenoid valve relay should be kept power-on.

#### Function:

ABS ECU is applied to control the operation of solenoid valves through controlling their grounding so as to regulate brake pressure of each brake circuit.

Inlet valves: PWM type. Outlet valves: Switch type.

| DTC                     | <b>Detection Condition</b>                                                    | Set Condit                        |
|-------------------------|-------------------------------------------------------------------------------|-----------------------------------|
| C0060<br>C0065<br>C0070 | To be conducted at the same time of ABS ECU initialization and self-checking: | 1. With the detects power interm  |
| C0075<br>C0080          | stationary state or                                                           | 2. Activa feedba                  |
| C0085<br>C0090          | speed ≥15Km/h                                                                 | 3. Coil o detecte                 |
| C0095                   |                                                                               | <ul><li>Without station</li></ul> |
|                         |                                                                               | – With 1<br>≈15Kr                 |

#### ition

- the ignition switch turned on, ABS ECU s relevant solenoid valve circuit short to or ground permanently nittently.
- ate relevant solenoid valve but without
- or connector fault of solenoid valve is ed during travelling:
- out brake pedal depressed: Vehicle under nary state
- brake pedal depressed: Vehicle speed m/h
- 4. Under all conditions, fault occurs in oil circuit of ABS hydraulic governor with ECU.

Occurrence of fault shall give rise to the following operation:

**Braking Strategy** 

Failure Protection

Solenoid valve failed to operate or operating wrongly If the solenoid valve failed to operate, relevant wheel may be locked. If it operates wrongly, no oil pressure

shall be established for relevant wheel.

ABS and EBD warning lamps shall be lit.

Brake system shall enter the conventional braking mode.

## **Troubleshooting procedures**

|     | picshooting procedu                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                      |
|-----|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------|
| S/N | Operating Step                                                                                                 | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Detection<br>Result | Next Step                                            |
| 1   | Checking ABS                                                                                                   | (a) Turn off the ignition switch;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Normal              | Go to the next step.                                 |
|     | hydraulic governor<br>with ECU under<br>stationary state of<br>vehicle                                         | <ul><li>(b) Turn on the ignition switch without brake pedal depressed;</li><li>(c) Check if ABS and EBD warning lamps are lit and when necessary use diagnostic instrument to read DTC. If it is normal, ABS/EBD warning lamp shall go out without current DTC.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Abnormal            | Go to Step 3                                         |
| 2   | Using diagnostic                                                                                               | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Normal              | Go to the next step.                                 |
| 2   | Using diagnostic instrument to perform component testing for solenoid valve of ABS hydraulic governor with ECU | <ol> <li>Before testing solenoid valve, please test he reflux pump to see if it operates normally.</li> <li>Two repair men are required to finish this test.</li> <li>Turn off the ignition switch;</li> <li>Connect the diagnostic instrument to DLC;</li> <li>One repair man should sit in the vehicle and the vehicle should be lifted by lifter with wheels suspended;</li> <li>Turn on the ignition switch with engine off;</li> <li>Apply the "Component Test" function of diagnostic instrument to activate the solenoid valve as per prompt of diagnostic instrument;</li> <li>Firstly, test the oil inlet valve and oil outlet valve of left front wheel, during which, the repair man in the vehicle should depress the brake pedal with force and hold it.</li> <li>Conventional braking phase         Normal state: The repair man outside cannot rotate the left front wheel by hand.     </li> <li>Boosting phase: Use diagnostic instrument to access the "boosting phase".         Normal state: The repair man outside cannot rotate the left front wheel by hand.     </li> <li>Pressure maintenance phase: Use diagnostic instrument to access the "pressure maintenance phase".         Normal state: The repair man outside cannot rotate the left front wheel by hand.     </li> <li>Pressure reducing phase: Use diagnostic instrument to access the "pressure reducing phase".         Normal state: The repair man outside can rotate the left front wheel by hand.     </li> <li>Pressure reducing phase: Use diagnostic instrument to access the "pressure reducing phase".         Normal state: The repair man outside can rotate the left front wheel by hand.     </li> <li>Perform testing for right front, left rear and right rear wheels in sequence. The test results should be the same as</li> </ol> | Abnormal            | Replace ABS control unit assembly.                   |
| 3   | Checking pin voltage                                                                                           | those of left front wheel.  (a) Turn off the ignition switch;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Normal              | Replace ABS control                                  |
|     | of ABS hydraulic                                                                                               | (b) Remove connectors from ABS hydraulic governor with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | unit assembly.                                       |
|     | governor with ECU                                                                                              | ECU; (c) Use multimeter to measure the voltage at the power terminal and grounding terminal of solenoid valve.  Remarks:  If no jumper box is applied, the normal detection cannot be ensured.  Normal value: U = 9.3 ~ 16.9V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Abnormal            | Go to the next step.                                 |
| 4   | Checking connecting                                                                                            | (a) Check if 25A fuse is normal;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Normal              | Go to the next step.                                 |
|     | wires, connectors and 40A fuse                                                                                 | <ul><li>(b) Check the charging system, such as generator/battery and its connecting wire;</li><li>(c) Ensure the grounding terminal is well grounded.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Abnormal            | Replace or repair connecting wire/connector or fuse. |
| 5   | Final inspection                                                                                               | will connected of fast.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                                      |

3. Reflux pump motor fault: C0110

#### Circuit description:

ABS hydraulic unit with ECU integrates reflux pump with motor. Reflux pump relay shall stop operation and the reflux pump shall be under stationary state if no regulation is performed by ABS. When decompression is regulated by ABS, ABS ECU shall control the operation of reflux pump motor through controlling the grounding of reflux pump relay.

#### Function:

- ABS Pressure reducing phase: Reflux pump shall operate to pump the brake fluid in the wheel cylinder of locked wheel back into the master cylinder line so as to reduce the pressure of wheel cylinder.
- EBD Pressure reducing phase: Pressure accumulator shall store the brake fluid flowed back from rear wheels.

| DTC   | <b>Detection Condition</b>                                                                   | Set Condition                                                                                                                                                                          | Possible Faulty Areas                                                                                                                                                                               |
|-------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C0110 | To be conducted at the same time of ABS ECU initialization and self-checking:  Vehicle under | <ol> <li>After the reflux pump motor relay operates for 60ms, still no voltage signal can be detected by reflux pump monitoring.</li> <li>Under no operation of reflux pump</li> </ol> | <ol> <li>"Reflux pump motor circuit" inside ABS.</li> <li>Open circuit of reflux pump motor relay.</li> </ol>                                                                                       |
|       | stationary state or speed ≥15Km/h                                                            | motor relay, voltage detected by reflux pump monitoring exceeds 2.5s.  3. If the reflux pump motor relay stop operation, no voltage drop is detected by reflux pump monitoring.        | <ol> <li>Fault of reflux pump motor relay.</li> <li>Fault of reflux pump motor wiring.</li> <li>Imperfect ground.</li> <li>Inadequate power supply.</li> <li>Fault of reflux pump motor.</li> </ol> |

Occurrence of fault shall give rise to the following operation:

## **Braking Strategy**

#### Failure Protection

- Fault of reflux pump relay: Reflux pump failed to operate
- Wheel brake force control is disabled due to no back-flow pressure can be generated. System shall perform conventional braking.
- Brake system shall enter the conventional braking mode.
- · ABS and EBD warning lamps shall be lit.

#### Remarks:

If the ignition switch is turned on after fault removal, the ABS and EBD warning lamps shall go out automatically when the vehicle speed exceeds 12 Km/h.

#### Troubleshooting procedures

| S/N                                      | Operating Step                                                                                           | Operation                                                                                                                                                                                                                                                                    | Detection<br>Result | Next Step            |
|------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|
| 1                                        | Parking the vehicle to                                                                                   | (a) Turn off the ignition switch;                                                                                                                                                                                                                                            | Normal              | Go to the next step. |
| check ABS hydraulic<br>governor with ECU | (b) Is any noise heard from ABS hydraulic governor?  Normal state: ABS reflux pump shall stop operation. | Abnormal                                                                                                                                                                                                                                                                     | Go to Step 4        |                      |
| 2                                        | Inspection of                                                                                            | (a) Start the engine;                                                                                                                                                                                                                                                        | Normal              | Go to the next step. |
|                                          | self-checking<br>initializer of ABS<br>hydraulic governor<br>with ECU                                    | <ul> <li>(b) Run at speed of 10~15Km/h without brake pedal depressed;</li> <li>(c) Check if ABS warning lamp is lit and when necessary use diagnostic instrument to read DTC.</li> <li>Normal state: ABS warning lamp shall go out without DTC memory in ABS ECU.</li> </ul> | Abnormal            | Repair based on DTC. |

| S/N | Operating Step                                                                       | Operation                                                                                                                                                                                                                                                                                                                                    | Detection<br>Result | Next Step                                            |
|-----|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------|
|     | Using diagnostic                                                                     | (a) Turn off the ignition switch;                                                                                                                                                                                                                                                                                                            | Normal              | Go to the next step.                                 |
|     | instrument to perform<br>component testing for<br>ABS hydraulic<br>governor with ECU | <ul> <li>(b) Connect the diagnostic instrument to OBD port;</li> <li>(c) Turn on the ignition switch with engine off;</li> <li>(d) Apply the "Component Test" function of diagnostic instrument to activate the reflux pump.</li> <li>Normal state: Operation sound of reflux pump can be heard.</li> </ul>                                  | Abnormal            | Replace ABS control unit assembly.                   |
| 4   | Checking pin voltage of ABS hydraulic                                                | When using multimeter: (a) Turn off the ignition switch;                                                                                                                                                                                                                                                                                     | Normal              | Replace ABS control unit assembly.                   |
|     | governor with ECU                                                                    | (b) Remove connectors from ABS hydraulic governor with ECU; (c) Use multimeter to measure the voltage at the power terminal and grounding terminal of reflux pump. Remarks: If no jumper box is applied, the normal detection cannot be ensured. Normal value: U=9.3~16.9V                                                                   | Abnormal            | Go to the next step.                                 |
| 5   | Checking connecting                                                                  | <ul><li>(a) Check if 40A fuse is normal;</li><li>(b) Check the charging system, such as generator/battery and its connecting wire;</li><li>(c) Ensure the grounding terminal is well grounded.</li></ul>                                                                                                                                     | Normal              | Go to the next step.                                 |
|     | wires, connectors and 40A fuse                                                       |                                                                                                                                                                                                                                                                                                                                              | Abnormal            | Replace or repair connecting wire/connector or fuse. |
| 6   | Final inspection.                                                                    | <ul> <li>(a) Clear DTC;</li> <li>(b) ABS and EBD warning lamps shall go out shortly after the ignition switch is turned on;</li> <li>(c) C0110 DTC shall no longer appear with the ignition switch turned on;</li> <li>(d) When travelling at speed of 10~15Km/h, C0110 DTC shall no longer appear without brake pedal depressed.</li> </ul> |                     |                                                      |

4. Solenoid valve relay circuit fault: C0121

#### Circuit description:

With the ignition switch turned on and ABS solenoid valve relay powered on, battery voltage can be provided to one terminal of solenoid valve of hydraulic governor.

With ignition switch turned off or ABS system disabled, the solenoid valve relay should be kept power-on.

#### Function:

ABS ECU is applied to control the operation of solenoid valves through controlling their grounding so as to regulate brake pressure of each brake circuit.

| DTC   | Detection Condition               | Set Condition                                                                                           | Possible Faulty Areas                                                                                |
|-------|-----------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| C0121 | switch turned on and              | Short circuit of solenoid valve, or voltage circuit short to Uz or ground, or fuse blowout is detected. | <ol> <li>"Solenoid valve relay circuit"<br/>inside ABS.</li> <li>Inadequate power supply.</li> </ol> |
|       | testing                           |                                                                                                         | 1 1 11 3                                                                                             |
|       | 2. In the course of ABS operation | solenoid valve detected to be $<0.8*Uz$ ( $\approx 8.0V$ ) exceeds 0.8s.                                | 4. Open circuit.                                                                                     |

Occurrence of fault shall give rise to the following operation:

#### **Braking Strategy**

#### **Failure Protection**

- Fault of solenoid valve relay: Solenoid valve failed to operate
  - Brake system shall enter the conventional braking mode.
  - · ABS and EBD warning lamps shall be lit.
- If the solenoid valve relay stop operation due to fault of audion in ECU,
- The system shall be converted to EBD emergency control mode.
  - · ABS warning lamp shall be lit.

#### **Troubleshooting procedures:**

| S/N | Operating Step                                                         | Operation                                                                                                                                                                                                                                                                  | Detection<br>Result | Next Step            |
|-----|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|
| 1   | Checking ABS                                                           | (a) Turn off the ignition switch;                                                                                                                                                                                                                                          | Normal              | Go to the next step. |
|     | hydraulic governor<br>with ECU under<br>stationary state of<br>vehicle | <ul> <li>(b) Turn on the ignition switch without brake pedal depressed;</li> <li>(c) Check if ABS and EBD warning lamps are lit and when necessary use diagnostic instrument to read DTC.  Normal state: ABS/EBD warning lamp shall go out without current DTC.</li> </ul> | Abnormal            | Go to Step 3         |

| S/N | Operating Step                                                                                                 | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detection<br>Result | Next Step                                                |
|-----|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------|
| 2   | Using diagnostic                                                                                               | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Normal              | Go to the next step.                                     |
| 2   | Using diagnostic instrument to perform component testing for solenoid valve of ABS hydraulic governor with ECU | Remarks:  ① Before testing solenoid valve, please test he reflux pump to see if it operates normally. ② Two repair men are required to finish this test.  (a) Turn off the ignition switch; (b) Connect the diagnostic instrument to DLC. (c) One repair man should sit in the vehicle and the vehicle should be lifted by lifter with wheels suspended. (d) Turn on the ignition switch with engine off. (e) Apply the "Component Test" function of diagnostic instrument to activate the solenoid valve as per prompt of diagnostic instrument. (f) Firstly, test the oil inlet valve and oil outlet valve of left front wheel, during which, the repair man in the vehicle should depress the brake pedal with force and hold it. ① Conventional braking phase:  Normal state: The repair man outside cannot rotate the left front wheel by hand. ② Boosting phase: Use diagnostic instrument to access the "boosting phase".  Normal state: The repair man outside cannot rotate the left front wheel by hand. ③ Pressure maintenance phase: Use diagnostic instrument to access the "pressure maintenance phase".  Normal state: The repair man outside cannot rotate the left front wheel by hand. ④ Pressure reducing phase: Use diagnostic instrument to access the "pressure reducing phase".  Normal state: The repair man outside cannot rotate the left front wheel by hand. ④ Pressure reducing phase: Use diagnostic instrument to access the "pressure reducing phase".  Normal state: The repair man outside can rotate the left front wheel by hand. | Normal Abnormal     | Go to the next step.  Replace ABS control unit assembly. |
| 3   | Checking pin voltage                                                                                           | wheel. When using multimeter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Normal              | Replace ABS hydraulic                                    |
|     | of ABS hydraulic governor with ECU                                                                             | (a) Turn off the ignition switch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | governor with ECU.                                       |
|     |                                                                                                                | <ul> <li>(b) Remove connectors from ABS hydraulic governor with ECU.</li> <li>(c) Use multimeter to measure the voltage at the power terminal and grounding terminal of solenoid valve.</li> <li>Remarks:</li> <li>If no jumper box is applied, the normal detection cannot be ensured.</li> <li>Normal value: U=9.3~16.9V</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Abnormal            | Go to the next step.                                     |
| 4   | Checking connecting                                                                                            | 9   ` /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Normal              | Go to the next step.                                     |
|     | wires, connectors and 40A fuse                                                                                 | <ul><li>(b) Check the charging system, such as generator/battery and its connecting wire.</li><li>(c) Ensure the grounding terminal is well grounded.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Abnormal            | Replace or repair connecting wire/connector or fuse.     |
| 5   | Final inspection.                                                                                              | <ul> <li>(a) Clear DTC.</li> <li>(b) ABS and EBD warning lamps shall go out shortly after the</li> <li>(c) With the ignition switch turned on, C0121 DTC shall r finished by system.</li> <li>(d) Perform Step 2 in this procedure and the testing result is no</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | no longer app       |                                                          |

5. ABS brake lamp switch circuit fault: C0161

Circuit description:

Brake lamp switch is a kind of normally open switch.

This switch shall be on with the brake pedal depressed, providing +12V signal voltage to brake lamp signal circuit (+BLS).

ABS ECU shall monitor the brake lamp switch signal voltage to facilitate the determination of brake engagement time and the detection of brake lamp switch circuit.

| DTC   | Detection Condition                                                                                                | Set Condition                                                                                       | Possible Faulty Areas                                                                               |
|-------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| C0161 | <ol> <li>With ignition switch turned on</li> <li>Battery voltage&gt;8V</li> <li>Vehicle speed&gt;16Km/h</li> </ol> | 1. The brake pedal is detected to be depressed under the conditions below:  Vehicle speed > 40 Km/h | <ol> <li>Brake lamp switch</li> <li>Brake lamp switch circuit</li> <li>Brake lamp switch</li> </ol> |
|       |                                                                                                                    | Acceleration>8Km/h2  2. The brake pedal is detected to be released under the                        | connector 4. ABS ground 5. ABS hydraulic                                                            |
|       |                                                                                                                    | conditions below: Vehicle speed>24Km/h Acceleration>11.5Km/h2                                       | governor with ECU                                                                                   |

## **Troubleshooting procedures:**

| S/N | Operating Step                                                                                                     | Operation                                                                                                                                                      | Detection<br>Result | Next Step            |
|-----|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|
| 1   | Checking brake lamp switch                                                                                         | (a) Depress and release brake pedal to check brake lamp.                                                                                                       | Normal              | Go to the next step. |
|     | block                                                                                                              | With brake pedal depressed: Brake lamp shall be lit. With brake pedal released: Brake lamp shall go out. Remarks: Please ensure the brake lamp and its circuit | Abnormal            | Go to Step 4         |
|     |                                                                                                                    | is normal when using this method to diagnose the brake lamp switch.                                                                                            |                     |                      |
|     |                                                                                                                    | (b) Check brake lamp switch based on data stream of diagnostic instrument.                                                                                     |                     |                      |
|     |                                                                                                                    | With brake pedal depressed: "Engagement" shall be displayed on diagnostic instrument.                                                                          |                     |                      |
|     |                                                                                                                    | With brake pedal released: "Disengagement" shall be displayed on diagnostic instrument.                                                                        |                     |                      |
| 2   | Checking pin voltage of                                                                                            | (a) Turn off the ignition switch.                                                                                                                              | Normal              | Go to the next step. |
|     | ABS hydraulic governor with ECU (Voltage of Pin 30 corresponding to Pin 38)                                        | (b) Remove connector from ABS hydraulic governor.                                                                                                              | Abnormal            | Replace ABS with     |
|     |                                                                                                                    | (c) Turn on the ignition switch.                                                                                                                               |                     | hydraulic governor.  |
|     |                                                                                                                    | (d) Use multimeter to measure the voltage between brake lamp switch terminal and grounding terminal.                                                           |                     |                      |
|     |                                                                                                                    | With brake pedal depressed: Voltage<2V→Brake lamp shall be lit.                                                                                                |                     |                      |
|     |                                                                                                                    | With brake pedal released: Voltage $> 4.5V \rightarrow Brake$ lamp shall go out.                                                                               |                     |                      |
| 3   | Checking connecting wire<br>and connector (between<br>brake lamp switch and ABS<br>hydraulic governor with<br>ECU) | governor for short circuit or open circuit.                                                                                                                    |                     |                      |
| 4   | Checking connecting wire and connector (brake lamp switch circuit)                                                 |                                                                                                                                                                |                     |                      |
| 5   | Final inspection.                                                                                                  | Confirm that the fault shall no longer appear.                                                                                                                 |                     |                      |

## **Diagnosis and Testing**

6. ABS ECU fault: C0550

Circuit description:

ABS ECU, installed in ABS hydraulic governor with ECU, is the control center of ABS system. Programmable and calibration data required by ABS operation are stored in ROM of ABS ECU. ABS ECU shall perform self-checking continuously to monitor any fault in ABS system.

DTC Detection Condition Set Condition Possible Faulty Areas

C0550 With ignition switch turned on Fault is detected immediately.

Fault is detected immediately.

1. ABS hydraulic governor with ECU.

2. Circuit.

With engine running and under Fault is detected immediately.

It is detected that wheel speed sensor

Under all conditions power circuit is short to Uz.

Occurrence of fault shall give rise to the following operation:

Braking Strategy Failure Protection

Stop operation • Brake system shall enter the conventional braking mode.

· ABS and EBD warning lamps shall be lit.

#### **Troubleshooting procedures:**

| S/N | Operating Step                                            | Operation                                                                                                                                                                                                                                                                                                                                                                    | Detection Result | Next Step                 |
|-----|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|
| 1   | 1 ABS hydraulic governor with ECU                         | <ul> <li>(a) Turn off the ignition switch;</li> <li>(b) Turn on the ignition switch without brake pedal depressed;</li> <li>(c) Check if ABS and EBD warning lamps are lit and when necessary use diagnostic instrument to read DTC.</li> <li>Normal state: ABS/EBD warning lamp shall go out without current DTC.</li> </ul>                                                | Normal           | Check based on other DTC. |
|     | under stationary state<br>of vehicle                      |                                                                                                                                                                                                                                                                                                                                                                              | Abnormal         | Go to the next step.      |
| 2   | Detection of system                                       | (a) Check all ground circuit of ABS hydraulic governor                                                                                                                                                                                                                                                                                                                       | Yes              | Go to Step 4              |
|     | circuit                                                   | with ECU for excessive resistance or open circuit.  (b) Check ABS fuse and when necessary replace it.  (c) Check ABS battery power supply voltage circuit for excessive resistance, open circuit or short to ground.  (d) Check if the wheel speed sensor power line is short to main power line.  (e) Check for any electromagnetic interference.  Is the fault eliminated? | No               | Go to the next step.      |
| 3   | Replacement of ABS hydraulic governor with ECU.           | Replace the ABS hydraulic governor with ECU as a whole.                                                                                                                                                                                                                                                                                                                      |                  |                           |
| 4   | Conduct final inspection to confirm the fault is removed. | <ul><li>(a) Clear DTC.</li><li>(b) With ignition switch turned on, ABS has no DTC memoral</li></ul>                                                                                                                                                                                                                                                                          | ory.             |                           |

Possible Faulty Areas

## **Diagnosis and Testing**

7. Voltage out of range: C0800

Detection

Circuit description:

DTC

ABS ECU monitors the battery power supply voltage supplied to ABS ECU through Uz. If the voltage is out of the specified range, the following faults shall occur:

Too low voltage supplied to ABS ECU may lead to abnormal operation of ABS system.

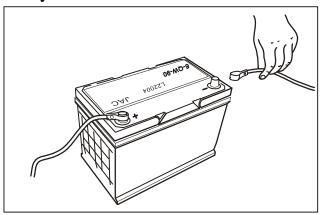
Too high voltage supplied to ABS ECU may lead to damage of ABS components.

Normal operating voltage of system: 9.3V~16.9V under operation of reflux pump motor

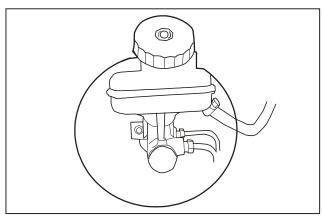
**Set Condition** 

| Condition                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| switch turned<br>on            | <ol> <li>If the voltage is below 9.6V with no operation of ABS, or below 9.3V with operation of ABS, this DTC shall be recorded and ABS shall be turned off by software.</li> <li>If voltage below 7.6V or above 16.9V is continuously monitored, this DTC shall be recorded and ABS and EBD shall be turned off by hardware.</li> <li>Overdischarge or damage of battery.</li> <li>Fault of voltage regulator (charging system).</li> <li>Fault of fuse or connector, imperfect body grounding, or contact resistance.</li> </ol> |
| Occurrence of fault shall give | rise to the following operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Braking Strategy               | Failure Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N 1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

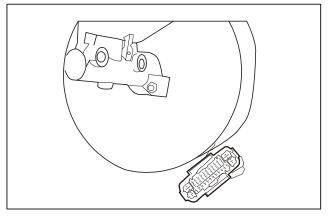
| Braking Strategy                                                            | Failure Protection                                                                                  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Normal operation of reflux pump motor and solenoid valve cannot be ensured. | Brake system shall enter the conventional braking mode.  ABS and EBD warning lamps shall be lit.    |
| If the voltage is far below 9.6V                                            | The system shall be converted to EBD emergency control mode.  ABS warning lamp shall be lit.        |
| If the voltage is far above 7.6V                                            | Brake system shall enter the conventional braking mode.  ABS and EBD warning lamps shall be lit.    |
| Voltage Uz is above 9.8V after a period of too low voltage.                 | System shall retreat from the EBD emergency operation mode.  Normal operation of ABS shall recover. |


### **ABS Anti-lock Brake System**

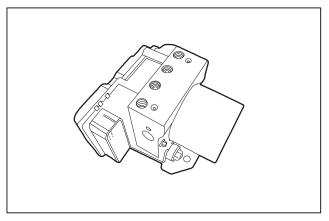
### **Troubleshooting procedures**


| S/N | Operating Step                                            | Operation                                                                                                                                                                        | Detection<br>Result | Next Step                                    |  |  |  |
|-----|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|--|--|--|
| 1   | Checking fuse                                             | (a) Check if the 10A, 25A and 40A fuses for power supply                                                                                                                         | Yes                 | Go to the next step.                         |  |  |  |
|     |                                                           | ECU of ABS operate normally.  Normal: Continuity                                                                                                                                 | No                  | Check fuse circuit.                          |  |  |  |
| 2   | Using multimeter to                                       | (a) Check battery voltage under various conditions.                                                                                                                              | Yes                 | Go to the next step.                         |  |  |  |
|     | check battery voltage                                     | ① Idling: with headlamp turned on, A/C turned to the coldest mode/blower turned to the maximum speed mode                                                                        | No                  | Check charging system.                       |  |  |  |
|     |                                                           | <ul> <li>② Parking: With all electrical equipments turned off, rotation speed increased to 3500rpm and hold on for 30s</li> <li>③ During application of service brake</li> </ul> |                     |                                              |  |  |  |
|     |                                                           | Normal value: 10~16.9V                                                                                                                                                           |                     |                                              |  |  |  |
| 3   | Using diagnostic instrument to read                       | sing diagnostic (a) Connect the diagnostic instrument to read battery                                                                                                            |                     | Intermittent fault, go to Step 5             |  |  |  |
|     | battery voltage                                           | ① Idling: with headlamp turned on, A/C turned to the coldest mode/blower turned to the maximum speed mode                                                                        | No                  | Go to the next step.                         |  |  |  |
|     |                                                           | ② Parking: With all electrical equipments turned off, rotation speed increased to 3500rpm and hold on for 30s                                                                    |                     |                                              |  |  |  |
|     |                                                           | ③ During application of service brake                                                                                                                                            |                     |                                              |  |  |  |
|     |                                                           | Normal value: 10~16.9V                                                                                                                                                           |                     |                                              |  |  |  |
| 4   | Checking voltage of                                       | 1                                                                                                                                                                                | Normal              | Go to the next step.                         |  |  |  |
|     | ABS power line and ground cable                           | (b) Remove connectors from ABS hydraulic governor with ECU.                                                                                                                      | Abnormal            | Check and repair circuit.                    |  |  |  |
|     |                                                           | (c) With ignition switch turned on, use multimeter to measure if driving voltage of each solenoid valve, motor or ECU is between 9.3V~16.9V.                                     |                     |                                              |  |  |  |
| 5   | Fault reconfirmation                                      | (a) Simulate fault for reconfirmation.                                                                                                                                           | Normal              | Go to the next step.                         |  |  |  |
|     | (b) Read DTC. Normal state: No DTC memory                 |                                                                                                                                                                                  | Abnormal            | Replace the ABS hydraulic governor with ECU. |  |  |  |
| 6   | Intermittent fault                                        | (a) If it is intermittent fault, please return the vehicle to custor moment.                                                                                                     | mer, for the fault  | cannot be located at that                    |  |  |  |
|     |                                                           | (b) Ask the customer to record relevant data once the same fault occurs:                                                                                                         |                     |                                              |  |  |  |
|     |                                                           | <ul><li>Vehicle speed</li><li>With/without brake pedal depressed</li></ul>                                                                                                       |                     |                                              |  |  |  |
|     |                                                           | Weather                                                                                                                                                                          |                     |                                              |  |  |  |
|     |                                                           | Road condition and etc.                                                                                                                                                          |                     |                                              |  |  |  |
| 7   | Conduct final inspection to confirm the fault is removed. |                                                                                                                                                                                  |                     |                                              |  |  |  |

### Removal/Installation

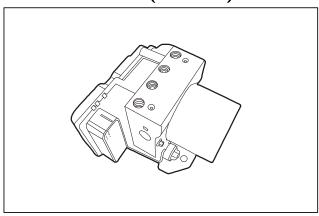

### ABS system

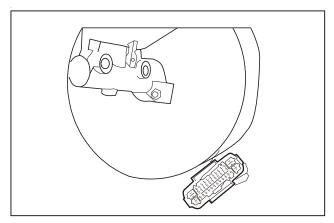


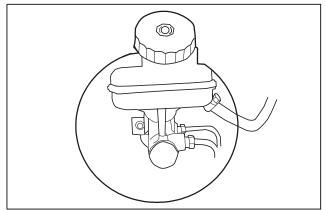

1. Remove the negative cable of battery.



- 2. Drain the brake fluid in the hydraulic brake system completely.
- 3. Loosen the oil pipe of brake master cylinder.





4. Remove the ABS connector.




- 5. Remove the brake fluid pipe from ABS hydraulic assembly. Wrap the pipe with plastic bag to avoid dirt. Use clean water to wash the surface that having brake fluid on it.
- 6. Remove the mounting bolts from ABS hydraulic assembly and then remove the assembly.

#### **Removal/Installation (Continued)**







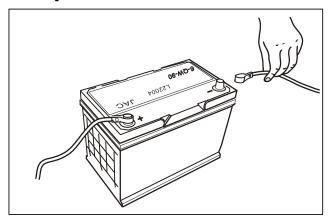
#### Installation

- 1. Clean the surface of ABS hydraulic assembly and fix the assembly onto bracket with bolts.
- 2. Install the brake pipe onto the ABS hydraulic assembly.

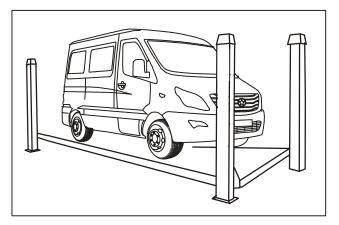
#### Attention:

As for the installation of aluminum alloy parts, the brake pipe should be fit in place smoothly by correct alignment; otherwise, the original part bodies may be damaged easily.

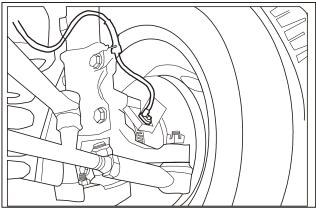
3. Insert the ABS plug into relevant socket.


#### **Attention:**

The ABS plug should be installed in carefully and smoothly instead of violently.


- 4. Install and fasten the oil pipe of brake master cylinder.
- 5. Fill the reservoir of master cylinder with brake fluid.
- 6. Two persons shall work together to bleed the air in brake line until pure brake fluid is drained out. Air bleeding order: left rear, right front, right rear and left front wheels.
- 7. Connect the negative cable of battery.

### **Removal/Installation (Continued)**


#### Wheel speed sensor



1. Disconnect the negative cable of battery.

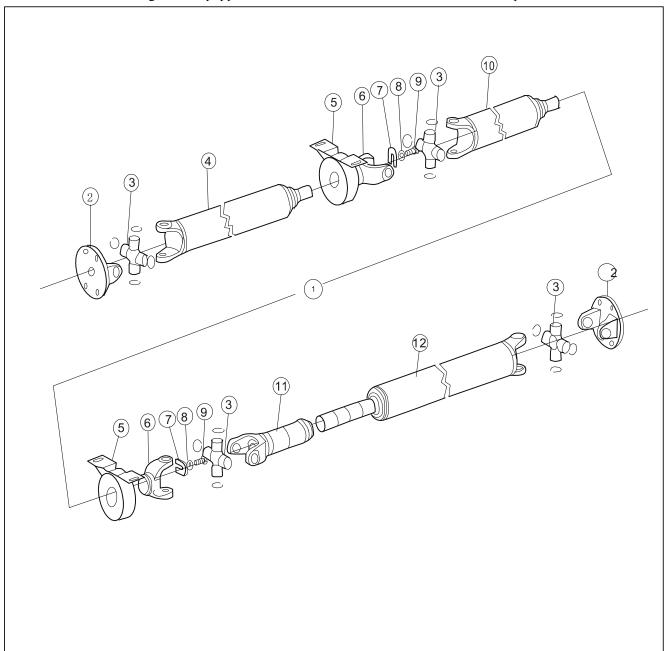


2. Lift the vehicle.



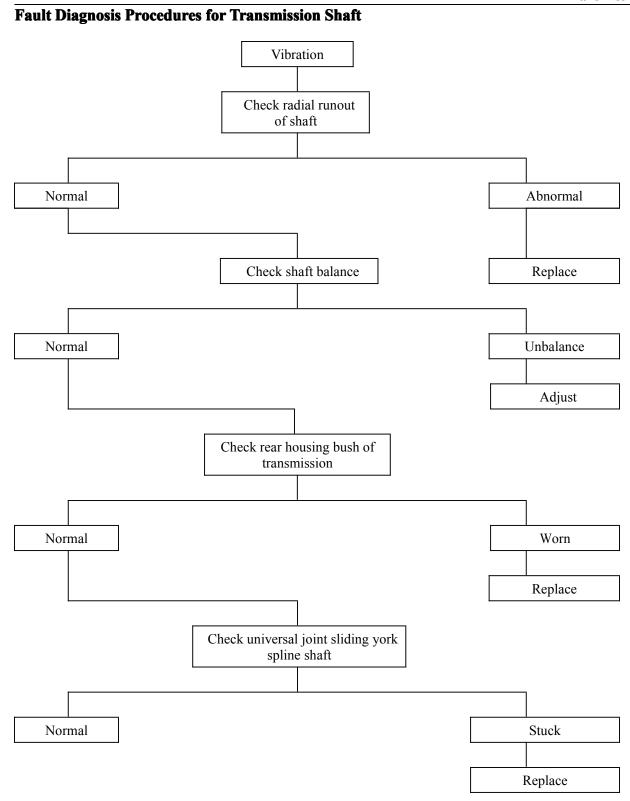
- 3. Disconnect the plug of wheel speed sensor and remove the harness fixture of sensor.
- 4. Remove the mounting bolts from wheel speed sensor and then remove the sensor.

  Installation
- 1. Insert the sensor into relevant hole and fix it with bolt
- 2. Fix the sensor harness and install the harness onto the plug.
- 3. Lower the vehicle.
- 4. Connect the negative cable of battery.


## **Transmission Shaft**

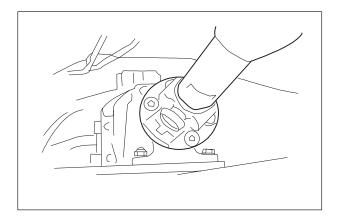
Applied models: SUNRAY products manufactured by JAC

| Subject                              | Page |
|--------------------------------------|------|
| Instruction and Operation            |      |
| Transmission Shaft                   |      |
| Explosive View of Transmission Shaft | 106  |
| Introduction of Transmission Shaft   | 106  |
| Diagnosis and Testing                |      |
| Transmission Shaft                   | 107  |
| Inspection and Confirmation.         |      |
| Fault Symptom Table                  | 108  |
| Removal/Installation                 |      |
| Removal of Transmission shaft        | 109  |
| Installation of Transmission shaft   | 110  |


#### Introduction

Transmission shaft is a kind of device that is applied to joint transmission and rear axle together and to transmit power from transmission to rear axle. Transmission shaft, made of hollow steel tube, is equipped with intermediate support to reduce resonance during power transmission. Transmission shaft adopts constant velocity universal joints that are maintainable. Balance weights are equipped for transmission shaft in order to ensure stable power transmission.



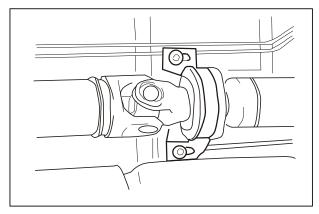

#### **Inspection and Confirmation:**

- 1. Inspection of flange
  - Check flange between transmission and transmission shaft. Check flange screw hole for any deformation or crack. Check flange internal spline for tooth looseness, missing or damage. If there are more than two teeth is damaged, please replace the flange assembly.
- 2. Maintenance and repair of universal joint
  - Maintenance of universal joint: Use grease nipple that is aligned to the oil filler of universal joint to add grease until clean grease is extruded out.
  - Repair of universal joint: Remove universal joint and rotate it to check for any sticking, obvious clearance, deformation or fracture. Replace the universal joint accordingly.
- 3. Inspection of intermediate support
  - Inspection of intermediate support: Use crow bar to pry up the rubber part of intermediate support and check rubber part for any wear, deformation or crack. Hold and shake the transmission shaft by hand to check for excessive clearance of intermediate support. If any, please replace the support.

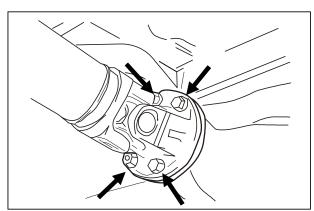


#### Removal/Installation

#### **Transmission shaft**



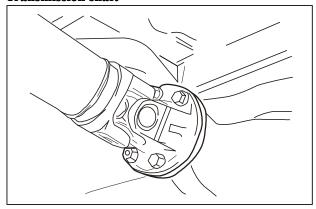

1. Lift the vehicle.


#### Note:

Mark properly in pair on transmission shaft front flange and transmission flange.

2. Remove transmission shaft front flange from transmission flange.



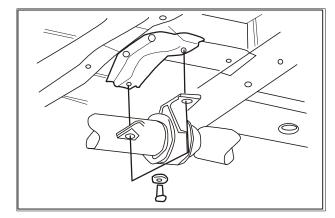

3. Loosen transmission shaft intermediate bearing.



- 4. Remove transmission shaft rear flange from rear axle flange.
  - Mark properly in pair on transmission shaft rear flange and rear axle flange.
  - Remove four mounting bolts from transmission shaft.

### Removal/Installation

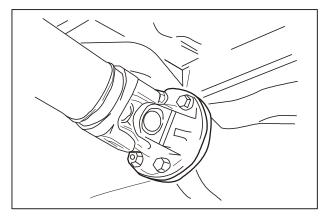
#### **Transmission shaft**



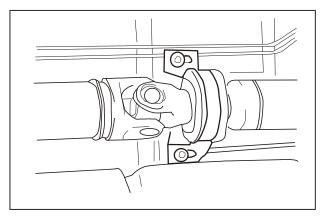

#### Installation

#### Note:

Have marks properly aligned.


1. Install the transmission shaft front flange onto transmission.




2. Install transmission shaft intermediate support onto the intermediate support seat located on body bottom plate.

#### Note:

Don't tighten bolt for the moment to facilitate adjustment.

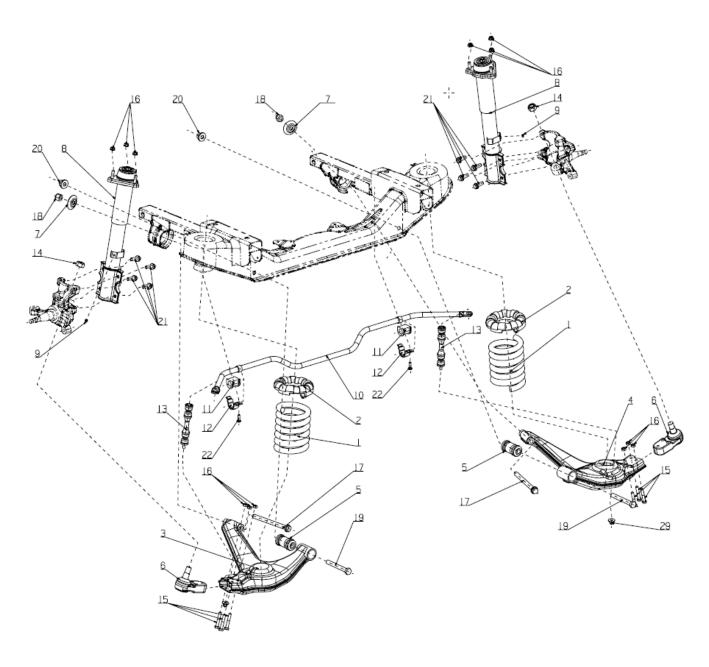


- 3. Install transmission shaft rear flange with rear axle flange.
  - Have two marks on flanges properly aligned.
  - Use new mounting bolts for transmission shaft.



4. Tighten mounting bolts for transmission shaft intermediate bearing after alignment of transmission shaft.

# **Front Suspension**


Applied models: SUNRAY products manufactured by JAC

| Subject                               | Page |
|---------------------------------------|------|
| Instruction and Operation             |      |
| Front Suspension                      |      |
| Diagnosis and Testing                 |      |
| Front Suspension                      |      |
| Removal and Installation              |      |
| Removal and Installation of Subframe. | 116  |
| Specification                         |      |
| Specification                         |      |

### **Instruction and Operation**

#### **Front Suspension**

This front axle is a steering axle at front of the vehicle, mainly consisting of the front overhang subframe assembly, lower swing arm assembly, front anti-roll bar link assembly, steering knuckle with brake assembly, helical spring assembly and mounting cushion for helical spring, etc., realizing vehicle steering via vehicle steering gear by pushing steering knuckle that may make wheels to deflect with certain angle.



| SN                                                                      | Name                                                        | Quantity | Remarks    |
|-------------------------------------------------------------------------|-------------------------------------------------------------|----------|------------|
| 1                                                                       | Front helical spring assembly                               | 2        |            |
| 2                                                                       | Mounting cushion for front helical spring                   | 2        |            |
| 3                                                                       | Left lower swing arm weld assembly                          | 1        |            |
| 4                                                                       | Right lower swing arm weld assembly                         | 1        |            |
| 5                                                                       | Lower swing arm bushing assembly                            | 2        |            |
| 6                                                                       | Lower swing arm ball pin assembly                           | 2        |            |
| 7                                                                       | Taper washer(16X61X3)                                       | 2        |            |
| 8                                                                       | Front shock absorber assembly                               | 2        |            |
| 9                                                                       | Brake hose mounting flat spring nut                         | 2        |            |
| 10                                                                      | Front anti-roll bar assembly                                | 1        |            |
| 11                                                                      | Front anti-roll bar mounting bushing                        | 2        |            |
| Front anti-roll bar mounting bracket  Front anti-roll bar link assembly |                                                             | 2        |            |
|                                                                         |                                                             | 2        |            |
| 14                                                                      | Type 1 all-metal hexagon lock nut (thickness 15.5)          | 2        |            |
| 15                                                                      | Hexagon headed bolt                                         | 6        |            |
| 16                                                                      | All-metal hexagon flange face lock nut                      | 12       |            |
| 17                                                                      | Hexagon flange face lock nut (length of screw thread is 57) | 2        |            |
| 18                                                                      | Type 1 all-metal hexagon lock nut                           | 2        |            |
| 19                                                                      | Hexagon headed bolt (length of screw thread is 78)          | 2        | Grade 10.9 |
| 20                                                                      | All-metal hexagon flange face lock nut                      | 2        |            |
| 21                                                                      | Hexagon headed bolt and flat washer assembly                | 8        |            |
| 22                                                                      | Hexagon lobular socket pan head screw                       | 2        |            |

#### **FAX Front Suspension**

#### Use and Maintenance

- Inspect the wear condition of brake pad. After the first 40000km or 24-month driving of the vehicle, inspect the wear condition of friction linings and measure the thickness of the most worn part of brake caliper friction linings with the standard value of 18mm and limit value of 17mm. When the thickness of brake lining is lower than the limit value, the brake lining should be replaced.
- 2. In Level III maintenance, the front suspension may be removed for cleaning of interiors of the steering knuckle with bushing and wheel hub as well as bearings. Please tighten bolts and nuts of each component with specified torques.
- 3. Precautions:

The vehicle loading should not exceed the max. loading weight.

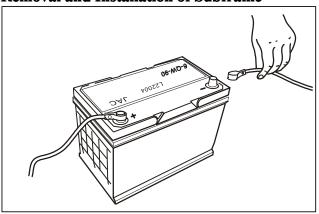
#### **Diagnosis and Testing**

### **Inspection and Maintenance of Front Suspension**

- Special measuring apparatuses and tools should be applied in part inspection. For damaged parts, carry out maintenance or replacement according to relevant requirements. In the case of one of the matching parts is worn and its clearance exceeds the specified one, please replace this worn part together with its matching part according to relevant requirements. Measure the starting torque of the front wheel hub at wheel bolts, it should be 17 ~ 25N.m.
- 2. From the point of view of preventive maintenance, some parts which are still in maintenance or within wear limit should be replaced before exceeding the limit
- 3. Carry out appearance inspections of all parts with specified visual method or red pigment penetration method. In the case of following abnormalities in part outside surfaces, carry out maintenance or replacement for relevant parts according to corresponding requirements:

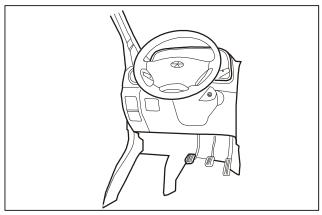
#### Abnormalities

- Failure or fatigue (in helical spring)
- Bending deformation (generally in steering

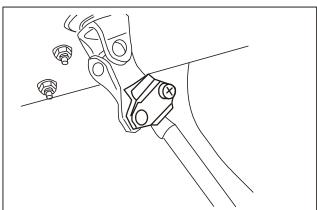

- knuckle)
- Abnormal noise (for bearings)
- Looseness (in bolts of anti-roll bar and lower swing arm)
- Discoloration or seizure (for steering knuckle ball joint etc.)
- Rusting
- Deterioration (for brake lining)
- 4. For all rubber parts like oil seals, gaskets, bushings, etc., they should be replaced with new ones after removal. For standard parts like pre-riveted nuts and bolts with rubber, they are not reusable.
- 5. Abnormal sound is a kind of noise, mainly appearing as abnormal sounds like clash or harsh screaming, etc. under different service conditions (like vehicle speed or road conditions). Some of these sounds may fade out with running-in while some may increase gradually due to improper adjustment in assembling. On condition that the part is qualified, adjustment of part assembly clearance may be taken as solution.

### **Fault Diagnosis**

### **Common Fault Diagnosis Table**


| Fault Symptom                | Possible Cause of fault                                                       | Troubleshooting          |  |
|------------------------------|-------------------------------------------------------------------------------|--------------------------|--|
|                              | No power steering                                                             | Repair or replace        |  |
| A 4                          | Improper front wheel alignment                                                | Adjust                   |  |
| Arduous steering             | Excessively low tire pressure                                                 | Carry out tire inflation |  |
|                              | Steering exceeding the lower swing arm ball joint                             | Replace                  |  |
|                              | Improper front wheel alignment                                                | Adjust                   |  |
|                              | Fault in the shock absorber                                                   | Repair or replace        |  |
| Poor return                  | Wear or damage in the front anti-roll bar                                     | Replace                  |  |
|                              | Wear or damage in the helical spring                                          | Replace                  |  |
|                              | Wear in the lower swing arm bushing                                           | Replace                  |  |
|                              | Improper front wheel alignment                                                | Adjust                   |  |
| Abnormal tire wear           | Excessively low or high tire pressure                                         | Adjust the tire pressure |  |
|                              | Fault in the shock absorber                                                   | Repair or replace        |  |
|                              | Improper front wheel alignment                                                | Adjust                   |  |
| Vehicle deviation            | Insufficient steering resistance of the lower swing arm ball joint connection | Replace                  |  |
|                              | Looseness or wear in the lower swing arm bushing                              | Replace                  |  |
|                              | Improper front wheel alignment                                                | Adjust                   |  |
| Unilateral vehicle deviation | Insufficient steering resistance of the lower swing arm ball joint connection | Replace                  |  |
|                              | Bending of the lower swing arm                                                | Replace                  |  |
|                              | Wear or damage in the helical spring                                          | Replace                  |  |
|                              | Fault in the shock absorber                                                   | Repair or replace        |  |
|                              | Insufficient steering resistance of the lower swing arm ball joint connection | Replace                  |  |
|                              | Looseness or wear in the lower swing arm bushing                              | Replace                  |  |
| Steering wheel fight         | Wear or damage in the helical spring                                          | Replace                  |  |
|                              | Wear or damage in the front anti-roll bar                                     | Replace                  |  |
|                              | Looseness in mounting screws of the steering gear                             | Repair                   |  |
|                              | Improper front wheel alignment                                                | Adjust                   |  |
|                              | Vehicle body welding failure                                                  | Repair                   |  |
| Vehicle sinkage              | Wear or damage in the helical spring                                          | Replace                  |  |
|                              | Fault in the shock absorber                                                   | Repair or replace        |  |

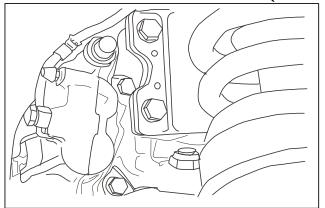
### **Removal and Installation of Subframe**




#### Removal


1. Disconnect the negative cable of battery.



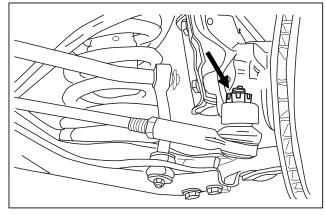

2. Place the steering wheel in the center and lock it up in the position of straight-ahead.



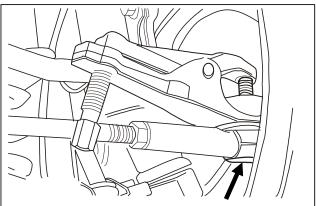
- 3. Remove track bolts for fixing the steering column onto the cross shaft. Rotate clamped plates to make them separated.
- 4. Loosen front wheel nuts and lift the vehicle.
- 5. Remove the front wheel.



6. Remove the brake hose from the shock absorber.



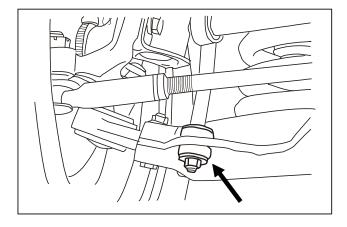

#### Note:


Mounting bolts on the top of the brake caliper can not be loosened completely until the complete removal of the brake caliper has been done.

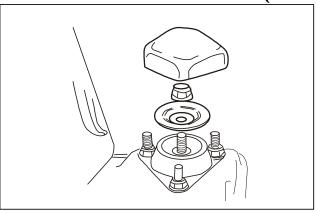
7. Remove the brake caliper.

Hang the brake caliper up to avoid brake hose damage.




8. Remove cotter pin and castle nuts for fixing the steering tie rod onto the steering knuckle. (Discard the removed cotter pin)



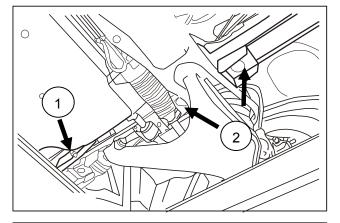

#### Note:

In the separation of the steering tie rod end from the steering knuckle, sealing protection should be carried out for the ball joint at any time.

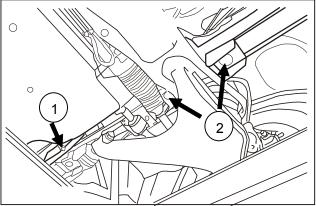
9. Remove the ball joint of the steering tie rod from the steering knuckle.



- 10. Remove the front anti-roll bar link from the lower swing arm.
- 11. Support the lower swing arm assembly.

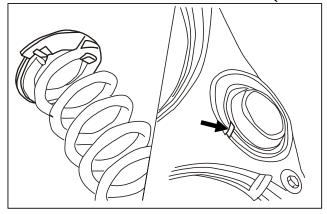


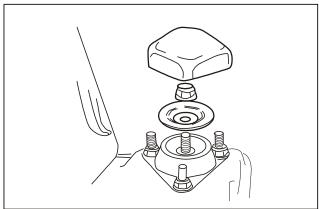

- 12. Remove mounting nuts of the shock absorber from the cab.
  - Remove the plastic cap.
  - Remove nuts and washers for fixing the piston rod with an L-shaped wrench.
  - Remove the disc washer.

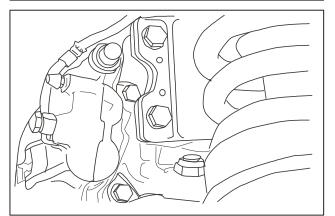

#### **Caution:**

Pay attention not to damage the lower swing arm ball joint for connecting the shock absorber and the front suspension.

- 13. Lay down the lower swing arm assembly and remove the helical spring.
- 14. Support the cross rail.





- 15. Remove the cross rail assembly.
  - ① Remove the two bracket nuts and bolts from the front suspension.
  - ② Remove the four cross rail bolts.




#### Installation

- 1. Reinstall the cross rail assembly.
  - Lift the cross rail, install the two bracket nuts and bolts of the subframe relaxedly.
  - Reinstall the four cross rail bolts.
  - Tighten bracket nuts and bolts of the front suspension.







- 2. Reinstall the helical spring.
  - Ensure following operations:
  - Correctly prevent the shock insulator from opening.
  - Correctly combine the shock insulator connector.
  - Place the lower end of the helical spring into the deepest place of the lower swing arm groove.
- 3. Remove the shock absorber.
- 4. Lift the lower swing arm assembly and install the shock absorber.
- 5. Fix the shock absorber from the cab.
  - Reinstall the disc washer.
  - Support nuts and washers of the piston rod with the L-shaped wrench.
  - Install nut caps.

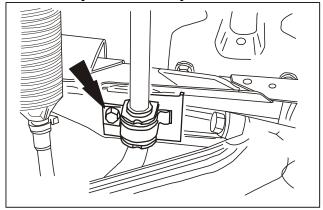
- 6. Reinstall the wheel hub assembly.
- 7. Reconnect the brake hose onto the shock absorber.

- 8. Install each end of the steering tie rod onto the steering knuckle.
  - Fix castle nuts with a new cotter pin.

#### **Caution:**

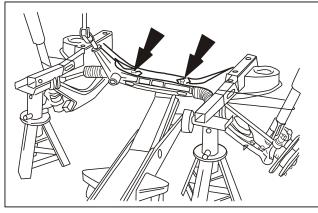
The convex side of the washer at the joint of the front anti-roll bar should face the rubber shaft sleeve.

9. At the mounting position of the front anti-roll bar link, connect it with the lower swing arm.

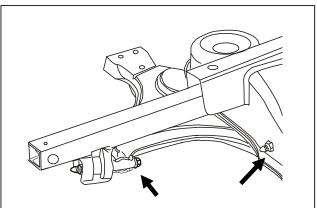

#### **Caution:**

Make sure that the steering wheel is in straight-ahead position.

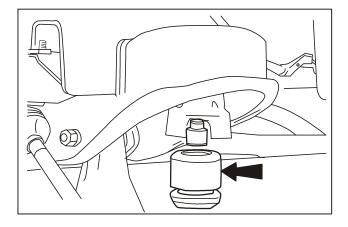
- 10. Then install tires and lower the vehicle.
- 11. Align clamped plates of the cross shaft with the steering column and fix them with a new bolt.
- 12. Reconnect the negative cable of battery.


#### **FAX Front Suspension**

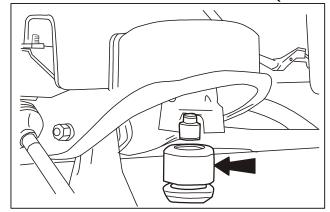
### Disassembly and Assembly of Subframe




#### Disassembly

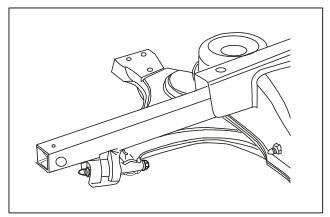

1. Remove the two mounting bolts at the mounting position of the front anti-roll bar.




2. Remove the steering gear box.

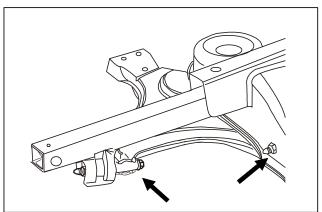


- 3. Remove the lower swing arm assembly.
  - Remove connecting bolts between the lower swing arm and the subframe.
  - Remove feedthrough bolts and nuts between the lower swing arm and the subframe.




4. Remove the compression travel stop block.

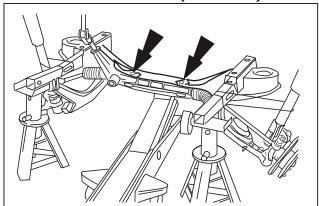



#### Assembly

1. Install the compression travel stop block.

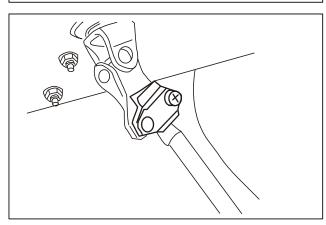


2. Reinstall the lower swing arm assembly.


Install feedthrough bolts and nuts between the lower swing arm and the cross rail from the rear side.



- 3. Align and reinstall the lower swing arm assembly.
  - Tighten bolts between the front suspension and the subframe.
  - Insert feedthrough bolts into the cross rail, install and then tighten them.

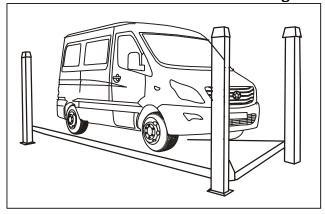

#### **FAX Front Suspension**

### Removal and Installation (Continued)



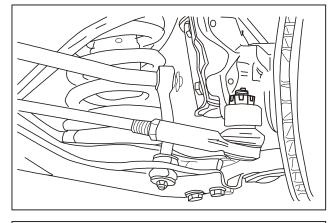
4. Reinstall the steering gear box.

Make sure to install mounting bolts in the direction of underside of the cross rail.

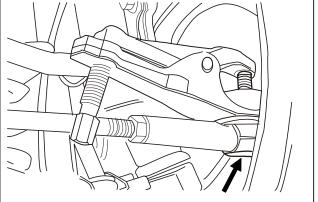



#### **Caution:**

Make sure that the positioning shaft sleeves of the front anti-roll bar are in the inner side of the rubber space ring, with their opening marks backward.


5. Install the two mounting bolts of the front anti-roll bar.

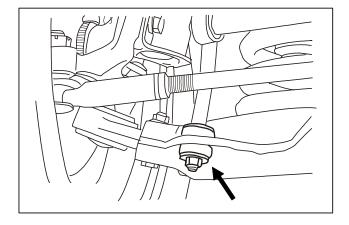
### Removal and Installation of Lower Swing Arm




#### Removal

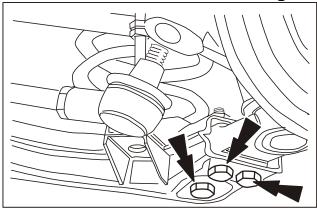
1. Loosen wheel nuts, lift the vehicle and remove wheels



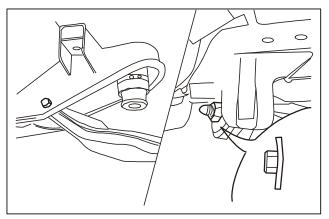

2. Loosen mounting nuts of the front lower swing arm.



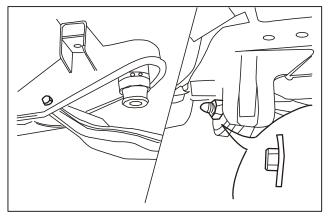
#### Note:


In the process of steering tie rod removal from the steering knuckle, wrap up ball seals with cloth as protection for them.

- 3. Remove the steering tie rod end ball joint from the steering knuckle.
- 4. Support the lower swing arm.

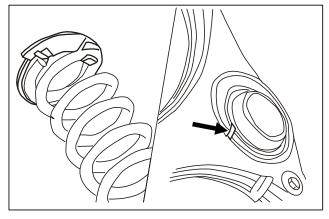



5. At the mounting position, disconnect the front anti-roll bar link from the lower swing arm.


### Removal and Installation of Lower Swing Arm (Continued)



- 6. Remove the ball joint from the lower swing arm.
- 7. Lower the lower swing arm and remove the helical spring.

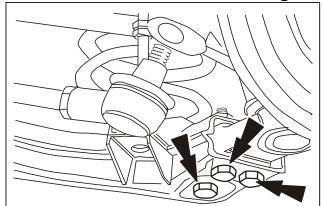



- 8. Remove the lower swing arm.
  - Remove nuts and bolts between the lower swing arm and the cross rail.
  - Remove nuts and bolts between the lower swing arm and the front suspension.
  - Remove the disc washer.



#### Installation

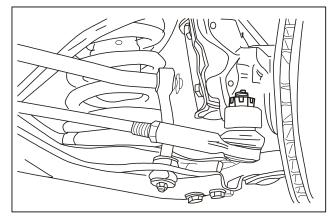
- 1. Reinstall the lower swing arm.
  - Install the disc washer.
  - Install nuts and bolts between the lower swing arm and the front suspension.
  - Install nuts and bolts between the lower swing arm and the cross rail.



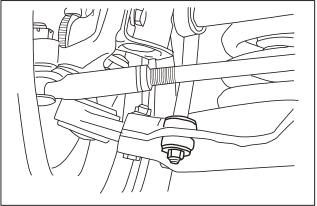

2. Reinstall the helical spring.

Ensure following operations:

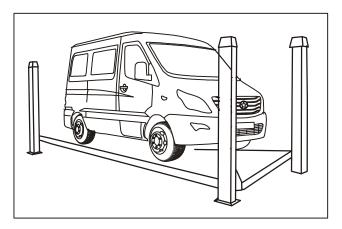
- Correctly place the positioning opening of the gasket.
- Correctly combine the gasket positioning lug.
- The lower end of the spring is located at the groove of the lower swing arm
- 3. Lift the lower swing arm.


### Removal and Installation of Lower Swing Arm (Continued)




### Caution:

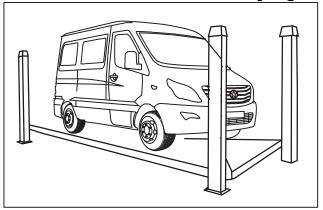
When install the ball joint into the lower swing arm, the mounting of the front axle is not allowed to exceed the specified value to avoid damage of the lower swing arm ball joint dust cover.


4. Reinstall the ball joint into the lower swing arm.



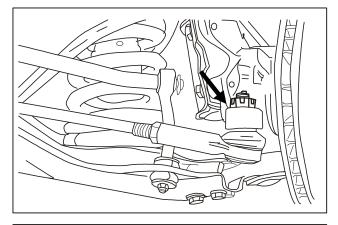
5. Reinstall the steering tie rod end onto the steering knuckle.



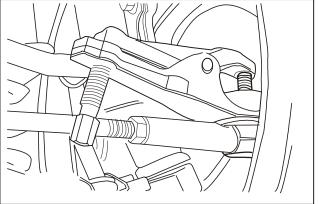

6. Reconnect the front anti-roll bar link with the lower swing arm.



- 7. Install wheels and lower the vehicle.
- 8. Tighten mounting nuts of the lower swing arm.
  - Tighten nuts and bolts between the lower swing arm and the cross rail.
  - Tighten nuts and bolts between the lower swing arm and the front suspension


#### **FAX Front Suspension**

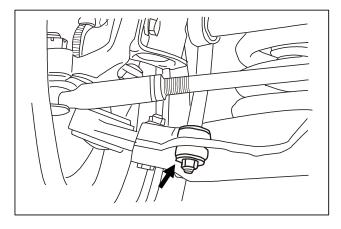
### Removal and Installation of Helical Spring




#### Removal

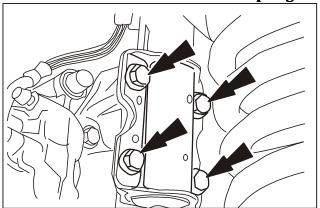
Loosen wheel nuts, lift the vehicle and remove wheels




2. Remove the fixed cotter pin and castle nuts between the steering tie rod end and the steering knuckle.



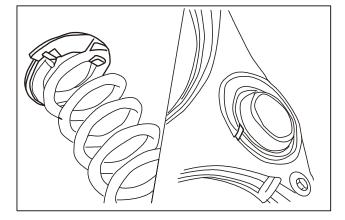
#### Note:


In the process of steering tie rod removal from the steering knuckle, wrap up ball seals with cloth as protection for them.

- 3. Remove the steering tie rod ball joint from the steering knuckle.
- 4. Support the lower swing arm.



5. At the mounting position, remove the front anti-roll bar link from the lower swing arm.

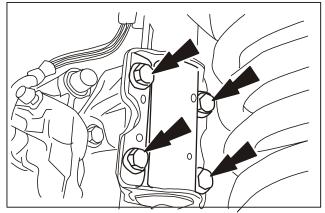

### Removal and Installation of Helical Spring



#### **Caution:**

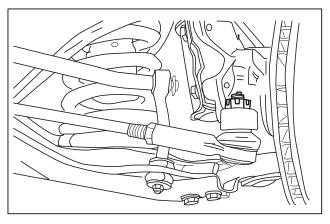
To avoid lower swing arm ball joint damage, tie the top of the lower swing arm together with the cross swing arm.

- Remove the shock absorber form the steering knuckle.
- Lower the lower swing arm assembly and remove the helical spring
- 8. Remove the gasket from the top of the spring.




#### Installation

Reinstall the helical spring.

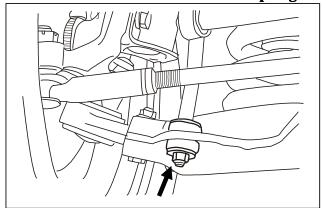

Ensure flowing operations:

- Correctly place the positioning opening of the
- Correctly combine the gasket positioning lug.
- The lower end of the spring is located at the groove of the lower swing arm.

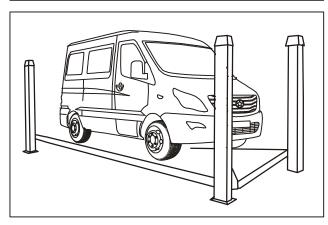


Reinstall the shock absorber onto the steering

Loosen the steering knuckle, lift the lower swing arm and align it with the shock absorber.

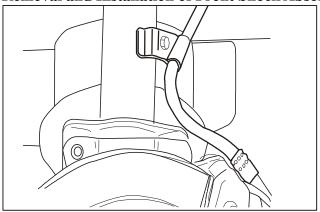



Retighten the steering tie rod with the steering knuckle.


Fix castle nuts with new cotter pins.

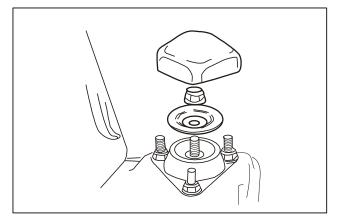
### **FAX Front Suspension**

## Removal and Installation of Helical Spring

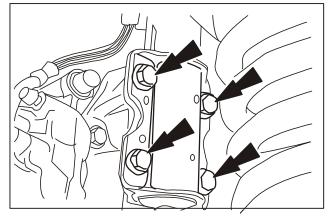



4. Connect the steering tie rod link with the lower swing arm.

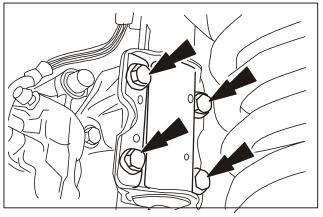



5. Install wheels and lower the vehicle.

#### Removal and Installation of Front Shock Absorber



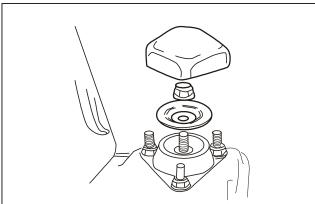

#### Removal


- 1. Loosen wheel nuts, lift the vehicle and remove wheels.
- 2. Remove the brake hose from the shock absorber.
- 3. Support the lower swing arm.
- 4. Support the wheel hub assembly.



- 5. Remove the shock absorber from the cab.
  - Remove the cap.
  - Remove nuts and washers for fastening the central shaft with an L-shaped allen wrench.
  - Remove the disc washer.




6. Remove the shock absorber form the steering knuckle.



#### Installation

- 7. Install the shock absorber onto the steering knuckle.
- 8. Apply some soap solution onto the inner side of the shock insulator and top of the shock absorber.
- 9. Install the shock absorber in place.

### Removal and Installation of Front Shock Absorber



- 10. Fix the shock absorber firmly from the cab.
  - Reinstall the disc washer.
  - Install nuts and washers for fastening the central shaft with an L-shaped allen wrench.
  - Install the cap.
- 11. Reinstall the brake hose onto the shock absorber.

12. Install wheels and lower the vehicle.

## Specification

List of Main Tightening Torques

| Name of Bolt (Nut)                 | Tightening Torque (N.m) |  |  |
|------------------------------------|-------------------------|--|--|
| Tightening torque for ball pin nut | 220~250                 |  |  |
| Connecting rod nut                 | 20~30                   |  |  |
| Ball pin mounting bolt             | 35~75                   |  |  |
| Front anti-roll bar clamping bolt  | 16~26                   |  |  |
| Front nut of the lower swing arm   | 180~245                 |  |  |
| Rear nut of the lower swing arm    | 180~245                 |  |  |

2. List of Front Suspension Wearing Parts

| Name                                     | Quantity          |  |  |
|------------------------------------------|-------------------|--|--|
| Lower swing arm bushing assembly         | 2                 |  |  |
| Front cross rail bushing assembly        | 2                 |  |  |
| Front wheel hub inner and outer bearings | 2 sets for each   |  |  |
| Left and right friction linings          | 2 pieces for each |  |  |

3. Maintenance Parameter Table of Front Suspension

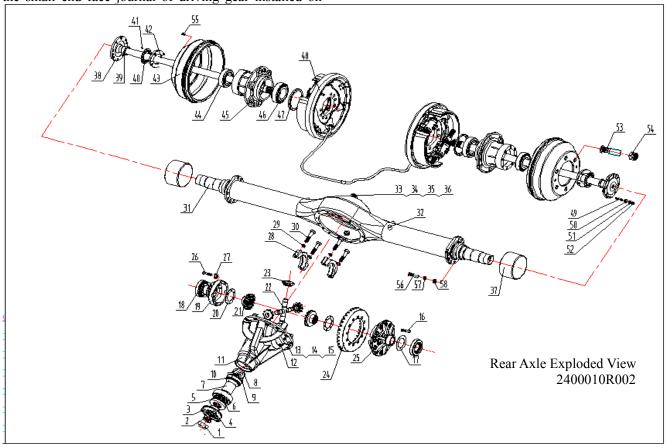
| Item                                          | Major Parameter         | Remarks                                        |
|-----------------------------------------------|-------------------------|------------------------------------------------|
| Axle load                                     | 1.54t                   |                                                |
| Wheel base                                    | 1760mm                  |                                                |
| Center distance of helical spring             | 1170mm                  |                                                |
| Brake type                                    | Disc brake              |                                                |
| Brake specification                           | R135mm,cylinder boreΦ45 |                                                |
| Camber angle of front wheel                   | 0.75±1°                 | Max.tolerance between the left and right 1.25° |
| Caster angle of kingpin                       | 1.5±1.5°                | Max.tolerance between the left and right 1°    |
| Inclination angle of kingpin                  | 12.75°±1°               | Max.tolerance between the left and right 1.25° |
| Toe-in                                        | 2~4mm                   |                                                |
| Wheel bolt                                    | 6-M16X1.5               |                                                |
| Standard pitch diameter of hub and wheel bolt | Ф180mm                  |                                                |

## **Rear Axle**

Applied models: SUNRAY products manufactured by JAC

| Subject                                                                       | Page |
|-------------------------------------------------------------------------------|------|
| Instruction and Operation                                                     |      |
| Rear axle  Explosive View of Rear Axle  Introduction of Rear Axle             | 134  |
| Diagnosis and Testing                                                         |      |
| Rear axle Operating principle Inspection and Confirmation Fault symptom Table |      |
| Removal/Installation                                                          |      |
| Rear axle                                                                     |      |
| Specification                                                                 |      |
| Specification                                                                 |      |

#### **Instruction and Operation**


#### Rear axle

Rear axles for two-wheel drive vehicles with dependant rear suspensions are adopted, mainly composed of final drive, differential and axle housing, which are the final stage transmission mechanism in vehicle power train. The final drive, consisting of driving gear and driven gear, functions for changing driving direction, reducing speed and increasing torque. Driving gear is connected with universal joint assembly of propeller shaft through driving gear flange at one end of spline, with its middle part supported by two conical bearings installed reversely for bearing axial force and tangential force and the small end face journal of driving gear installed on

cylinder roller bearing for bearing radial force only. The driven gear is fixed on the differential left housing by using a set of bolts.

Differential, for realizing different rotation speed of left and right wheels, is mainly composed of left and right housings of differential, spider, four planetary gears and two differential gears.

One end of rear axle shaft is connected with differential gear with spline and the flange at the other end is connected with wheel hub assembly with brake drum by using bolt.



### **RAX Rear Axle**

| 1. | Driving gear flange nut               | 2. | Driving gear flange flat gasket       | 3. | Driving gear flange                   | 4  | Flange dust cover                   |
|----|---------------------------------------|----|---------------------------------------|----|---------------------------------------|----|-------------------------------------|
| 5  | Driving gear oil seal                 | 6  | Tapered roller bearing                | 7  | Resilient spacer                      | 8  | Driving gear                        |
| 9  | Driving gear adjusting washer         | 10 | Tapered roller bearing                | 11 | Final drive housing                   | 12 | I-type hexagon nut                  |
| 13 | Spring washer                         | 14 | Final drive housing bolt (Single end) | 15 | Final drive housing bolt (Stud)       | 16 | Driven gear bolt                    |
| 17 | Differential bearing adjusting washer | 18 | Differential bearing                  | 19 | Differential housing (Right)          | 20 | Differential gear thrust washer     |
| 21 | Differential gear                     | 22 | Planetary gear shaft                  | 23 | Planetary gear                        | 24 | Driven gear                         |
| 25 | Differential housing (Left)           | 26 | Differential housing bolt             | 27 | Heavy spring washer                   | 28 | Bearing cap                         |
| 29 | Heavy spring washer                   | 30 | Bearing cap bolt                      | 31 | Rear axle housing assembly            | 32 | Normally-closed vent plug           |
| 33 | Oil filler plug                       | 34 | Oil filler plug sealing washer        | 35 | Hexagon plug with magnetic core       | 36 | Drain plug sealing washer           |
| 37 | Oil catcher                           | 38 | Axle shaft                            | 39 | Axle shaft oil seal                   | 40 | Lock washer                         |
| 41 | Nut and bolt components               | 42 | Bearing lock nut                      | 43 | Rear brake drum                       | 44 | Rear hub outer bearing              |
| 45 | Rear hub                              | 46 | Rear hub inner bearing                | 47 | Rear hub inner oil seal               | 48 | Brake assembly (Left/Right)         |
| 49 | Axle shaft bolt                       | 50 | Tapered sleeve                        | 51 | Spring washer                         | 52 | I-type hexagon nut with fine thread |
| 53 | Tire bolt (Left/Right)                | 54 | Outer bolt of tire (Left/Right)       | 55 | Cross recessed countersunk head screw | 56 | Brake bottom plate bolt             |
| 57 | Spring washer                         | 58 | I-type hexagon nut with fine thread   |    |                                       |    |                                     |

### **Instruction and Operation**

#### Application and maintenance

- Hyperbolic gear is of strict lubrication requirement and only the specified hyperbolic gear oil can be added instead of using ordinary gear oil or being mixed with ordinary gear oil; otherwise, early wear of tooth surface shall be caused, resulting in excessive wear of gear.
- As for bevel gear of rear axle final drive that is selected and adjusted before delivery, removal and adjustment are unnecessary under ordinary condition but are necessary in case of gear wear, backlash over the specified data or excessive end play of bearing, or parts damaged in need of replacement.
- 3. Clear earth and dust on the rear axle housing vent plug frequently. Remove and clean it during Stage-I maintenance in order to ensure air passage unobstructed, because the air passage obstruction shall lead to pressure increase inside the rear axle housing, giving rise to oil leak at driving gear oil seal and joint position. Please check the lube oil level inside housing also.
- Please change lube oil during the first Stage-II maintenance of new vehicle. Change the lube oil for rear axle housing after running for 40000Km or 24 months. Drain the gear oil out of rear axle housing, add kerosene for cleaning, add new lube oil of Grade (GL-5) 85W/90 after the kerosene is

- drained completely. No ordinary gear oil can be adopted. Change lube oil after running for 80000Km or 48 months and since then change oil every 50000Km of running. Check oil quality every four times of Stage-II maintenance; in case of any color change, lean, or other kinds of deterioration, please change with new oil.
- Check the wear condition of brake lining and brake drum. After new vehicle running for 40000Km or using 24 months, check the wear condition of brake lining and brake drum, measure the thickness of brake lining worn badly (standard value: 4.6mm, limit value: 1.0mm). When the thickness of brake lining is below the limit value, please replace the brake lining.
- 4. During Stage-III maintenance, you should remove rear axle, clean internal cavity and final drive assembly, and tighten every bolt and nut to the specified torque.

#### Precautions:

- Weight loaded on vehicle should be no more than the maximum allowable load.
- During running, please don't release the clutch abruptly to improve barrier overtaking ability of vehicle; otherwise, the gears may be damaged due to impact.

### **Diagnosis and Testing**

#### Inspection and maintenance

Inspection and maintenance for rear axle

- 1. Check parts by using special measuring apparatus or tools.
  - Determine if the part can be used or not on the basis of maintenance standard. Repair or replace damaged parts as required. If one part damaged in a pair of parts makes the clearance over the specified limit, please replace this part or replace it together with its matched part accordingly.
- 2. In order to prevent failure, please replace those parts still within but nearly approaching to the repair or wear limit before the limit is exceeded.
- Check carefully the appearance of each part by visual inspection or red pigment osmosis method. In case of any abnormality listed below existed on the outer surface, please repair or replace relevant parts accordingly.
  - Uneven wear
  - Eccentric wear
  - Scratch
  - Crack
  - Malformation
  - Failure or weakening (of spring)
  - Bending deformation
  - Abnormal noise (of bearing)
  - Looseness
  - Color change or sticking
  - Deterioration (of brake lining)
- 4. All rubber parts, such as O-rings, oil seals, washers and etc. should be discarded after removal instead of being applied again.
- 5. In case of abnormal noise or vibration in drive system, please measure the total clearance of rear axle and then determine whether to remove final drive assembly or not.

Park the vehicle on flat ground with transmission and transfer case placed at neutral position; have the vehicle jacked up after the parking brake lever is applied. Turn the flange clockwise to the end and mark in pair properly on the flange dust cover and final drive housing; turn the flange counterclockwise to the end to measure the distance between two marks (limit clearance: 6mm); if the clearance is beyond limit, it is indicated excessive gear clearance of rear axle, so please make proper adjustment after removal.

Abnormal noise is a kind of noise, mainly referring to impact sound or shrieking occurs under different conditions (such as speed, road condition), some of which shall disappear gradually after running-in while some shall increase constantly. The latter situation is mainly caused by improper assembly or adjustment. If the parts are normal, the abnormal noise can generally be eliminated by adjusting the assembly clearance of parts.

6. Brake failed to return means the brake is locked and cannot be applied again after braking, which can be solved by adjusting the brake assembly adjusting clearance.

Installation and adjustment of rear axle assembly

- 1. Install the wheel hub assembly with brake drum in the reverse order of removal, during which the adjustment listed below should be performed:
  - Adjustment of rear hub bearing clearance:
  - Tighten the bearing nut until the brake drum cannot or hardly move, loosen the bearing nut a little by  $1/6 \sim 1/8$  circle and rotate the brake drum; the tangential force measured at tire bolt without contact between brake lining and brake drum should be  $2.98 \sim 4.97$  N.m or the brake drum can be rotated by hand freely.
- 2. Adjustment of rear brake clearance:
  - This brake is servo brake whose brake clearance is adjusted automatically instead of manually.

Please observe the above mentioned procedures and requirements to perform actual maintenance.

## **Diagnosis and Testing**

## Installation and adjustment of rear axle assembly

Please make adjustment based on the flowing requirements after the final drive assembly is installed:

- 1. Preloading of driving gear inner/outer bearing:
  - During the assembly of final drive, the tapered roller bearing should be of certain preload, which means to eliminate the bearing clearance and also apply certain preload, aiming to reduce the axial displacement caused by axial force generated in the course of bevel gearing and improve the bearing rigidity of axle and thus to ensure normal meshing of bevel gear pair. However, please avoid excessive preloading, for it shall result in low drive efficiency and acceleration of bearing wear.
  - Adjustment of driving gear bearing preload: Install the driving gear oil seal with the tightening torque of driving gear flange nut and ensure proper driving gear bearing preload when the driving gear is not meshed with driven gear. Add or reduce adjusting washers of driving gear bearing between inner and outer bearings of driving gear to realize the preload adjustment. The preloading torque shall increase with the reduction of adjusting washers but decease with the adding of adjusting washers.
- 2. Adjustment of differential bearing preload:
  - Adjustment of differential bearing: Adjust the differential bearing to gain proper preload, with 0.05~0.08mm interference on both sides. Without the meshing between driving and driven gears, apply gear oil onto rotary part of

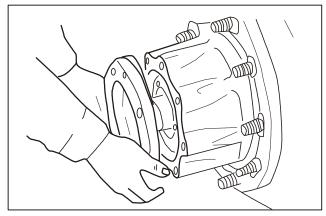
- bearing. The friction torque at starting should be  $1.764 \sim 2.058$ N.m. No axial runout of driven gear occurs after the adjustment.
- Adjustment of differential gear clearance:
   Measure the differential gear backlash at the planetary gear with dial indicator.
   Attention: Measure at more than three points.
   Standard value: 0 ~ 0.15mm; limit value: 0.3mm
- 3. Adjustment of driving/driven gear backlash and meshing trail
  - Adjustment of driving/driven gear backlash:
     Please refer to table for normal meshing clearance and backlash of driving and driven gears. During the adjustment of backlash, perform measurement at four positions evenly distributed along the periphery of driven gear. The measuring head of dial indicator should be vertical to the surface of measured points.
  - Adjustment of driving/driven gear meshing trail:
    - Apply red lead powder onto the driving gear teeth and then rotate the driving and driven gears repeatedly, so there is red trail on both working surfaces of driven gear. If the trail on positive/reverse rotation working surface is located at the medium tooth height nearer to the small end as shown in the table below, the meshing trail position should be adjusted through adjustment of driving gear adjusting washer and differential bearing adjusting washer

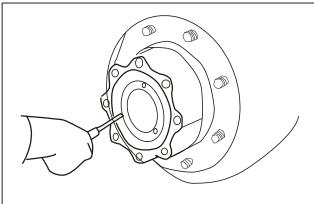
-138-

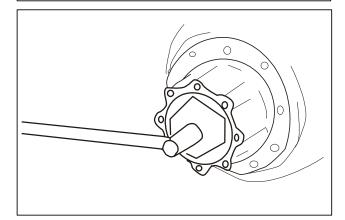
## Adjustment of meshing marks:

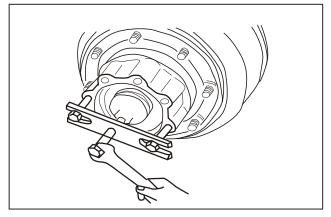
| Adjustment of meshing marks.                |                                          | T                           |                                                                                                                         |
|---------------------------------------------|------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Contact status of driven gear working flank | Causes                                   | Adjusting method adjustment | A-Tooth surface contact area                                                                                            |
|                                             |                                          | B-Backlash adjustm          | ent                                                                                                                     |
| Deflected to addendum                       | High driving gear, driven gear too far   | B                           | Driven gear away from driving gear     Driving gear close to driven gear to obtain correct backlash (adding washers)    |
|                                             | High driving gear, driven gear too close | B                           | Driven gear close to driving gear     Driving gear away from driven gear to obtain correct backlash (reducing washers)  |
| Deflected to dedendum                       |                                          | ·                           |                                                                                                                         |
|                                             | High driven gear, driving gear too close | A B                         | Driven gear away from driving gear     Driving gear away from driven gear to obtain correct backlash (reducing washers) |
| Deflected to small end                      |                                          |                             |                                                                                                                         |
|                                             | High driven gear, driving gear too far   | A B                         | Driven gear close to driving gear     Driving gear close to driven gear to obtain correct backlash (adding washers)     |
| Deflected to big end                        |                                          | •                           |                                                                                                                         |

## **RAX Rear Axle**


## **Diagnosis and Testing**


## **Troubleshooting**


| Fault                    | Causes                                                                                  | Solutions/Preventive Measures                          |  |
|--------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|--|
|                          | Excessive preload for hub bearing                                                       | Adjust the preload.                                    |  |
| Hub bearing sluggish     | Bearing lack of lubricant or adoption of improper grease                                | Add or change grease.                                  |  |
|                          | Bearing contaminated by dust                                                            | Clean and add grease.                                  |  |
| Hub bearing sluggish     | Poor camshaft lubrication or adjusting arm failed to return                             | Add grease or correct faulty parts.                    |  |
| Wheel sticking           | Return spring fracture or fatigue for brake shoe or air chamber                         | Replace faulty parts.                                  |  |
|                          | Improper differential gear clearance                                                    | Replace washer or gear.                                |  |
|                          | Excessive clearance between driving and driven gears                                    | Replace washer or gear.                                |  |
| Abnormal driving sound   | Too small driving gear bearing preload                                                  | Adjust preload.                                        |  |
| Sound                    | Abrasion or damage of differential gear, planetary gear, spider thrust washers and etc. | Correct or replace faulty parts.                       |  |
|                          | Too low oil level                                                                       | Add lube oil.                                          |  |
|                          | Wear, looseness or damage of oil seal                                                   | Replace oil seal.                                      |  |
|                          | Looseness of final drive fastening bolt or damage of sealant                            | Tighten bolt or reapply sealant.                       |  |
| Lube oil leak            | Looseness of bearing support fastening bolt                                             | Tighten bolt to the specified torque.                  |  |
|                          | Looseness of drain plug or damage of lining                                             | Tighten plug or replace lining.                        |  |
|                          | Axle housing deformation due to overloading                                             | Correct or replace axle housing.                       |  |
|                          | Vent plug blockage or damage                                                            | Clean or replace vent plug.                            |  |
|                          | Overheating or deterioration of brake lining                                            | Replace brake lining.                                  |  |
|                          | Improper fitting of friction lining                                                     | Correct the fitting position of brake lining.          |  |
| Insufficient brake force | Brake drum flooded by water                                                             | Depress the pedal slightly during running to drawater. |  |
|                          | Grease on contact surface between brake lining or brake drum                            | Clear grease or replace brake lining.                  |  |
|                          | Rivet extruded due to wear of brake lining                                              | Replace brake lining.                                  |  |
|                          | Hardening or deterioration of brake lining surface                                      | Replace brake lining.                                  |  |
|                          | Uneven wear or insecure installation of brake drum                                      | Correct brake drum or tighten bolt.                    |  |
| Abnormal braking noise   | Untight contact between brake shoe and brake lining                                     | Replace rivet.                                         |  |
|                          | Looseness of brake shoe fixed pin                                                       | Tighten the lock screw of fixed pin.                   |  |
|                          | Hub bearing wear                                                                        | Replace hub bearing.                                   |  |
|                          | Deformation of brake drum                                                               | Replace brake drum.                                    |  |
|                          | Improper installation of brake shoe or damage of return spring                          | Tighten fixed pin lock screw or replace return spring. |  |
|                          | Greasy or deteriorated brake lining                                                     | Clean or replace brake lining.                         |  |
|                          | Damage of brake bottom plate                                                            | Replace brake bottom plate.                            |  |


## Removal/Installation

#### Rear axle









## Removal of rear axle

- 1. Block the wheel front and back with anchor blocks.
- 2. Loosen outside wheel nut.
- 3. Jack up the rear axle.

#### Removal of axle shaft

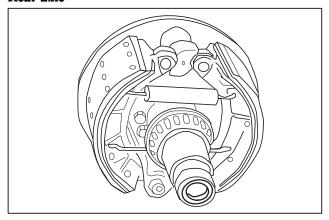
- 1. Loosen axle shaft nut.
- 2. Remove axle shaft. If it is difficult to remove, please use copper hammer to knock on the axle shaft flange gently until it becomes loose.

## Disassembly of wheel hub

1. Remove lock washer.

2. Remove hub bearing lock nut.

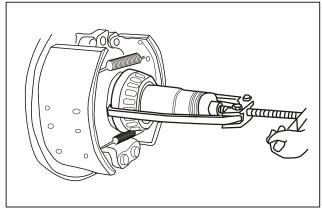
#### Attention:


Remove adjusting nut by using 7757 adjusting nut wrench for hub bearing.

3. Remove hub assembly.

#### Attention:

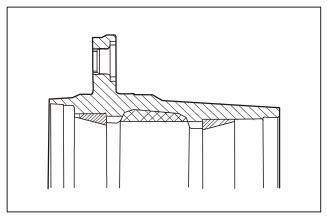
Please apply the rear hub puller.


#### Rear axle

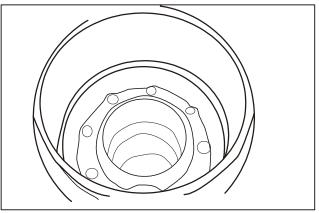


4. Remove axle shaft oil seal from the end of axle shaft sleeve.

#### Note:

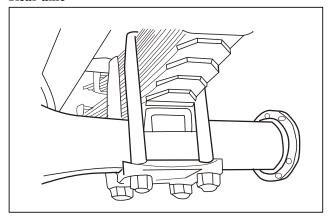

During assembly, apply lithium base grease onto the outer ring of axle shaft oil seal and then press it into rear hub.

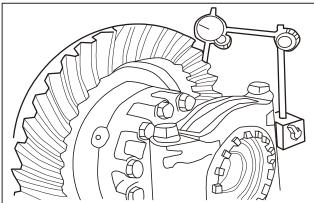


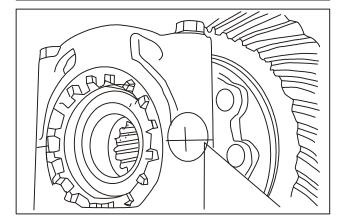

5. Disassemble together with the inner ring of inner bearing.

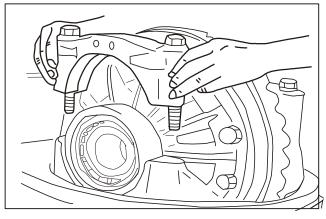
#### Note:

During assembly, oil seal bushing shall be pressed into axle shaft sleeve by using special pressing die after being heated.





- 6. Remove oil seal from hub assembly.
- 7. Remove outer ring of inner/outer bearing.





8. Remove brake drum.

#### Rear axle







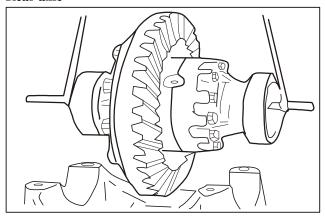


Disassembly of axle housing and final drive

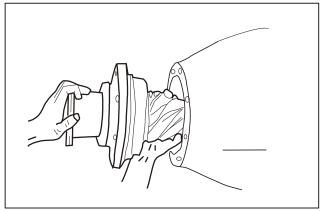
- 1) Drain gear oil from final drive.
- Disconnect the connection between propeller shaft and final drive.
- 3) Remove final drive assembly by using jack.
- 4) Remove hose, steel tube and electric wiring harness.
- 5) Remove brake assembly.
- 6) Remove rear axle.
- Jack up the axle housing.
- Remove U-bolt and upper/lower back plates, lower the jack and pull out the axle housing.

Disassembly of final drive assembly

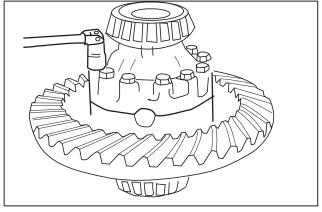
1. Before assembly, measure and record backlash of driving/driven gear.


#### Attention:

After adjustment, check gear meshing status.


2. Make assembly marks on bearing cap and housing. The removed bearing cap and final drive housing should be placed separately at left and right side in pair, in order to avoid confusion.

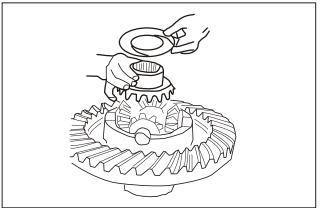
3. Remove bearing cap and bolt.


## Rear axle

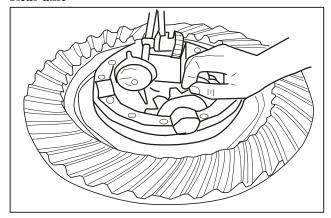


4. Remove differential assembly.




5. Remove driving gear assembly by using puller and remove adjusting washer at the same time.

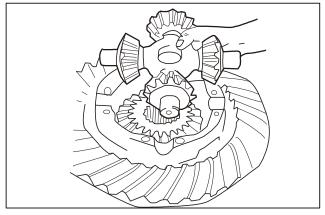



Disassembly of differential assembly

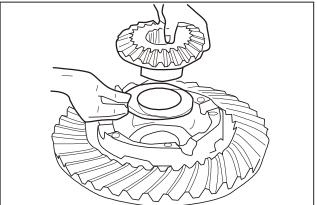
Remove differential right housing.

2. Remove differential gear and bearing washer.

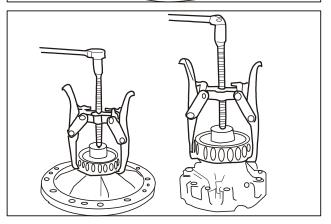



#### Rear axle



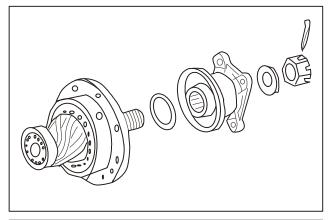

3. Measure and record planetary gear backlash.

## Attention:


Please hold the planetary gear spider during backlash measurement.

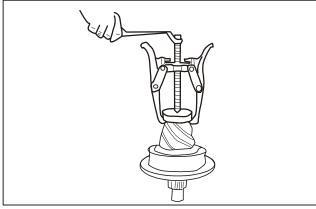


4. Remove planetary gear spider assembly and remove planetary gear and bearing washer from spider.

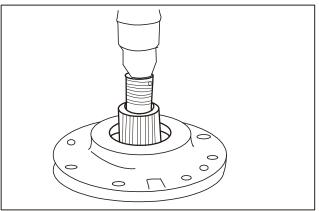



- 5. Take out the differential gear and its thrust washer.
- 6. Remove driven gear

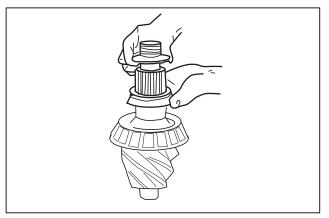



7. Remove differential bearing from differential housing.

## Rear axle

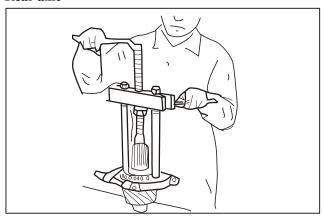



## Removal of driving gear

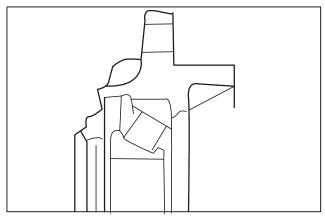

1. Remove driving gear flange nut.



2. Remove retaining ring for shaft and remove driving gear guide bearing.




3. Extrude the driving gear out of bearing support.




4. Remove adjusting washer and bearing spacer.

## Rear axle



5. Remove bearing from driving gear.



- 6. Remove oil seal from bearing support.
- 7. Remove inner and outer rings of bearing.

## Inspection during removal

- Check driving gear flange for wear or damage.
- Check bearing for wear or color change.
- Check gear for crack.
- Check driving and driven gears for wear or crack.
- Check differential gear, planetary gear and planetary gear shaft for wear or crack.
- Check differential gear spline for wear or damage.

## **RAX Rear Axle**

## **Specification**

## 1. Structure type of rear axle

| Item                    | Specification                              |
|-------------------------|--------------------------------------------|
| Axle housing type       | Integral press-welding axle housing        |
| Axle shaft support type | Full-floating type                         |
| Reduction gear type     | Single-stage hyperboloid spiral bevel gear |
| Planetary gear type     | 2/4 planetary gear                         |

## 2. Sealant and adhesive for rear axle

| Item                                                                        | Specified Sealant and Adhesive    |
|-----------------------------------------------------------------------------|-----------------------------------|
| Fitting surface between rear axle housing assembly and final drive assembly | 1587 Silicon rubber               |
| Driven gear bolt                                                            | GY-340 Anaerobic adhesive         |
| Differential housing bolt                                                   | GY-340 Anaerobic adhesive         |
| Final drive housing bolt                                                    | Machinery sealant 605             |
| Internal cavity of hub                                                      | Multi-purpose lithium base grease |
| Parts installation of final drive assembly                                  | 10# Engine oil                    |

## 3. Rear axle wear parts list

| Name                       | Qty.                                     |
|----------------------------|------------------------------------------|
| Driving gear oil seal      | 1                                        |
| Rear hub inner oil seal    | 2                                        |
| Rear hub inner bearing     | 2                                        |
| Rear hub outer bearing     | 2                                        |
| Driving gear inner bearing | 1                                        |
| Driving gear outer bearing | 1                                        |
| Axle shaft oil seal        | 2                                        |
| Driving gear nut           | 1                                        |
| Differential bearing       | 2                                        |
| Left/right friction        | Respectively 2 pieces for left and right |

## 4. Rear axle maintenance parameter list

| Item                                                                                  | Value                                              |
|---------------------------------------------------------------------------------------|----------------------------------------------------|
| Clearance between driving and driven gears                                            | 0.15~0.20                                          |
| Clearance between planetary gear and differential gear                                | 0∼0.15 mm                                          |
| Rotating torque of driving gear                                                       | Without oil seal; apply gear oil 18~21Kgf.cm       |
| Rear axle gear oil                                                                    | Hyperbolic gear oil: (GL-5) 85W/90; capacity: 2.5L |
| Oil applied onto outer lips and lips of axle shaft oil seal and driving gear oil seal | ZL-2 GB5671-85, multi-purpose lithium base grease  |
| Clearance between brake lining and brake drum                                         | 0.4~0.7 mm                                         |

## 5. Main tightening torque list

| Bolt (nut) name                    | R101(N.m)   |
|------------------------------------|-------------|
| Driving gear nut                   | 245~294     |
| Bolt - driven gear                 | 114.6~140.1 |
| Differential housing bolt          | 68.6~88.2   |
| Final drive housing bolt           | 65~93       |
| Bearing cap bolt                   | 132.3~171.5 |
| Rear brake bottom plate nut        | 50~60       |
| Axle shaft bolt                    | 46-80       |
| Small hexagon bolt for lock washer | 6~12        |
| Oil filler plug                    | 44.1~53.9   |
| Drain plug                         | 44.1~53.9   |

## Specification

| Item                                                                | Wear limit    |
|---------------------------------------------------------------------|---------------|
| Wear of rear axle leaf spring retainer location hole                | 1mm           |
| Outer bearing journal radial runout of left/right axle shaft sleeve | 0.1mm         |
| Middle unprocessed surface of axle shaft                            | Radial runout |
|                                                                     | 1.5mm         |
| End face runout of joint surface between hub and axle shaft flange  | 0.15mm        |

# **Steering System**

Applied models: SUNRAY products manufactured by JAC

| Subject                                     | Page |
|---------------------------------------------|------|
| Instruction and Operation                   |      |
| Steering System                             | 152  |
| Explosive View of Steering System.          | 152  |
| Introduction of Steering System             |      |
| Diagnosis and Testing                       |      |
| Steering System Operating Principle         | 154  |
| Operating Principle                         | 155  |
| Inspection and confirmation                 |      |
| Fault Symptom Table                         | 159  |
| Removal and Installation                    |      |
| Removal and Installation of Steering System | 164  |
| Removal and Installation of steering wheel. | 167  |

## **Instruction and Operation**

## **Steering System**

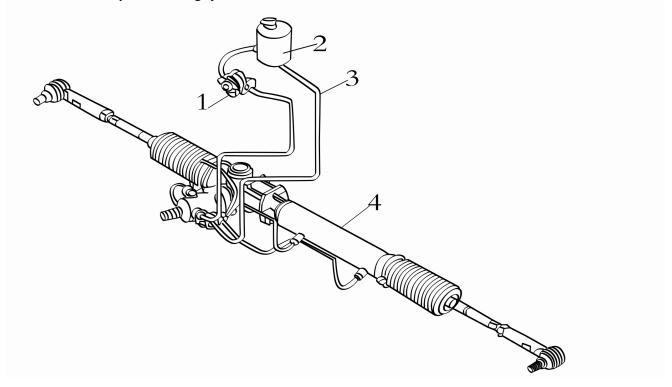
Summary of Power Steering System

With the purpose of reducing the working intensity of drivers, the power steering system is firstly installed on heavy-duty vehicles. However, with the increase of high speed demand and load on the steering wheel, the power steering has become necessary and its application range has been widened. The advantages of the power steering system are as follows:

It reduces the steering force applied on the steering wheel, especially in the case of static steering and low-speed steering with large steering angle, the assistance is obvious.

It enhances the steering sensitivity.

It reduces the impact on the steering wheel in the case of ground kick back.


In the case of certain tire burst, it may prevent the wheel from swerve thus it improves driving safety.

It enables the steering wheels to bear larger loads and increase the freedom of general arrangement.

The power steering system consists of:

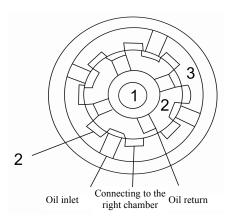
Vehicle power steering system consists of the power steering gear, power steering pump, power steering oil reservoir and hydraulic line. The power steering gear is the actuator of the steering system hydraulic booster; the steering oil pump associates with the engine, playing a role in hydraulic power supply for the system; the steering oil reservoir possesses the function of storing, cooling and filtering of steering oil.

The structure of the power steering system is shown as follows:



Structural Drawing of Power Steering System

## **Instruction and Operation**


## Structural Brief Introduction of Rack-and-pinion Power Steering Gear:

The rack-and-pinion power steering gear consists of the control valve, mechanical steering gear and power steering pump. The control valve is a structurally advanced and high sensitivity rotary valve and the mechanical steering gear is a rack-and-pinion one.

Control Valve:

As is shown in the under figure: As a normally open rotary valve, the control valve consists of 1 torsion bar, 2 input shaft, 3 valve pocket and other parts and inputs the hydraulic oil into two oil chambers on the left and right through the pre-open clearance between abovementioned 2 input shaft and 3 valve pocket.

Structural Drawing of Control Valve



1. Torsion bar 2.Input shaft 3.Valve pocket Mechanical Steering Part:

The mechanical steering part is a rack-and-pinion one, consisting of three parts as the gear shaft, rack piston assembly and steering link.

Power Steering Pump:

The power steering pump has a metal casing and the internal rack piston of the pump divides it into two oil chambers on the left and right which are connected to two oil ports of the control valve.

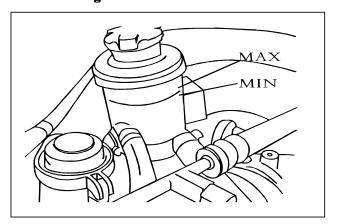
Operating Principle

Intermediate Position:

In the case of vehicle straight running (without any movement of the steering wheel), the hydraulic oil supplied by the oil pump goes into the oil inlet and then goes through the pre-open clearance of the rotary valve. At this moment, because there is no movement of the rotary valve, the hydraulic oil returns to the oil reservoir and the oil pressures in the two working chambers of the steering gear are the same that no assistance is generated.

In the Process of Steering:

In the case of steering wheel turning, there will be changes of the valve slot clearance between the valve pocket and the input shaft and there will be oil pressure differential formed by the hydraulic oil flowing into these two working chambers. The oil pressure differential acts on the piston, pushes it to overcome the steering resistance and generate displacement in order to drive the steering link assembly to move and realize the power-assisted steering.


In the Process of Return:

After the completion of steering, the force on the steering wheel disappears. With the elastic force effect of the torsion bar, the input shaft returns to a relatively equilibrium position with the valve pocket and the oil pressure differential between the two working chambers of the steering gear disappears correspondingly. Then, with the self-aligning torque effect of the front wheel, the vehicle will return to the position of straight running until the position has been reached.

Road Feel Effect:

The road feel effect is the ability to produce the steering feel. When there is a force applied on the steering wheel by the driver, the force acts on the torsion bar of the steering gear simultaneously to make the torsion bar twisted and deformed. However, the deformation depends on the steering resistance of wheels. With the increase of the steering resistance, the deformation increases. Therefore, the driver may determine the changes of the steering resistance according to the force he applies on the steering wheel in order to realize the "road feel "effect.

#### **Power Steering Oil**



### **Inspection of Fluid Level:**

- 1. The fluid level inspection should be carried out in the case of engine flameout.
- 2. Confirm that the fluid level is between MIN and MAX.

#### **Notice:**

The fluid level should not exceed the maximum value (MAX mark) to avoid power steering oil leakage.

Recommended Oil: ATF-III

3. Do not reuse the drained power steering oil. Inspection for Steering Oil Leakage Inspect the hydraulic joint for the existence of oil leakage, cracks, damages, looseness and wears.

- ① Start the engine and make the oil temperature in the power steering oil reservoir to reach  $50 \sim 80^{\circ}$ C ( $122 \sim 176^{\circ}$ F) with the engine idling.
- ② Make full lock turns of the steering wheel to the left and right for several times.
- ③ Hold the steering wheel in the locking point position for 5 seconds and inspect carefully for the oil leakage at the same time.
- ④ In the case of oil leakage at the joint, loosen oil pipe nuts and retighten them with the specified torque.

Tightening Torque: 57~63N.m

#### **Notice:**

Do not excessively tighten the joint nuts to avoid O-ring, gasket and joint damages.

- ⑤ In the case of oil leakage from the power steering pump, please inspect the power steering pump.
- 6 Inspect the steering gear dust boot for oil agglutination.

### Air Bleeding of Hydraulic System

In the case of incomplete air bleeding, there may be the following symptoms:

- Bubbles in the power steering oil reservoir
- Abnormal noise in the power steering pump

#### **Notice:**

In the operation of power steering pump, there may be liquid noise which does not affect system performance or durability.

1. Turn off the engine and make full lock turns of the steering wheel to the left and right for several times.

#### **Notice:**

Fill the power steering oil reservoir with oil and turn the steering wheel to make the fluid level to or above the MIN mark.

- 2. Start the engine, hold the steering wheel in the locking point position for 3 seconds with the engine idling and inspect for oil leakage.
- 3. Repeat Step 2) for several times with an interval of 3 seconds.

#### **Notice:**

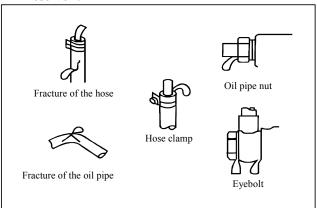
When the steering wheel is in the locking point position, do not hold it for more than 10 seconds to avoid power steering pump damage.

- 4. Inspect the oil for bubbles and white foreign matters.
- 5. In the case of incomplete bubble or white foreign matter elimination, please turn off the engine and repeat Step 2) ~3) after complete elimination.
- 6. Turn off the engine and inspect the fluid level.

#### Notice:

Inspect whether the fluid level of the power steering oil reservoir changes in the range of 5mm in the cases of engine operation and engine flameout.

If the fluid level is not in the abovementioned range, repeat air bleeding for the system.


Change of Power Steering Oil:

1. Lift front wheels of the vehicle.

#### Notice:

The front wheels should be fixed with a rigid support.

2. Remove the oil return pipe from the power steering oil reservoir and block the oil return port of the oil reservoir.



- 3. Connect the oil return pipe with a general oil pipe and drain the power steering oil to a vessel.
- 4. Start the engine, turn the steering wheel to the left and right and drain the power steering oil.

#### Notice:

It is necessary to refill the power steering oil and

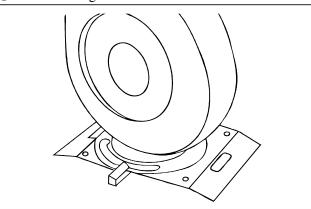
keep the fluid level between MIN and MAX to avoid dry friction of the power steering pump. Excessively lone engine operation is not appropriate. In the case of decreasing fluid level of

appropriate. In the case of decreasing fluid level of the steering oil to MIN, it is necessary to turn off the engine.

- 5. Connect the oil return pipe and refill with new power steering oil to the standard fluid level.
- 6. In the case of unsatisfactory power steering oil quality, repeat Step 2) ~5).

#### **Notice:**

After oil change, carry out system air bleeding. Inspect Pulley Tension of the Power Steering Pump:


Apply a force of 100N in the upward center of the V-belt between the power steering pump and the engine crankshaft, the deflection of the belt shall in the range of  $11.7 \sim 15.3$ mm.In the case of out-of-range deflection, loosen adjusting bolts of the tension pulley and adjust the belt tension to make it qualified.

## **Steering Wheel**

On-car Inspection:

- 1. Inspection of Installation
- ① Inspect the installation of the steering gear assembly, front suspension, axle and steering column.
- ② Inspect the steering wheel for its movement clearance in the cases of steering wheel upward and downward, leftward and right ward and axial movements.
- ③ Inspect mounting nuts and bolts of the steering gear assembly for their looseness.
- 2. Inspection of Steering Wheel Free Play
- Turn the steering wheel to make the front wheels in the straight-ahead position, start the engine and then turn the steering wheel slightly to the left or right until front wheel movement. At this moment, measure the displacement of the steering wheel on its outside edge.
  - Free Play of the Steering Wheel: 30mm
- When the measured value exceeds the standard value, inspect the installation of every steering column connector and the steering mechanism. Carry out correction or part replacement according to actual situations.
- ③ If the free play exceeds 30mm, turn off the engine, keep front wheels in straight running and apply a force of 5N on the steering wheel circle for the inspection of the free play. The free play should not exceed 10mm. If the free play exceeds 10mm, inspect whether the steering gear is qualified.
- ④ If the free play is still a limit value, make the steering wheel to the intermediate position, apply a force of 4±0.6N on the steering wheel circle and then inspect the free play.

- Standard Value: <15mm
- (5) If the free play exceeds the standard value, remove the steering gear and inspect the total torque of the pinion.
- 3. Inspection of Intermediate Position
- ① Confirm the proper installation of the steering gear assembly, steering column and steering wheel.
- ② After wheel alignment, carry out intermediate position inspection. Please refer to "Inspection of Front Wheel Alignment".
- ③ Park the vehicle straight-ahead and confirm that the steering wheel is in the intermediate position.
- 4 Loosen lock nuts of the tie rod and carry out fine tuning of the adjusting lever by turning it to the left and right to confirm whether the steering wheel is in the intermediate position.
- 4. Inspection of Steering Wheel Static Steering Force
- ① Park the vehicle on a horizontal and dry ground and pull up the parking brake lever.
- ② Start the engine.



Keep the engine operating and rise the temperature of the power steering oil to its working temperature.

#### Notice:

The tire pressure should in the range of its standard value

- 4 Turn the steering wheel for 360° from its intermediate position, inspect the steering force of the steering wheel for its obvious fluctuation.

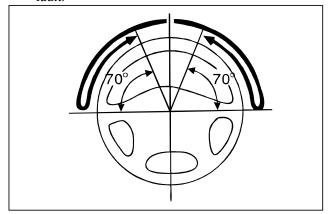
  Steering Force of the Steering Wheel: < 34N

  Permitted Fluctuation: < 5.9N
- If the steering force of the steering wheel exceeds the specified value, please inspect or adjust the following items:
  - a. Damages of lower swing arm and ball joint of the steering tie rod
  - b. Gear preload of the steering gear and angular moment of the steering tie rod ball joint.
  - c. Torque of the lower swing arm ball joint
- 5. Inspection of Steering Wheel Self-return

#### Notice:

In the case of slow or quick turn, confirm whether there are differences of the acting force and

### **PS PowerSteering System**


returnability between the left and right side.

It is necessary to carry out this step on safe ground and under safe traffic condition and pay attention to your safety.

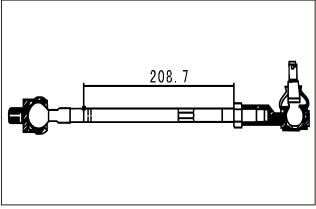
① Turn the steering wheel for 90°, drive with the speed of 35Km/h, maintain the state for several seconds and then release the steering wheel, the returnability should be 70% at least.

#### **Notice:**

In the case of rapid turning of the steering wheel, there may be a transient feel of "arduous" due to insufficient oil supply during idling and it is not a fault.



- 6. Inspection of Front Wheel Steering Angle
- ① After the inspection of front wheel toe-in, inspect the steering angle of the front wheel. Place the front wheel on the steering angle measuring device (front wheel alignment steering wheel) and inspect the maximum steering angles of inner and outer wheels on the left and right.


Inner Wheel:

Outer Wheel:

② In the case of engine idling, make full lock turns of the steering wheel to the left and right to measure the steering angle.

If the measured value is not in the standard range, adjust the tie rod.

The adjustment of the steering angle is as follows: When the steering angle exceeds the standard value, loosen lock nuts of the left and right steering tie rods, rotate the left and right steering tie rods respectively with a wrench to adjust the steering angles to the standard values and then tighten the lock nuts with a tightening torque of  $45 \sim 55 \text{N.m.}$  In the length adjustments of the left and right steering tie rods (length shown in the following figure), pay attention to adjust them to the same value for the left and right steering tie rods (208.7mm,in reversed directions)



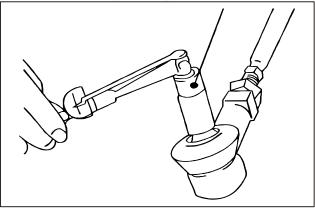
#### Notice:

When the steering angle of the inner wheel exceeds the standard value, adjust the tie rod at this side to rotate outward and the steering angle of the inner wheel will increase; When the steering angle of the outer wheel exceeds the standard value, adjust the tie rod at this side to rotate outward and the steering angle of the outer wheel will decrease.

#### **Notice:**

The adjustment of the toe-in is interrelated with those of the wheel alignment parameters and the steering angle.

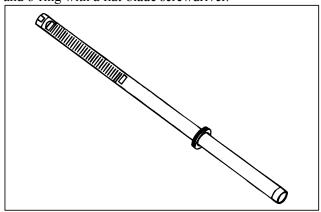
- 7. Inspection of Ball Joint Dust Boot
- ① Press the dust boot with hand to inspect it for crack or damage.
- ② In the case of cracked or damaged dust boot, it is necessary to replace the tie rod ball joint.


#### **Notice:**

In the case of cracked or damaged dust boot, the ball joint may be damaged jointly.

- 8. Inspection for Angular Moment of Steering Tie Rod Ball Joint
- ① Swing the tie rod rapidly for 10 times.
- ② Measure the swing resistance of the tie rod with a spring scale.

Standard value: 2~5 N.m


If the measured value is not in the range of standard value, please replace it.



Inspection and Replacement of Steering Mechanism Parts:

Inspection of Rack Piston Assembly:

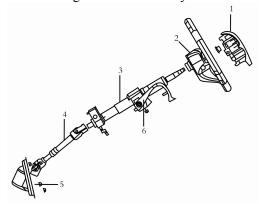
Inspect the straightness accuracy for the intermediate rack of the rack piston assembly and the maximum deviation is 0.15mm. Inspect the tooth face for exfoliation and impression, verify whether there are cracks or damages on the operating surface of the tooth and inspect the back of the tooth for wear and damage. If necessary, replace the rack piston assembly. Inspect the piston ring and o-ring in the piston for damages. In the case of defects in them, it is necessary to carry out replacement. In the replacement, remove the piston ring and o-ring with a flat-blade screwdriver.



#### Notice:

Pay attention not to damage the rack. Apply some power steering hydraulic oil on the new o-ring and install the o-ring.

#### **Notice:**


Pay attention not to expand the piston ring excessively. Install the new piston ring onto the piston of the rack piston assembly, apply some power steering hydraulic oil on the new piston ring and press it out downward with fingers.

Inspection of Valve Assembly

Inspect the gear shaft tooth surface of the spool assembly for cracks, damages, exfoliations or deformations. Inspect it for its flexible rotation, in the case of any defects, replace the spool assembly.

Steering Column

Figure for Steering Column Assembly:



Schematic Diagram of Steering Column Assembly

- 1. Horn hood with airbag
- 2. Steering wheel
- 3. Steering column assembly
- 4. Connecting shaft with universal joint
- 5. Protective cover
- 6. Free upward and downward adjustment and locking device of the steering wheel

Inspection of Steering Column:

- ① Inspect the steering column for cracks, deformations or other damages, in the case of such defects, carry out relevant replacement.
- 2 Inspect the spline of steering column shaft for wear or broken tooth, in the case of such defects, carry out relevant replacement.

Original Figure of Power-assisted Steering Gear Box



#### **Notice:**

In the case of separation of the steering column and steering gear assembly, rotation of steering wheel may lead to clock spring damage. Therefore, it is necessary to fix the steering wheel to prevent it from rotation.

① Power-assisted Steering Gear Box

Inspect the oil pipe joint for looseness and damages.

Inspect the fixed bush of the power steering gear for wears or other damages.

Inspect the rack and pinion for their smooth operations and wears.

Inspect the gear preload.

- a. Rotate the gear with the speed of 4~6 seconds per turn and measure the gear preload in the whole travel range of the rack.
  - Standard value: 0.6~1.3N.m
- b. If the measured value exceeds the specified value, adjust the plug firstly and then reinspect the gear preload.
- c. If the specified gear preload can not achieved after plug adjustment, inspect or replace the plug assembly.

## ② Steering Tie Rod

Inspect the angular moment of steering tie rod.

- a. Swing the tie rod rapidly for 10 times.
- b. Measure the swing resistance of the tie rod with a spring scale.

Standard value: 2~5 N.m

If the measured value is not in the range of standard value, please replace it.

#### **Notice:**

In the case of no excessive clearance of the tie rod under the slow swing condition, even though the measured value is lower than the standard value, the tie rod can be applicable. If the measured value is lower than 4.3N.m., it

### **PS PowerSteering System**

is necessary to replace the tie rod.

③ Tie Rod Dust Boot

Inspect the dust boot for damage, in the case of such defect, please carry out replacement.

Inspect the dust boot for its correct mounting position.

Post-installation Inspection

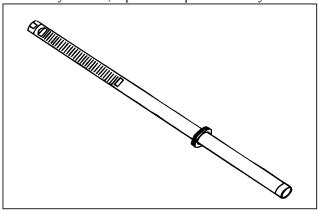
Make full lock turns of the steering wheel to the left and right for several times to verify its flexible operation.

## Inspection and Replacement of Steering Mechanism Parts:

Inspection of Rack Piston Assembly:

Inspect the straightness accuracy for the intermediate rack of the rack piston assembly and the maximum deviation is 0.15mm. Inspect the tooth face for exfoliation and impression, verify whether there are cracks or damages on the operating surface of the tooth and inspect the back of the tooth for wear and damage. If necessary, replace the rack piston assembly. Inspect the piston ring and o-ring in the piston for damages. In the case of defects in them, it is necessary to carry out replacement. In the replacement, remove the piston ring and o-ring with a flat-blade screwdriver.

#### Notice:


Pay attention not to damage the rack. Apply some power steering hydraulic oil on the new o-ring and install the o-ring.

#### **Notice:**

Pay attention not to expand the piston ring excessively. Install the new piston ring onto the piston of the rack piston assembly, apply some power steering hydraulic oil on the new piston ring and press it out downward with fingers.

Inspection of Valve Assembly

Inspect the gear shaft tooth surface of the spool assembly for cracks, damages, exfoliations or deformations. Inspect it for its flexible rotation, in the case of any defects, replace the spool assembly.



## **On-car Inspection of Power-assisted Steering Pump:**

Inspection of Release Oil Pressure

#### **Notice:**

Prior to implementation, please confirm the belt tension.

- ① Remove the oil pipe from the power steering pump and connect the pump with a pressure gauge.
- ② Open the valve and carry out air bleeding for the hydraulic line.
- ③ Start the engine and turn the steering wheel for several times to raise the oil temperature to about 50°C.

#### **Notice:**

In engine start, it is necessary to keep belts and hoses for other parts clean.

④ In engine idling, close the pressure gauge completely to measure the release oil pressure.

#### **Notice:**

The time for closed valve should not exceed 10 seconds.

- After the measurement, open the valve slowly. If the release oil pressure is not in the range of standard value, please replace the power steering pump.
- 6 After the inspection, disconnect the pressure gauge from the hydraulic line and refill with new oil and carry out air bleeding for the line.

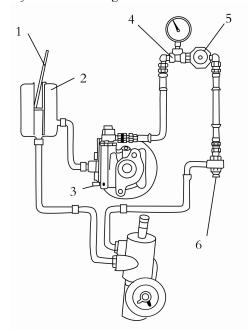



Figure for Power Steering Pump Assembly

- 1. Temperature gauge
- 2. Power steering oil reservoir
- 3. Power steering pump
- 4. Pressure gauge
- 5. Stop valve
- 6. Joint

## **Common Fault Diagnosis Table**

| Fault                                        | Fault Symptom                                      | Fault Cause                                                                                                                                                                                                | Troubleshooting                                                                                                                                                                    |  |
|----------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Oil looks as                                 | Oil leakage from the power steering pump           | Damage in oil seal of the power steering pump                                                                                                                                                              | Replace the power steering pump oil seal                                                                                                                                           |  |
| Oil leakage                                  | Oil leakage from the oil pipe and oil reservoir    | High-temperature aging and poor connection etc. of the oil pipe                                                                                                                                            | Replace the oil reservoir and oil pipe                                                                                                                                             |  |
| Damage                                       | Damage in the power steering pump                  | Damage in oil seal of the power steering pump                                                                                                                                                              | Replace the power steering pump oil seal                                                                                                                                           |  |
|                                              | steering pump                                      | Damage in power steering pump casing                                                                                                                                                                       | Replace the power steering pump                                                                                                                                                    |  |
|                                              | Low system pressure                                | Blockage in slide valve                                                                                                                                                                                    | Demove the clide value awind and clean                                                                                                                                             |  |
| Seizure                                      | Insufficient power steering pump flow              | Blockage in slide valve and spring failure                                                                                                                                                                 | Remove the slide valve, grind and clean it in order to make it slide smoothly                                                                                                      |  |
|                                              | No pressure in steering system                     | Seizure in slide valve assembly of the steering pump, serious wear in parts                                                                                                                                | Inspect the safety valve/relief valve, change the oil and replace the steering pump                                                                                                |  |
| Internal pressure relief power steering gear |                                                    | Internal pressure relief in the power steering gear                                                                                                                                                        | Inspect the safety valve/relief valve, change the oil and replace power steering gear                                                                                              |  |
|                                              | power steering gear                                | Oil seal failure in the power steering gear                                                                                                                                                                | Replace the oil seal or power steering gear                                                                                                                                        |  |
|                                              |                                                    | Excessive early activation of the steering limiter                                                                                                                                                         | Adjust the limiter                                                                                                                                                                 |  |
| Abnormal noise in the power steering pump    | Air entrainment                                    | Carry out air bleeding for the steering system                                                                                                                                                             |                                                                                                                                                                                    |  |
|                                              | power steering pump                                | Damage in drive components of the power steering pump                                                                                                                                                      | Replace the power steering pump                                                                                                                                                    |  |
| Noise                                        | Noise in the oil pipe/power steering oil reservoir | The oil pipe amplifies the noise in the steering pump and the flow noise of liquid which is flowing in the oil pipe is not absorbed and superimposed so that there is excessive large noise in the system. | It can be solved by optimizing the matching of the steering system only and part replacement alone can not solve it at all. And a resonance tube can be installed in the oil pipe. |  |

## **PS PowerSteering System**

| Fault | Fault Symptom                                                   | Fault Cause                                                                                                                                                                                                                                                                                                                                               | Troubleshooting                                                                                                                                                                                                                                                  |
|-------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                 | Too low oil level in the power steering oil reservoir                                                                                                                                                                                                                                                                                                     | Refill with oil                                                                                                                                                                                                                                                  |
|       |                                                                 | Air entrainment                                                                                                                                                                                                                                                                                                                                           | Carry out air bleeding                                                                                                                                                                                                                                           |
|       |                                                                 | Seize in the steering column or steering link                                                                                                                                                                                                                                                                                                             | Adjust the link.                                                                                                                                                                                                                                                 |
|       |                                                                 | Filter element blockage in the power steering oil reservoir                                                                                                                                                                                                                                                                                               | Clean and replace the power steering oil reservoir and change the steering oil                                                                                                                                                                                   |
|       | Arduous turns to the left<br>and right of the steering<br>wheel | Damage in the power steering pump                                                                                                                                                                                                                                                                                                                         | Inspect the output operating pressure of the hydraulic pump with a pressure gauge and inspect the pump for damages; in the case of insufficient pressure or flow in the power steering pump, further inspect the hydraulic oil filter and pipeline for blockage. |
|       |                                                                 | Poor performance of the power steering gear                                                                                                                                                                                                                                                                                                               | Inspect the power steering gear for damage                                                                                                                                                                                                                       |
|       |                                                                 | Inspect the v-belt for slipping and looseness; in the case of gear drive, inspect the engagement of the drive gear pair                                                                                                                                                                                                                                   | Inspect and adjust each part                                                                                                                                                                                                                                     |
|       |                                                                 | Air in the system                                                                                                                                                                                                                                                                                                                                         | Inspect for leakage/carry out air bleeding                                                                                                                                                                                                                       |
|       | Arduous quick turn of the steering wheel during idling          | Low internal pressure in the power-assisted system, such as insufficient oil supply of the power steering pump; slipping and looseness of the drive belt. Improper adjustment of the relief valve; Deformation of the high pressure oil pipe due to high pressure oil, which may lead to pressure hysteresis and air entrainment in the hydraulic system. | Inspect and adjust the whole steering system                                                                                                                                                                                                                     |
|       |                                                                 | Internal wear in the power steering pump                                                                                                                                                                                                                                                                                                                  | Replace the power steering pump and clean the whole steering system                                                                                                                                                                                              |

## **Troubleshooting for Common Faults:**

Oil leakage:

- Verify whether there is oil leakage in oil pipe of the steering system, joints of the power steering oil reservoir, power steering gear and power steering pump.
- 2. At the oil inlet of the power steering pump, in the case of oil pipe looseness, there will be oil leakage here. Therefore, it is not allowed to impact the oil inlet of the power steering pump (for the oil pipe is interference fitted into the pump body, please handle with care)
- 3. In the case of oil leakage in the joint between the oil pipe and the high pressure oil outlet of the power steering pump, replace the o-ring and tighten the mounting bolts on the oil pipe. The oil leakage fault is not related with the pump quality and there is no need to replace the oil pump.
- 4. In the case of oil leakage in the power steering oil reservoir, if there is excessive oil filling in the oil reservoir or poor seal of the oil reservoir joint, when excessive engine bucking occurs, there will be oil leakage in the power steering oil reservoir cap under the condition of driving on rough road. Such oil leakage occurs constantly and it should be not considered as oil leakage in the power steering pump or power steering oil reservoir. In this case, clean the power steering pump and power steering oil reservoir carry out reinstallation for them and observe carefully and confirm the oil leakage in order to confirm the proper oil filling and require customers for regular maintenance and daily cleaning.

#### Troubleshooting for oil leakage:

- 1. Verify and inspect the oil leaky parts carefully, replace oil seals and oil pipes and tighten joint bolts. The tightening torque for the large nuts of the power steering pump high pressure oil outlet is 55 ~ 65N.m and it is not recommended to carry out installation of the high pressure oil pipe and the nuts with a torque larger than 60 N.m or the screw thread in the power steering pump aluminum casing may be damaged.
- In the case of low oil level, carry out timely refilling of the power-assisted steering oil to the specified value. And in oil refilling, the oil level is not allowed to exceed the mark on the power steering oil reservoir.
- Clean the leaky oil on the power steering pump, power steering oil reservoir, oil pipe and relevant joints for accurate distinguishing of oil leakage or excessive oil filling.

#### Abnormal noise:

 Low oil level in the power steering oil reservoir, oil leakage or air entrainment in the system, blocked filter element in the power steering oil reservoir may lead to insufficient oil suction of the power

- steering pump.
- 2. Dirty interior of the steering system may lead to excessive wears in the stator, rotor, oil distributor, end cover and input shaft.
- 3. Design and installation of the oil pipe, blockage, and bucking, excessive deformation of the oil pipe in its installation and poor matching of the system may lead to resonance and unsmooth system oil inlet and outlet,etc.
- 4. Overload operation of the steering system may lead to excessive wear in the stator, rotor in the power steering pump and further lead to irregular movement of the oil in the pump which may generate abnormal noise (In the case of noise existence "shorter than 6 seconds", turn the steering wheel to its limiting position, the generated "tehee" sound is normal).
- 5. In the case of frequent and excessive long-term limit steering of the power steering pump, there should be lots of bubbles in the steering system. The noise in the system decreases after oil change and abnormal noise and lots of bubbles occur after road test. In this case, such fault is not relative with the performance and function of the power steering pump and power steering gear. It is recommended to change the steering oil reservoir and oil in it and it is preferable to use an oil reservoir with internal steps or curved tracks.
- 6. Noise in other rotating parts of the engine, such as: bearings in the water pump, air conditioner compressor, tensioner, pulley, etc. eg. In the case of loose belt, there may be "squeaks" coming from the front end bearing of the power steering pump. eg. After a certain time of vehicle running, when the steering wheel is turned to left or right limit position, abnormal noise may occur in some vehicles. In this case, inspect the belt for there may be changes in the required torques for the steering system in limiting positions. And belt looseness and slipping may generate noise on the pulley of the power steering pump.
- 7. Low mounting position of the power steering pump, driving on extreme rough road etc. may lead to lots of silts and oil stains on the oil pump casing which may cause damage in the input shaft housing of the power steering pump by foreign matters and then corrosions by water, acid and alkali. In the case of irregular maintenance of the whole steering system, the ball bearing of the power steering pump may easily burnt or seizured and abnormal noise and arduous steering wheel operation may occur under this condition at the same time.
- 8. Looseness in the mounting brackets of the power steering gear and power steering pump, internal wear in the power steering gear and improper adjustment of the pinion and rack.

## **PS PowerSteering System**

9. Improper matching of system components before leaving factory may lead to unable vibration absorbing of pipeline as well as faults like abnormal noise, failure of the system. Eg. In the case of no noise reduction device or corresponding vibration damper in the pipeline, there will be noise and failure in the whole system. In this case, oil pipe with different noise reduction effect may be applicable instead. However, in such replacement, there is a high demand of technical requirements and it should be carried out by professional staff from the manufacture for better troubleshooting.

Troubleshooting for abnormal noise:

- Clean the whole steering system and carry out air bleeding for the system. Adjust belt tension or replace the belt. Inspect and repair oil pipes, power steering oil reservoir, power steering pump and power steering gear, change with new power steering oil and replace the power steering oil reservoir.
- Replace the steering high pressure oil pipe and a new one with vibration damping effect or possessing good matching to the system may be applied.
- Inspect other rotating parts, tension the pulley, and clean the power steering pump and power steering gear. In special cases, it is necessary to replace the power steering pump or power steering gear assembly.

Arduous steering wheel operation:

- 1. Dirty interior of the power steering oil reservoir, blockage in the filter screen or low oil level in the power steering oil reservoir.
- 2. A great quantity of air in the power steering system
- 3. Foreign matters in the steering system may lead to seizure in the flow control valve of the steering pump, serious wear of parts in the power steering pump and internal leakage of the pump.
- 4. Excessive wear in the piston cylinder of the power steering gear, poor sealing performance of the oil seal, bonding or damage in the control valve.
- 5. Insufficient tire pressure, interference in the power steering pump steering column, loose connection, looseness or slipping of power steering pump belt or loose mounting position of the pump
- Loose bolts in joints of oil pipes which may lead to steering oil leakage and insufficient flow in the system.

Troubleshooting for arduous steering wheel operation:

1. Inspect the power steering gear, control valve of the power steering pump, oil reservoir filter screen

- and steering oil, clean the whole power steering system (it is preferable to clean with kerosene and it is not allowed to disassemble the pump body. Instead, remove bolts on the control valve chamber of the pump and take out the pump body for simple cleaning)
- 2. In the case of dirty power steering pump, it is necessary to clean the interior and exterior of the power steering pump and oil pipes (it is not allowed to clean with cotton gauze or other multi-fiber cloth but carry out cleaning with clean brush). Pay attention to system cleanness and there should not be any visible impurities entering the pump and system.
- Refill the oil reservoir to the specified oil level, inspect or replace the oil reservoir.
- 4. Adjust the belt tension according to specifications and tighten coupling bolts for every component.
- 5. Inspect joints of oil pipes and tighten connecting nuts here.
- 6. Replace oil pipes, the power steering pump or the power steering gear.

Emulsible foam in the steering power oil:

#### Fault cause:

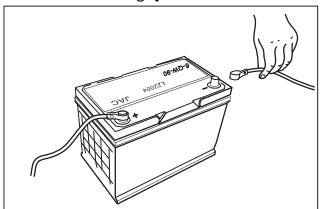
- 1. There is air in the steering system.
- 2. There is liquid leakage in the steering system.

Troubleshooting for the fault:

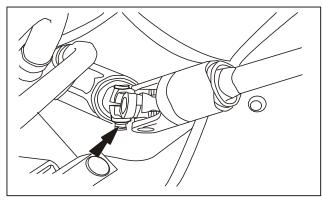
- 1. Carry out air bleeding, inspect for oil leakage and solve such problem.
- 2. Inspect the power steering oil reservoir and refill the oil reservoir with oil.

Vehicle deviation (Carry out test runs in two directions on the flat ground):

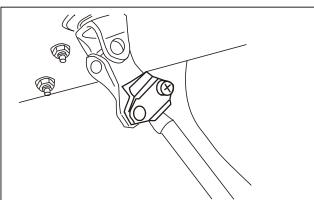
#### Fault cause:


- 1. Looseness of the steering wheel ball joint or improper front wheel alignment.
- 2. Twisted deformation or excessive wear in the steering rod.
- 3. Maladjustment of preload of racks in the power steering gear
- 4. Poor returnability of the steering wheel and steering wheel tremble.

Troubleshooting for the fault:

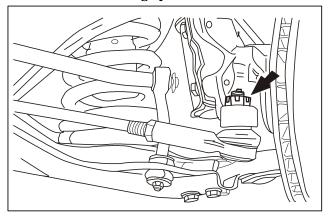

- 1. Adjust the front wheel alignment and steering wheel ball joint.
- 2. Refill with steering oil and carry out air bleeding.
- 3. Adjust the preload of racks or repair racks in the power steering gear.
- 4. Inspect and adjust every joints in the system according to specifications.

## Removal and Installation

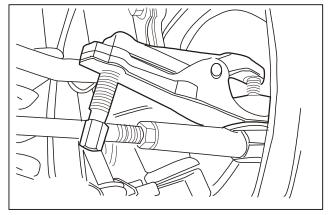

## **Power-assisted Steering System**



1. Disconnect the negative cable of the battery.



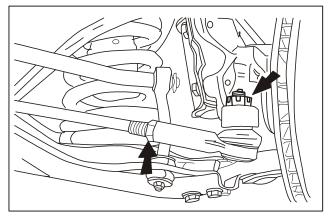

2. Remove the cardan universal joint on the steering gear box.




- 3. Remove track bolts for fixing the steering column to the cross coupling.
- 4. Remove the cross shaft coupling.
- 5. Lift the vehicle.

## **Power-assisted Steering System**

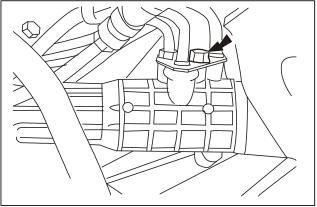



- 6. Take down the cotter pin and remove castle nuts on the joint of the tie rod ball joint and steering knuckle.
  - Do not reuse the cotter pin.



7. Remove the tie rod ball joint from the steering knuckle.

#### Note:

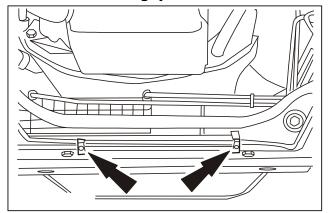

After the separation of the steering tie rod and steering knuckle, wrap the ball joint with cloth to protect the ball joint seal.



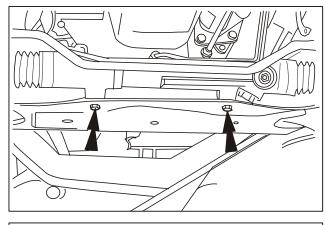
- 8. Remove the tie rod ball joint.
  - Loosen lock nuts of the tie rod ball joint.
  - Remove the tie rod ball joint.

## Note:

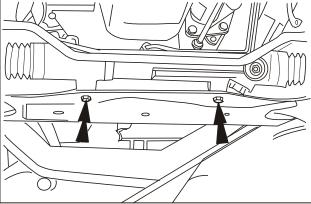
Remember the number of turns in ball joint removal.




8. Remove the fixed plate of the steering gear box oil pipe and remove the oil pipe.

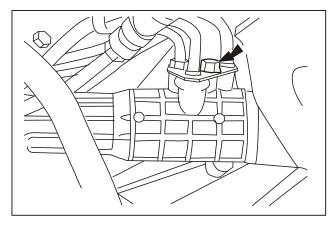

#### Note:

In the steering gear box oil pipe removal, block the joint with a plug to avoid dirt entering.


## **Power-assisted Steering System**

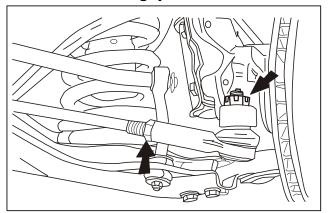


9. Disconnect the booster oil pipe from the steering gear box.




10. Remove the steering gear box.

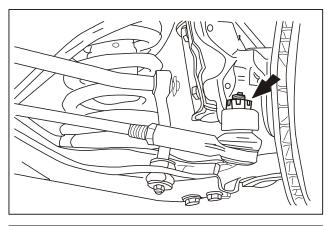



#### Installation

- 1. Reinstall the steering gear box.
- 2. Install the booster pump oil pipe to the steering gear box.



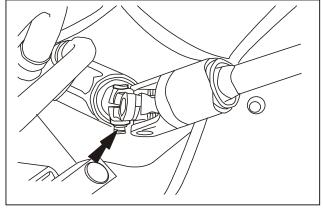
3. Install the booster pump oil pipe to the inverter valve and tighten the fixed plate.


#### **Power-assisted Steering System**

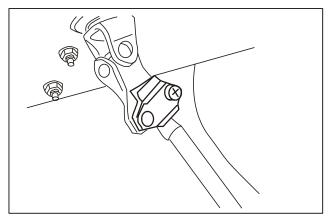


#### Note:

In the ball joint installation, make sure that the number of turns of the installation is the same with that of the removal.

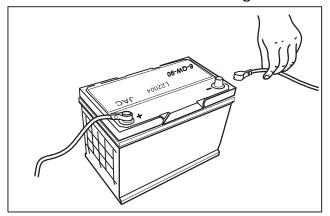

- 4. Reinstall the tie rod ball joint in place.
  - Install the ball joint in place.
  - Tighten lock nuts of the ball joint.




#### **Caution:**

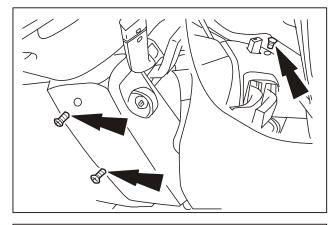
Keep the steering wheel in the straight-ahead position throughout.

- 5. Install ball studs on the steering knuckle and lock castle nuts with new cotter pins.
- 6. Lower the vehicle from the lifter.

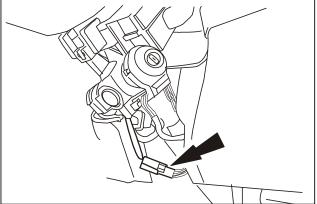



7. Install the ball head shaft on the pinion shaft, confirm the positional accuracy of the positioning keyway and confirm that fastening bolts are in the pinion slot.

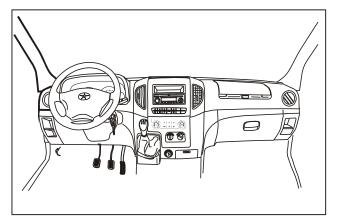



- 8. Align the clamped plated of the universal joint to the steering column and carry out installation.
- 9. Reconnect the negative cable of the battery.
- 10. Carry out air bleeding for the system according to the specification.
- 11. Inspect for the front wheel alignment.

## Removal and Installation of Steering Wheel

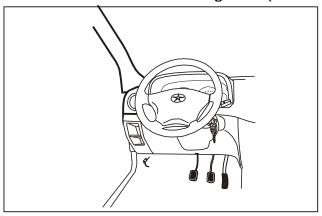



#### Removal:

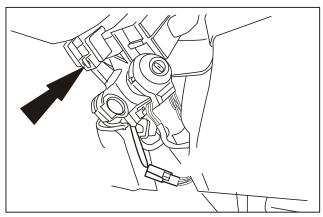

1. Remove the negative cable of the battery.



2. Remove the upper and lower protective plates of the steering column.




3. Disconnect the plug of the ignition switch harness.

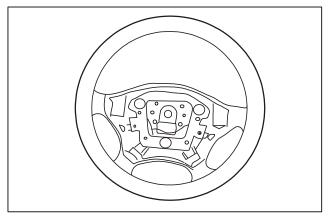



- 4. Carry out steering wheel centering and lock it up.
- 5. Remove the steering wheel central covering plate.

## Removal and Installation of Steering Wheel (Continued)

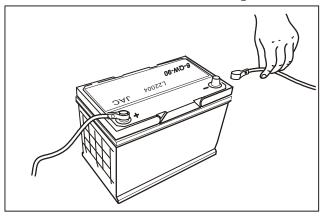


6. Remove mounting nuts of the steering wheel and remove the steering wheel.

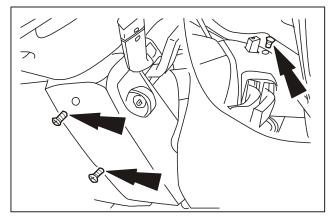



#### Installation

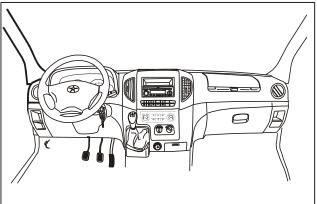
## Warning:


Prior to the steering wheel installation, Keep the ignition switch upright all the time.

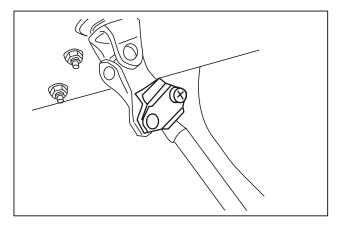
1. Return the steering wheel to ensure the ignition switch set in place.




2. Reinstall all parts in the reverse order of removal.


## **Removal and Installation of Steering Column**

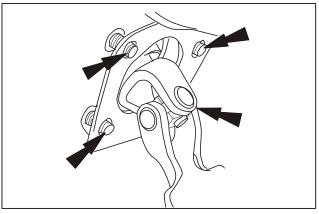



Disconnect the negative cable of the battery

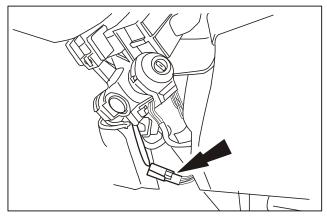


- Remove the upper and lower protective plates of the steering column.
- Remove the multi-functional combination switch. 3.

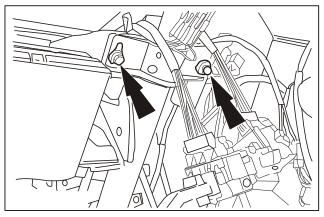



Return the steering wheel to the intermediate position and lock it up.

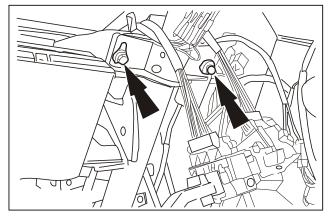



Remove track bolts on the joint of the steering column and steering knuckle.

Turn clamped plates and take them down.


## Removal and Installation of Steering Column (Continued)

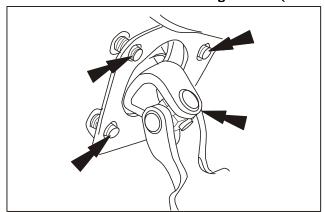



6. Remove four mounting nuts for fixing the lower part of the steering column onto the partition panel.

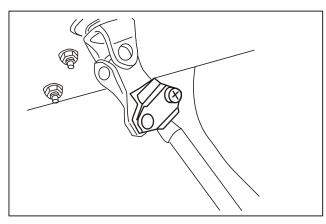


7. Disconnect the ignition switch plug.




8. Remove the steering column.




## Installation

9. Install the steering column in place and ensure the correct positioning of bolts on the lower part of the steering column.

## Removal and Installation of Steering Column (Continued)



- 10. Fix the lower part of the steering column onto the partition panel.
- 11. Reconnect the harness plug of the ignition switch.
- 12. Reinstall the combination switch.
- 13. Fix the wire with cable ties.



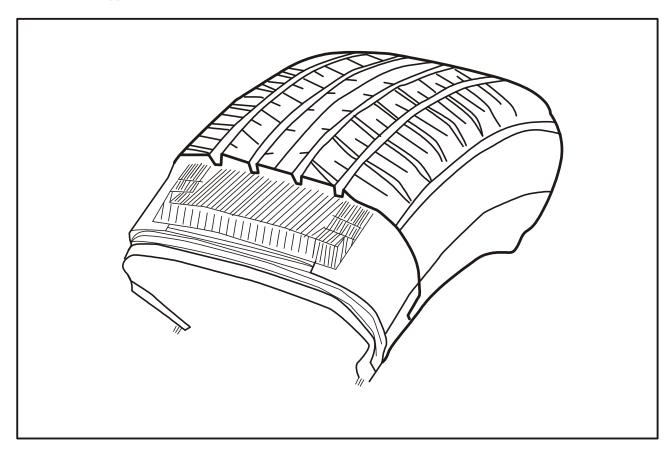
## **Caution:**

Ensure that the steering wheel is in the intermediate position.

- 14. Align the clamped plates of the cardan universal joint to the shaft and install the clamped plates.
- 15. Install the upper and lower protective plates of the steering column in place.
- 16. Connect the negative cable of the battery.

## Wheels and Tires

Applied models: SUNRAY products manufactured by JAC


| Subject                                           | Page |
|---------------------------------------------------|------|
| Instruction and Operation                         |      |
| Wheels and Tires                                  | 174  |
| Explosive View of Wheels and Tires                |      |
| Precaution for Tire Usage                         |      |
| Diagnosis and Testing                             |      |
| Removal/Installation Instruction of Tire Assembly | 176  |
| Fault Symptom Table                               | 177  |
| Removal/installation                              |      |
| Removal/installation of wheel and Tires           | 178  |

## **Instruction and Operation**

## SUNRAY vehicles adopts tire models of GITI 195/70R15LT and 185R15LT.

Tires of different sizes are applied for bearing the vehicle weight, supplying driving force and brake force,

buffering the impact from road surface as well as changing the running direction of vehicle.



### Notice for tire usage

Please use the genuine tires manufactured by the original manufacturer.

During running-in period of new tires, please avoid fast starting, sharp turning and emergent braking, and don't use tires under severe working conditions, in order to protect the new tires from premature damage.

Wheel balance should be conducted before the application of new tires.

#### **Tires**

#### **Inspection:**

- 1. Inspection of tire pressure
  - Check the inflation pressure of tire. Make adjustment if the pressure is not within the standard range.

Standard value: 450±10KPa

#### **Attention:**

Check the tire pressure by using tire pressure gauge of good performance. Check tires for wear, improper inflation, crack or other damage.

Please check the tire pressure if the ambient temperature experiences violent change.

- Improper tire pressure shall lead to the results below:
- a. Under-pressure shall lead to quick wear of tire shoulder, as well as increase of tire deflection and rolling resistance.
- b. Over-pressure shall lead to quick wear of the middle part of tire crown and decrease of buffer capacity.
- 2. Inspection of improper alignment

Too large/small front/rear wheel toe-in shall lead to feathered wear of tire.

- 3. Inspection of tire tread
  - Check the tread depth of tire.

**Note:** Tire size: 185R15LT

When the tread depth reaches to the limit value or smaller, wear mark shall be shown on the tread; at this time, please replace the tire.

- Check tire tread for any foreign matter. If any, please clear it.
- 4. Check wheel for crack or other damages. If there is deformation, please check the wheel runout.
  - Remove the tire from wheel and install it onto the wheel balancer.
  - Set the dial indicator as shown in figure.

Please refer to "Maintenance Data and Specification" for wheel runout. If it exceeds the limit, please replace it.

Tire rotation:

Perform tire rotation after the vehicle running for 8000Km. tire rotation shall also be conducted when changing with a new tire.

### Replacement:

- ① Please replace tire after normal running for 50000Km.
- ② Replace tire in case one of the following conditions occurs:
  - At least 3 wear marks exposed on tire tread.
  - Tire cord fabric or tire cord exposed on the rubber.
  - Cracking of tire tread or shoulder with cord fabric exposed.
  - Tire bulge, upheaval or layering.
  - Tire being punctured or scratched or other damages that is hardly to recover.

## Wheel & tire assembly Removal/installation:

- 1. Removal
  - Remove wheel nut.
     Tightening torque: 220~280N.m
  - Remove wheel & tire assembly.
- 2. Installation

Install wheel & tire assembly and tire nut.

#### Attention:

As for manual installation, tighten it according to the diagonal order after nuts are pre-tightened in sequence.

As for auto tightening, adjust the tightening torque and tighten it at one time.

Please tighten all wheel nuts in the order indicated in the figure.

#### Wheel balance:

- 1. Removal
  - Remove the wheel and tire in need of adjustment.
  - Remove the used balance weight on both sides of wheel and clear any foreign matter on the tire tread.

#### Attention:

Don't make the tire scratched during removal. In case of new tire, rubber belt on tire should be removed.

- 2. Wheel balance adjustment
  - Install the wheel onto the balancer by centering the center hole and start the wheel balancer.
  - When both inner and outer balance values are displayed on the balancer, the actual balance weight can be obtained by multiplying the outer balance value by 5/3. Choose the outer balance weight approaching to the calculated value and install it onto the specified position outside or diagonal position.

### Attention:

Install the inner balance weight after the installation of outer balance weight. Before installation, please make the mating surface clean.

a. Install the balance weight to the position as

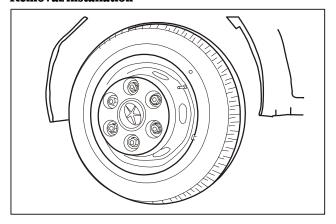
#### WT Wheels and Tires

- shown in the figure.
- b. When installing balance weight onto wheel, the balance weight shall be placed onto inner wall with grooves as shown in the right figure, with the center of balance weight aligned with the position (or angle) indicated by the wheel balancer.
- c. If the calculated balance weight exceeds by 50g, please install two balance weights in the same straight line.

#### Attention:

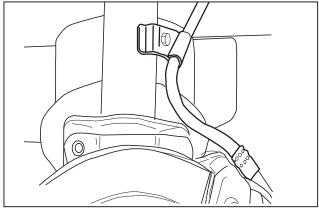
• For balance weight cannot be reused, please apply new one every time.

- No more than two pieces of balance weight can be installed.
- Please always use genuine balance weight.
- Please don't place one balance weight onto another one.
- ③ Restart the wheel balancer.
- 4 Knock in the balance weight from the inside of wheel as per position (or angle) indicated by wheel balancer.
- (5) Start the balancer to verify if the residual inside/outside unbalance value is below 10g. If the residual unbalance value of any side is over 10g, dynamic balance test should be conducted.

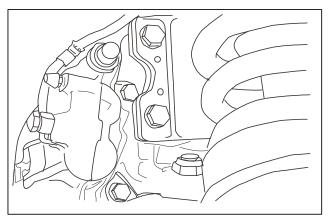

# **Fault Diagnosis**

# Common fault diagnosis table

| Fault Symptom                             | Possible Cause                                   | Solution          |
|-------------------------------------------|--------------------------------------------------|-------------------|
|                                           | Excessive deflection of wheel and rim            | Replace           |
|                                           | Looseness of wheel nut                           | Tighten           |
|                                           | Wheel unbalance                                  | Adjust            |
|                                           | Uneven wear of tire                              | Adjust or replace |
| Steering wheel circular vibration         | Under-pressure of tire                           | Adjust            |
|                                           | Damage or wear of front wheel bearing            | Adjust or replace |
|                                           | Steering system fault                            | Adjust or replace |
|                                           | Suspension system fault                          | Adjust or replace |
| Premature wear of tire                    | Improper tire pressure                           | Adjust            |
|                                           | Improper tire pressure                           | Adjust            |
| Tire noise                                | Tire deterioration                               | Replace           |
|                                           | Under-pressure of tire                           | Adjust            |
|                                           | Wheel unbalance                                  | Adjust            |
| Road noise or body vibration              | Deformation of rim and tire                      | Repair or replace |
|                                           | Uneven wear of tire                              | Adjust or replace |
|                                           | Excessive deflection of wheel and rim            | Replace           |
|                                           | Looseness of wheel nut                           | Tighten           |
| Un and days with ration of steaming wheel | Wheel unbalance                                  | Adjust            |
| Up and down vibration of steering wheel   | Fracture or wear of engine mounting rubber       | Replace           |
|                                           | Fracture or wear of transmission mounting rubber | Replace           |
|                                           | Improper tire pressure                           | Adjust            |
|                                           | Excessive or uneven wear of tire                 | Adjust or replace |
| Steering wheel drifted to one side        | Steering system fault                            | Adjust or replace |
|                                           | Brake system fault                               | Adjust or replace |
|                                           | Suspension system fault                          | Adjust or replace |
|                                           | Both side tire pressure unbalance                | Adjust            |
|                                           | Deformation of rim and tire                      | Repair or replace |
| Wobbling                                  | Looseness of wheel nut                           | Tighten           |
|                                           | Steering system fault                            | Adjust or replace |
|                                           | Suspension system fault                          | Adjust or replace |
|                                           | Both side tire pressure unbalance                | Adjust            |
| Brake pulled to one side                  | Brake system fault                               | Adjust or replace |
|                                           | Under-pressure of tire                           | Adjust            |
| Heavy steering wheel felt                 | Steering system fault                            | Adjust or replace |
|                                           | Suspension system fault                          | Adjust or replace |
|                                           | Under-pressure of tire                           | Adjust            |
| Poor steering wheel return                | Steering system fault                            | Adjust or replace |
|                                           |                                                  | =                 |


# Removal/installation of front wheel assembly

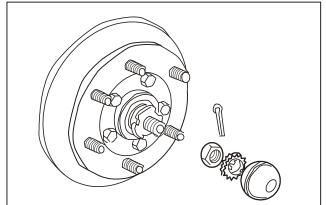
#### Removal/installation




#### Removal

1. Loosen tire nut, and have the vehicle jacked to remove the tire.




2. Remove brake hose from shock absorber.



#### Note:

Loosen the brake caliper top bolt properly for removal of brake caliper.

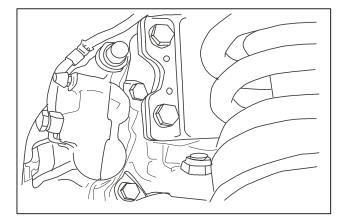
- 3. Remove the brake caliper.
  - Hang the brake caliper beside the shock absorber in order to avoid damage of brake hose.



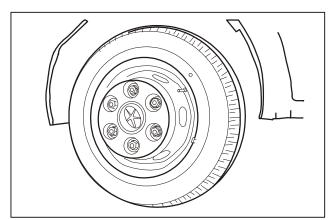
#### **Caution:**

The left hand side bearing adjusting nut is of left hand thread.

- 4. Remove flange assembly.
  - Remove dust cover.
  - Remove split pin and nut lock piece.
  - Remove wheel bearing adjusting nut.
  - Remove washer and flange assembly together.

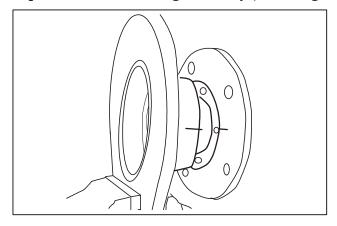

#### Installation

#### **Caution:**


The left hand side bearing adjusting nut is of left hand thread.

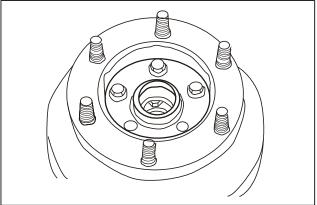
- 1. Install flange assembly.
  - Install washer and hub assembly together with outer bearing.

Install wheel bearing adjusting nut.

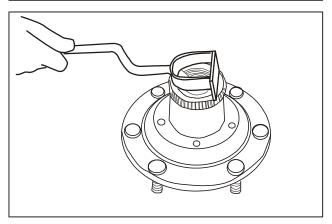



- 2. Install brake caliper.
- 3. Install brake hose onto shock absorber.
- 4. Install wheel plane bearing.
- 5. Determine wheel bearing end play.
  - Tighten wheel bearing adjusting nut and rotate the wheel at the same time to make bearing installed in place.
  - Unscrew nut by 180° and shake wheel mount.
  - Push and pull wheel until bearing end play can be felt.

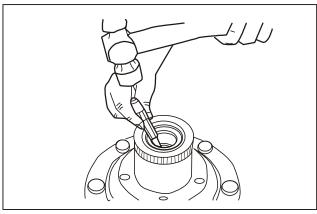



- If necessary, loosen the adjusting nut again by 90° until clearance can be felt.
- Measure end play (required to be  $0.002 \sim 0.05 \mathrm{mm}$ ).
- If necessary, rotate the adjusting nut clockwise or counterclockwise to obtain required end play.
- 6. Use new split pin and dust cover and reinstall the nut lock piece.
- 7. Lower the vehicle.

# Replacement of front flange assembly (with flange assembly already removed)




#### Removal


1. Mark properly on flange and brake disc to facilitate positioning during reinstallation.

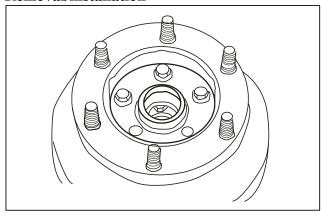


2. Remove flange from brake disc.



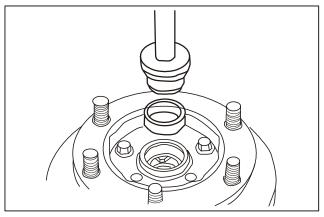
- 3. Remove oil seal.
- 4. Remove inner and outer races of conical bearing.




#### **Caution**:

Don't make burr on flange to ensure bearing race can be fitted in place.

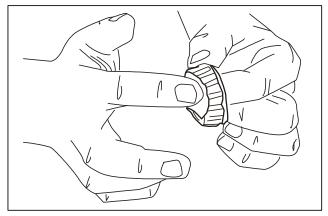
#### Note:


Tap the bearing race alternately and diagonally and don't make the sleeve tilted.

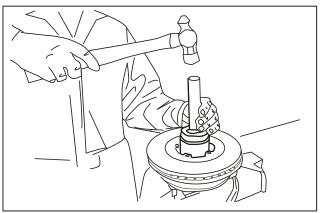
- 5. Remove inner and outer races of bearing.
- 6. Clean mating face between wheel hub and brake disc.



#### Installation


1. Install the flange onto the brake disc.




#### **Caution:**

The adopted bearing races and rollers should be from the same manufacturer.

2. Reinstall the inner and outer races of bearing.



- . Apply grease onto race and roller bearing.
- 4. Reinstall it onto the bearing race.
- 5. Clean the periphery of oil seal seat and apply sealant onto it.



- 6. Install oil seal and remove redundant sealant.
- 7. Fill sealing shaft with grease and apply grease onto lip surface.

# **Four-Wheel Alignment**

Applied models: SUNRAY products manufactured by JAC

| Subject                                                            | Page |
|--------------------------------------------------------------------|------|
| Instruction and Operation                                          |      |
| Four-Wheel Alignment Preparation before four-wheel alignment       |      |
| Diagnosis and Testing                                              |      |
| Four-Wheel Alignment  Function of each angle  Common fault symptom |      |
| Adjustment                                                         |      |
| Four/wheel alignment                                               |      |

# **Instruction and Operation**

# Objectives for four-wheel alignment:

- Elimination of deflection
- Decrease of chassis wear
- Straightness of linear steering wheel
- Decrease of tire wear
- Straightness of steering wheel after turning
- Decrease of tire wear
- Straightness of linear steering wheel
- Recovery of new car driving feeling

# Principle and five factors of four-wheel alignment Principle:

Rear wheels aligned first and then front wheels

#### Five factors:

- 1. Camber
- 2. Inclination angle
- 3. Caster
- 4. Toe-in
- 5. Adjustment of thrust axis and angle

Function of four-wheel alignment

Four-wheel alignment functions for measurement of alignment angle of chassis. In case of a little change in chassis parameters, it is only needed to adjust the alignment angle; in case of large difference, the deformed or damaged parts should be detected for complete removal of fault.

Note: It is a must to check the chassis condition before conducting four-wheel alignment.

# Preparation before four-wheel alignment

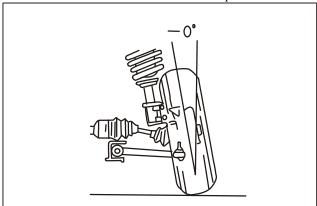
- 1. Check tire pressure and adjust it as required.
- 2. Check body height.
  - Front part measurement
  - Rear part measurement
- 3. Check wheel bearing clearance and replace front wheel bearing when necessary.
- 4. Check rim and tire condition.
- 5. Check steering linkage and ball joint for looseness.
- 6. Park the vehicle on flat ground with no luggage or person inside.
- 7. Check wheels; check front suspension for looseness.
- 8. Check shock absorber for normal operation.

#### Note:

Make sure half level in oil tank, as well as the required level of cooling water in water tank and proper engine oil. The tire jack and accessories should be placed at the specified position.

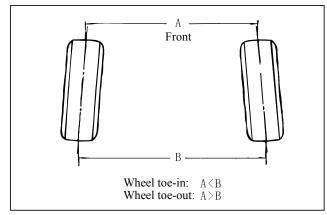
# **Instruction and Operation**

### Four-wheel alignment parameters


| Front wheel camber        | 0.75±1°   | 1.25° |
|---------------------------|-----------|-------|
| Kingpin caster            | 1.5±1.5°  | 1°    |
| Kingpin inclination angle | 12.75°±1° | 1.25° |
| Toe-in                    | 0∼2mm     |       |

This vehicle is light-duty bus, with integral rear axle. Rear wheel parameters cannot be adjusted during four-wheel alignment.

#### 1. Front wheel camber:


Camber refers to the angle included between geometry centerline and plumb line of tire viewed from the front of vehicle. Tire upper edge deviates to the inside (approaching to engine) or outside (deviated from engine):

- Zero camber refers to the state that the tire centerline is coincided with the plumb line.
- Positive camber refers to the state that the tire centerline is located outside of plumb line.
- Negative camber refers to the state that the tire centerline is located inside of plumb line.



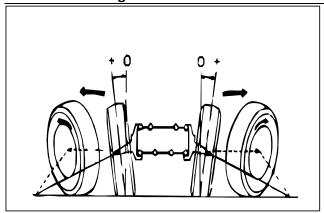
 Excessive camber may lead to outside wear of tire and too small camber may lead to inside wear of tire. In case of inconsistency between two wheel cambers, the vehicle shall be pulled to one side of the larger camber.

#### **Toe-in definition**



Front wheel toe-in is observed from the front of vehicle and measured when two wheel axles are of the same height. Front and rear end distance difference between left and right tire centerline is known as the total toe-in, as shown in the figure:

Zero toe-in: Left and right tire centerline distance at front and rear end is equal: A=B.


Positive toe-in: Left and right tire centerline distance at front end is less than that at rear end: A<B.

Negative toe-in: Left and right tire centerline distance at front end is larger than that at rear end: A>B.

#### 2. Toe-in function

It is used for elimination of tire skidding caused by camber. The effect of wheel camber shall make the wheel top face tilted outwards and the wheel shall roll outwards during running, thus skidding is formed, which shall lead to tire wear. The toe-in functions to eliminate tire skidding due to camber, as shown in the figure:

#### FT Four-Wheel Alignment



- 3. Toe-in effect
  - Effect of positive toe-in: Tire outside wear due to excessive positive camber takes the form of feature. Touch it from the inside to outside and sharp needle like feeling can be felt on the tread outer edge.
  - Effect of negative toe-in: Tire inside wear due to excessive negative camber takes the form of feature. Touch it from the outside to inside and sharp needle like feeling can be felt on the tread outer edge.
- 4. In case of inconsistency between two wheel toe-in, the vehicle shall be pulled to one side of the smaller toe-in.

# Kingpin caster Kingpin caster definition

It refers to the angle included between the steering axis and the line vertical to ground, which indicates the forward and backward inclination of the line between the upper ball joint or strut top and the lower ball joint viewed from the side of vehicle (called the imaginary steering axis). There are three kinds of caster, viz. positive caster, negative caster and zero caster.

#### Caster adjustment (generally nonadjustable)

As for the adjustment of caster, make analysis and judgment as per different vehicle models at first and then make adjustment through adjusting washer, eccentric camshaft, eccentric ball joint, girder slot, or balance bar.

#### **Inclination angle definition**

Definition of inclination angle: The angle included between the steering axis and the plumb line viewed from the front of vehicle.

Kingpin inclination angle mainly functions for the realization of auto return after steering and the increase of adhesion force of vehicle. Kingpin inclination angle is unadjustable and its standard value can be achieved by the replacement of defect parts.

As for four-wheel alignment of SUNRAY vehicles, only the data adjustment for front wheels can be realized but not for rear wheels. Among various parameters of front wheels, the camber and toe-in are adjustable. Determine the camber at first and then adjust the toe-in in order to ensure the stability of vehicle straight running.

#### Common faults:

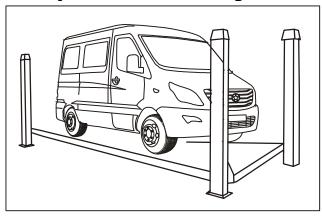
1. Abnormal wear of tire: Middle part wear, tire shoulder wear, eccentric wear, feature-like wear, serrated wear, wavy wear and spotty wear.

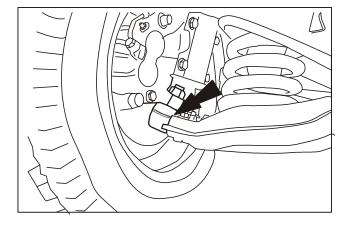
Middle part wear: Too high tire pressure.

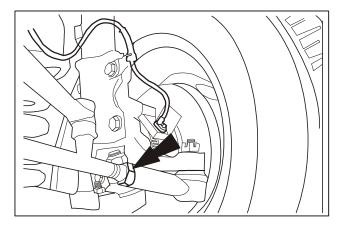
Tire shoulder wear: Too low tire pressure and overloading.

Eccentric wear: Improper camber.

Feature-like wear: Improper toe-in.


Serrated wear: Frequent brake application under overloading condition for a long time and tire rotation not conducted at regular intervals.


Wavy wear: Dynamic unbalance of tire, large circular runout of wheel end face, looseness of hub bearing and steering knuckle, too big thrust angle of rear wheels and etc.


Spotty wear: Shimmy under high speed rotation of wheel, excessive clearance of bearing, ball joint and steering rod, dynamic unbalance of tire.

- Running deviation: Probably caused by inconsistent kingpin inclination angle, camber, caster, toe-in, tire pattern, shock absorber vibration reduction effect or wheel base between left and right wheels.
- Memory deviation: Probably caused by interference of upper strut support motion, wear of shock absorber steady bearing, over sticking of ball joint or unbalance power steering.
- 4. Torque deviation: Probably caused by stuck or loose ball joint, unequal axle angle under acceleration, nonconforming inclination angle and included angle, or improper alignment of power train.

# Data adjustment of four-wheel alignment







- 1. Check basic data of vehicle such as tire pressure, fuel level, vibration reduction effect, tire wear degree, accessories and tools. Recover it to the delivery status.
- 2. Drive the vehicle onto the lifter, with front wheels held at the center of front turntable of the four-column lifter.
- 3. Maintain vehicle and tire horizontal and press the nose by hand.
- 4. Install the sensor and claw onto the tire properly and maintain the sensor balanced.
- 5. Turn on the four-wheel aligner and select the current vehicle position.
- 6. Operate on the basis of the computer reminder to measure the actual four-wheel alignment parameters.
- 7. Compare the parameters provided by four-wheel aligner with the standard data and calculate the actual data for adjustment.
- 8. Lift the vehicle. As the rear wheels are of nonadjustable rear axle, only front wheel camber and toe-in are adjustable.
- 9. Adjustment of front wheel camber: Loosen the mounting nut of shock absorber lower support, knock down the lower swing arm with SST or crow bar and record the number of washers, make calculation and find out what kinds of washer should be adopted on the basis of four-wheel alignment data and actual vehicle parameters, install the washer onto the lower swing arm and then tighten the nut to the standard torque.

Tire camber: 0.3°. Check if it is within the normal data range of vehicle through computer.

10. Adjustment of toe-in: Loosen the mounting nut of tie rod, calculate the required data on the basis of the actual toe-in and standard data, and observe if the toe-in is within the standard range through computer when making adjustment.

Attention: The adjusting amount should be controlled within half circle in order to avoid inaccuracy.

Standard toe-in: 0~2mm.

# Attached List-Special Tools for Sunray

Applicable model: SUNRAY products manufactured by JAC (4DA1 Series)

| Tool number | Tool name                                 | Outline drawing | Purpose/application                                                          |
|-------------|-------------------------------------------|-----------------|------------------------------------------------------------------------------|
| JAC-T8F001  | Piston pin remover and installer          |                 | Removing and installing piston pins (engine)                                 |
| JAC-T8F002  | Handle                                    |                 | Supporting use of related installer in bearing installation (transmission)   |
| JAC-T8F003  | Flywheel stopper                          |                 | Fixing flywheel for easy removal (engine)                                    |
| JAC-T8F004  | Cooling system tester                     |                 | Checking cooling system for leakage (engine)                                 |
| JAC-T8F005  | Oil filter wrench                         |                 | Removing and installing oil filter (engine)                                  |
| JAC-T8F006  | Valve oil seal installer                  |                 | Installing valve oil seals (engine)                                          |
| JAC-T8F007  | Fuel pressure gauge                       |                 | Measuring fuel pressure (engine)                                             |
| JAC-T8F008  | Compression gauge                         | 0.40            | Measuring cylinder pressure (engine)                                         |
| JAC-T8F009  | Pressure gauge connector                  |                 | Playing the role of an adapter during cylinder pressure measurement (engine) |
| JAC-T8F010  | Valve spring compressor                   |                 | Compressing valve springs and removing valves and related parts (engine)     |
| JAC-T8F011  | Camshaft gear puller                      | M               | Removing camshaft gear (engine)                                              |
| JAC-T8F012  | Cylinder liner installer (including jack) |                 | Installing cylinder liners (engine)                                          |

**Special Tools for Sunray** 

| Tool number | Tool name                           | Outline drawing | Purpose/application                                                                                                                                 |
|-------------|-------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| JAC-T8F013  | Cylinder liner puller               |                 | Removing cylinder liners (engine)                                                                                                                   |
| JAC-T8F014  | Piston installer                    | <b>8</b> [      | Installing pistons (engine)                                                                                                                         |
| JAC-T8F015  | Crankshaft front oil seal installer | 9               | Installing crankshaft front oil seal (engine)                                                                                                       |
| JAC-T8F016  | Camshaft bushing remover/installer  |                 | Removing and installing camshaft bushing (engine)                                                                                                   |
| JAC-T8F017  | V-block for camshaft<br>measurement |                 | Measuring camshaft damage (engine)                                                                                                                  |
| JAC-T8F018  | Hose clamp pliers                   | X               | Removing a clamp from a hose                                                                                                                        |
| JAC-T8F019  | Piston ring extractor               |                 | Removing and installing piston circlips (engine)                                                                                                    |
| JAC-T8F020  | Valve oil seal extractor            |                 | Removing valve oil seals (engine)                                                                                                                   |
| JAC-T8F021  | End fork clip                       | £,              | Securing flywheel (engine)                                                                                                                          |
| JAC-T8F022  | Crankshaft back bearing remover     |                 | Removing crankshaft back bearing                                                                                                                    |
| JAC-T8F023  | Crankshaft back bearing installer   |                 | Installing crankshaft back bearing                                                                                                                  |
| JAC-T8F024  | Diesel common rail tool kit         |                 | The diesel common rail tester can accurately and effectively diagnose a diesel engine with a diesel common rail system and test its fuel injection. |
| JAC-T8B001  | Shift fork lock pin remover         |                 | Removing shift fork spring pin (transmission)                                                                                                       |
| JAC-T8B002  | Oil seal puller                     |                 | Removing oil seals (transmission)                                                                                                                   |

# **Special Tools for Sunray**

| Tool number | Tool name                                    | Outline drawing | Purpose/application                                                                     |
|-------------|----------------------------------------------|-----------------|-----------------------------------------------------------------------------------------|
| JAC-T8B003  | Clutch guide                                 | 611             | Centering clutch discs (transmission)                                                   |
| JAC-T8B004  | Input shaft bearing installer                | 0               | Installing input shaft bearings (transmission)                                          |
| JAC-T8B005  | Output shaft bearing installer               | 0               | Installing output shaft bearings (transmission)                                         |
| JAC-T8B006  | Countershaft front bearing installer         |                 | Installing countershaft front bearing (transmission)                                    |
| JAC-T8B007  | Input shaft protective sleeve                |                 | Protecting front gear of input shaft (transmission)                                     |
| JAC-T8B008  | Output shaft protective sleeve               |                 | Protecting front gear of output shaft (transmission)                                    |
| JAC-T8B009  | Transmission bearing remover kit             | 999             | Removing bearings on transmission (transmission)                                        |
| JAC-T8B010  | Input shaft oil seal installer               |                 | Installing input shaft oil seals (transmission)                                         |
| JAC-T8B011  | Transmission rear end cover oil seal remover | 100             | Removing rear end cover oil seal (transmission)                                         |
| JAC-T8B012  | Rear end cover oil seal installer            |                 | Installing rear end cover oil seal (transmission)                                       |
| JAC-T8D001  | Steering linkage drawing die                 | <b>3</b>        | Disconnecting front end control arm ball joint of wheel from steering knuckle (chassis) |
| JAC-T8D002  | Interior trim crow plates                    | 1/1/2           | Prying door trims                                                                       |

**Preface** 

This SUNRAY Service Manual is hereby compiled by the Customer Service

Department of JAC to help the technical service personnel correctly understand and

get familiar with SUNRAY products of JAC INTERNATIONAL better and to provide

them with the ability of quick repair and proper maintenance. This manual comprises

five volumes: Engine Control, Engine Mechanical, Chassis, Body Electrical, and

Body Accessories.

The Body Accessories Volume details the removal methods of body accessories

including interior and exterior trims and glasses of SUNRAY long-wheelbase vehicles

as well as repair parameters of metal plates.

When replacement is necessary, only genuine spare parts recommended by JAC can

be adopted.

No part of this manual can be reproduced or used in any form or by any mean without

written permission. All Rights Reserved.

JAC INTERNATIONAL

March 2011

# **Body Accessories Volume Contents Body Glass**

| SST for Glass                            | BG 2  |
|------------------------------------------|-------|
| Front windshield                         | BG 3  |
| Windshield                               | BG 4  |
| Front triangle glass                     | BG 7  |
| Front door glass                         | BG 9  |
| Front door glass seal                    | BG 11 |
| Front door glass regulator               | BG 12 |
| Left side wall glass                     | BG 14 |
| Right side wall glass                    | BG 17 |
| Double-open back door glass              | BG 21 |
| Front/Rear Doors and Front Compartment C | over  |
| Front compartment cover                  | BD 24 |
| Front compartment cover                  | BD 25 |
| Radiator core bracket                    | BD 28 |
| Compartment cover release cable          | BD 29 |
| Right front door                         | BD 31 |
| Left front door                          | BD 34 |
| Door outer handle                        | BD 37 |
| Door lock cylinder                       | BD 39 |
| Left front door lock body                | BD 41 |
| Right front door lock body               | BD 44 |
| Door seal                                | BD 46 |
| Double-open back door                    | BD 47 |
| Double-open back door outer handle       | BD 50 |
| Double-open back door latch              | BD 52 |
| Double-open back door lock and drive rod | BD 53 |
| Double-open back door lock               | BD 55 |
| Double-open back door seal               | BD 57 |
| Removal/Installation                     |       |
| Instrument panel                         | BP 60 |
| Instrument panel                         | BP 61 |
| Roof lining                              | BP 69 |
| Trim panel of A-pillar                   | BP 74 |
| Trim panel of B-pillar                   | BP 75 |
| Trim panel of C-pillar                   | BP 78 |
| Side wall window trim panel              | BP 80 |
| Trim panel of D-pillar.                  | BP 84 |
| Interior trim panel                      | BP 86 |
| Front door trim panel                    | BP 88 |
| Double-open back door trim panel         | BP 89 |
|                                          |       |

#### **Body Accessories Volume Contents**

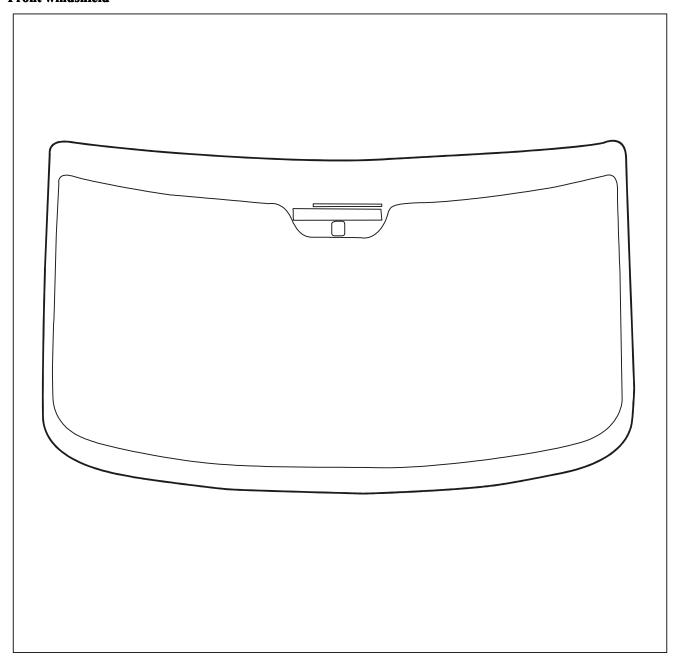
|                                      | 77.04  |
|--------------------------------------|--------|
| Interior rear-view mirror.           |        |
| Sun visor                            |        |
| Curtains                             |        |
| Luggage rack                         |        |
| Step plate assembly                  |        |
| Front bumper                         |        |
| Rear bumper                          |        |
| Front grille                         |        |
| Fender                               |        |
| Front door skirt trim panel          |        |
| Front side wall skirt trim panel     |        |
| Middle side wall skirt trim panel    |        |
| Rear wheel skirt trim panel          |        |
| Rear tire mud guard                  | BP 110 |
| Seats                                |        |
| Driver's seat                        | SE 112 |
| Front row twin bench-type seat       | SE 114 |
| Front row individual seat            | SE 115 |
| Driver's seat                        | SE 116 |
| Front row twin bench-type seat       | SE 119 |
| Front row individual seat            | SE 120 |
| back row seats                       | SE 121 |
| Sealing Elements                     |        |
| Inner acoustic baffle of front wall  | SP 124 |
| Outer heat shield of front wall      | SP 125 |
| Front door seal                      | SP 125 |
| Rear door seal                       | SP 126 |
| Fender seal                          | SP 126 |
| Front compartment seal               | SP 127 |
| Waterproof membrane                  |        |
| Body Repair Parameters               |        |
| Engine Compartment Repair Parameters | XE 130 |
| Windshield Repair Parameters         |        |
| Front Door Repair Parameters         |        |
| Rear Double-Door Repair Parameters   |        |
| Girder Repair Parameters             |        |
| 1                                    |        |

# **Attached List—SUNRAY Special Service Tools**

# **Body Glass**

Applied models: SUNRAY products manufactured by JAC

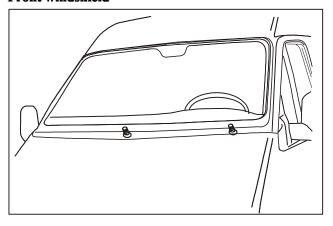
| Subject                     | Page |
|-----------------------------|------|
| Instruction and Operation   |      |
| SST for Glass               |      |
| Front windshield.           |      |
| Removal/Installation        |      |
| Windshield                  | 4    |
| Front triangle glass        | 7    |
| Front door glass            | 9    |
| Front door glass seal       | 11   |
| Front door glass regulator  |      |
| Left side wall glass        | 14   |
| Right side wall glass       | 17   |
| Double-open back door glass |      |

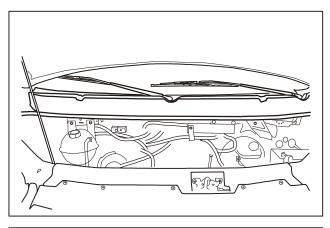

# **Instruction and Operation**

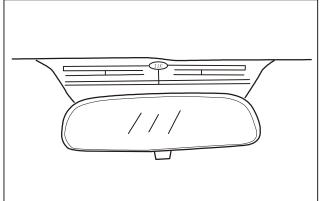
# **SST for Glass**

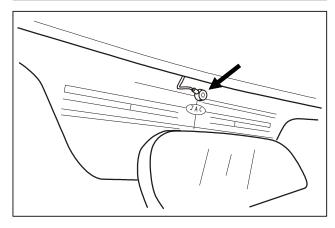
| Tool                        | Illustration | Function                                                               |
|-----------------------------|--------------|------------------------------------------------------------------------|
| Door hinge adjusting wrench |              | For adjustment, removal or installation of door hinge                  |
| Ceiling remover             |              | For removal of ceiling                                                 |
| Sealant remover             |              | For cutting door window seal (used together with the next tool)        |
| Seal cutting blade          |              | For removing windshield sealant (used together with the previous tool) |
| Sealant gun                 |              | For applying sealant onto windshield                                   |
| Glass suction cup           |              | For removal/installation of windshield                                 |
| Windshield remover          |              | For removal of windshield molding                                      |

# **Instruction and Operation**


# Front windshield





Front windshield is mainly composed of laminated glass and relevant accessories (interior rear-view mirror base, antenna and antenna terminal, pad),


functioning for blocking wind and rain and providing safe and comfortable environment for driver and passengers.

#### Front windshield









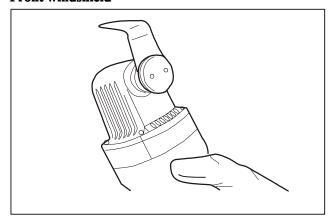
#### Removal

1. Remove glass molding
Prepare repair kit, with the following articles included:

| Sealant (carbamic acid ethyl ester adhesive) | Cleaner |
|----------------------------------------------|---------|
| Primer                                       | Cloth   |
| Wool brush                                   | Felt    |
| Mat                                          | Nozzle  |

#### Note:

An additional tube of sealant may be applied.


2. Remove grille and wiper from vehicle neck. .

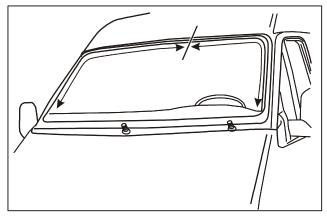
3. Remove interior rear-view mirror.

4. Disconnect antenna connector.

# Removal/Installation (Continued)

#### Front windshield

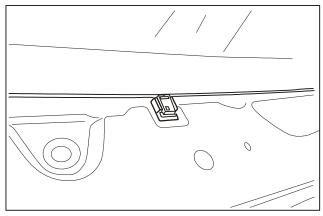



5. Install the precise cutting blade (24mm hook type blade) onto the cutter.

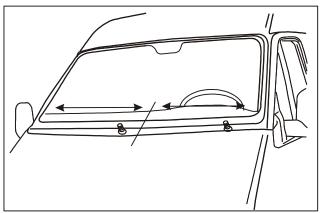
### Warning:

When using tools for cutting glasses, please wear gloves and goggles to avoid possible injury caused by glass fragments generated during cutting.

#### Attention:


In case of the windshield to be reused, it is prohibited to use cutter or electric cutting tools.

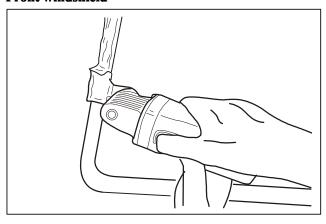


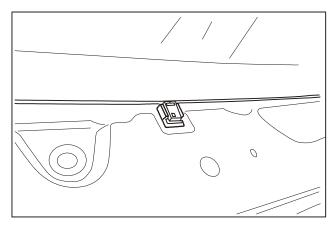

6. Cut one side and top side of glass sealant. Cut the polyurethane sealant on the outside of windshield from the left lower corner to the left upper part and then from the upper part to the right lower corner.

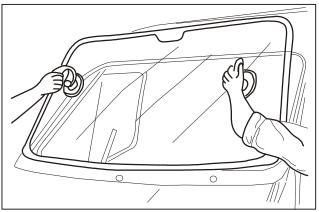
#### Note:

The windshield is positioned by two height adjustable pieces installed on the bottom, which should be leveled before cutting.




7. Cut the glass sealant at the bottom part.





- 8. Cut the glass sealant at the bottom part (continued). Cut the sealant from the outside midpoint to both sides.
- 9. Take the windshield down carefully.

# Removal/Installation (Continued)

#### Front windshield







#### Installation

#### Note:

Don't contact the already trimmed surface, otherwise, bonding effect of new sealant may be influenced.

- 1. Trim the side grooves.
  - Install the precise cutting blade.
  - Trim the polyurethane sealant remained on grooves carefully, with polyurethane sealant in thickness of 1mm left on the body for side trimming.

### 2. Wipe the glass clean.

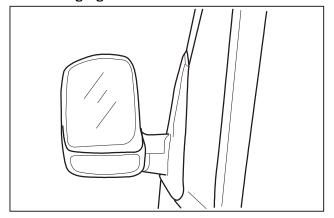
Trim the polyurethane sealant remained on window carefully, with polyurethane sealant in thickness of 1mm left on the glass for side trimming.

#### Caution:

Glass primer contains solvent that can make the primer hardened after volatilization but also can soften the surface coat of synthetic paint, therefore, "ZK" polypropylene surface paint mixed with hardener should be applied around the window.

- 3. Install the new height adjusting brackets onto the bottom part of windshield.
  - Clamp the mark position of windshield center groove.
  - Rotate two adjusting screws to lift the glass to the uppermost.
  - Place the glass into window groove and check if the clearance between glass top and window groove is 2~4mm. Adjust when necessary.

#### 4. Install the glass.


- Mount the glass in place with center aligned.
- Adjust glass based on window groove height to ensure proper alignment. Adjust when necessary.
- Press the glass tightly into the sealant from center part gradually to both sides.

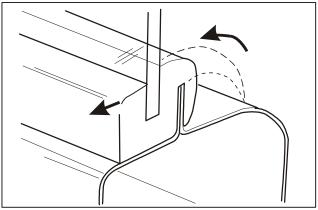
#### Note:

Park the vehicle in the place with ambient temperature of zero degree and don't drive it 24h before complete curing of carbamic acid ethyl ester adhesive. The curing time is determined by temperature and humidity, which shall be prolonged in case of low temperature and humidity.

5. Install remaining parts in reverse order of removal.

# Front triangle glass




#### Removal

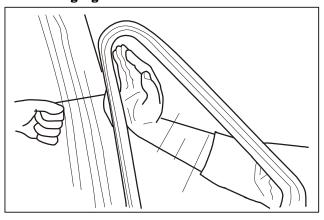
1. Remove the rear-view mirror from the window.



2. Remove the glass.

Compress the glass continuously and forcibly from the inside upper corner.

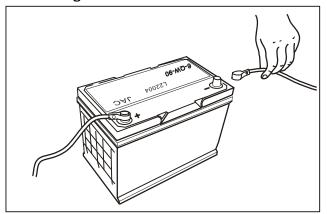



3. Peel off the seal.

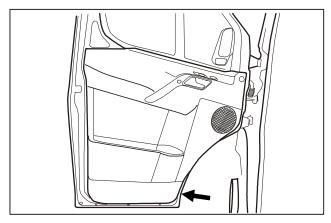
# Installation

1. Insert a high strength cable into seal and window groove to determine the end position of cable and make it lapped at the corner part.

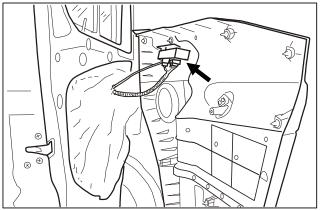
# **Removal/Installation (Continued)**


# Front triangle glass

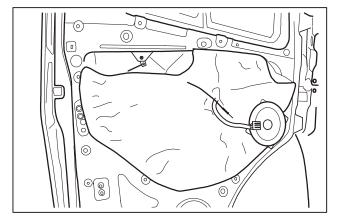



#### 2. Reinstall the window.

- Pass the cable through the window groove and stick the lower edge of seal along the edge of window groove.
- Compress the outside of glass continuously and forcibly and meanwhile draw one end of the cable to press the seal onto the window groove.
- Repeat those action until the window is properly installed and then check if the seal is sealed properly.


# Front door glass

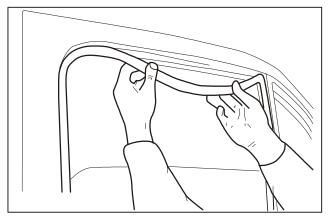



1. Disconnect the negative cable of battery.

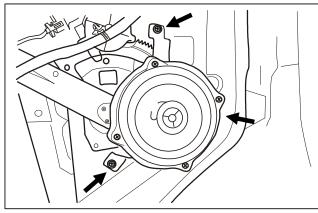


2. Remove the interior trim panel of door.

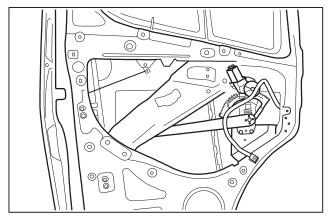



3. Disconnect the harness connector of interior trim panel of door.

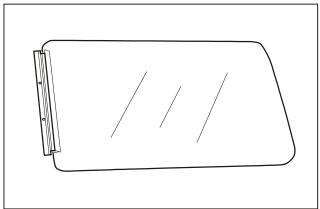



4. Peel off the waterproof membrane.

# Removal/Installation (Continued)

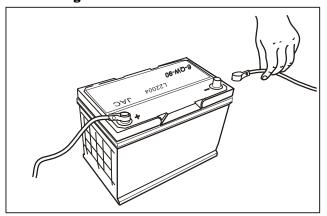

#### Front door window




5. Pull out the glass seal from top to bottom.

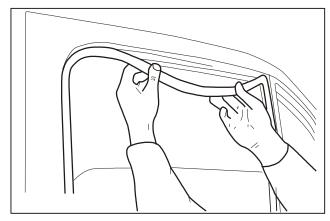


6. Remove the loudspeaker.




7. Remove the glass regulator motor.




8. Take down the glass from the window carefully.

# Front door glass seal



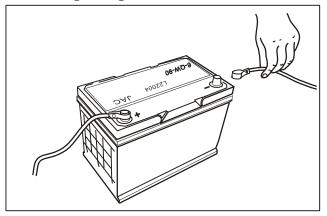
#### Removal


1. Disconnect the negative cable of battery.



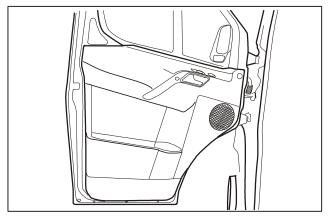
2. Peel off the window glass seal.

#### Note:


Peel off the window glass seal completely from top to bottom as shown in the figure.



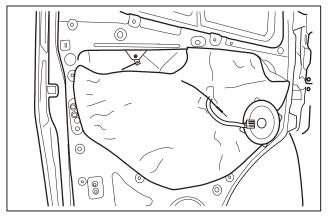
# Installation


1. Install the seal into door panel from the front bottom corner.

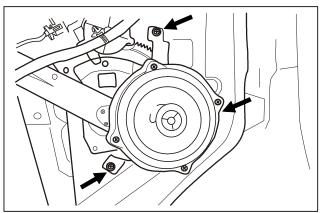
# Front door glass regulator



#### Removal


1. Disconnect the negative cable of battery.

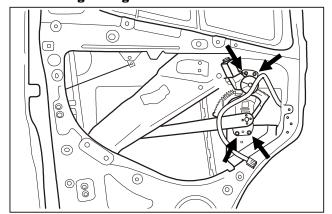



2. Peel off the window glass seal.

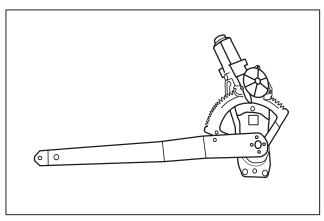
# Note:

Peel off the window glass seal completely from top to bottom as shown in the figure.




3. Remove the waterproof membrane.

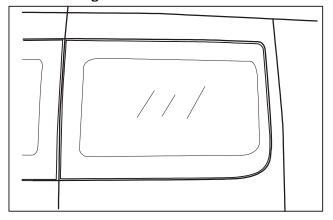



4. Remove the loudspeaker.

# **Removal/Installation (Continued)**

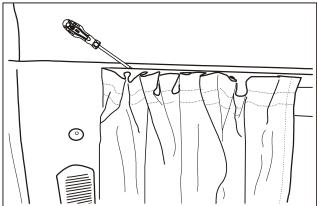
# Front door glass regulator




5. Remove the mounting screws for regulator motor.



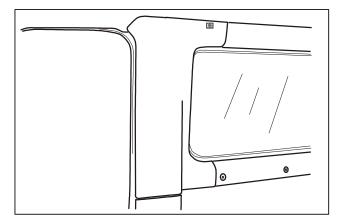
6. Take down the regulator motor.


Installation
Install it in reverse order of removal.

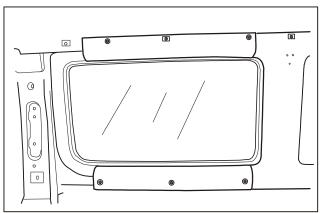
# Left side wall glass



#### Removal


1. Prepare necessary tools.

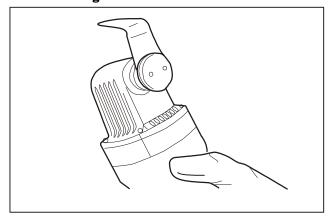


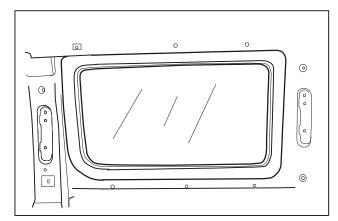

2. Peel off the window glass seal.

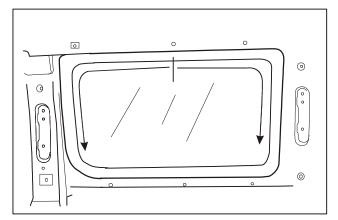
#### Note:

Peel off the window glass seal completely from top to bottom as shown in the figure.




3. Remove upper and lower guard plates of B-pillar.





4. Remove upper and lower guard plates of B-pillar.

# **Removal/Installation (Continued)**

#### Left side wall glass







5. Install the precise cutting blade (24mm hook type blade) onto the cutter.

#### Warning:

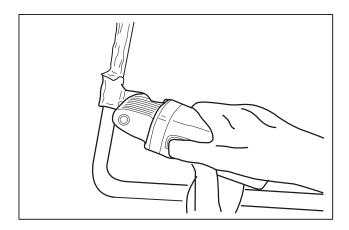
When using tools for cutting glasses, please wear gloves and goggles to avoid possible injury caused by glass fragments generated during cutting.

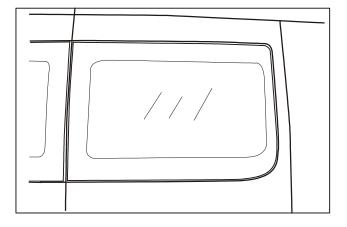
#### Attention:

In case of the windshield to be reused, it is prohibited to use cutter or electric cutting tools.

6. Remove the front door window seal.

#### Note:


Peel off the window glass seal completely from top to bottom as shown in the figure.


7. Cut the glass sealant, as shown in the figure.

#### Note:

Two persons are necessary for removal of glass and one should stand outside to hold the glass by using suction cup.

#### Left side wall glass





#### Installation

1. Prepare repair kit, with the following articles included:

| Sealant (carbamic acid | Cleaner |
|------------------------|---------|
| ethyl ester adhesive)  |         |
| Primer                 | Cloth   |
| Wool brush             | Felt    |
| Mat                    | Nozzle  |

**Note:** An additional tube of sealant may be applied.

#### Note:

Peel off the window glass seal completely from top to bottom as shown in the figure.

#### Note:

Don't contact the already trimmed surface, otherwise, bonding effect of new sealant may be influenced.

- 2. Trim the side grooves.
- Install the precise cutting blade.

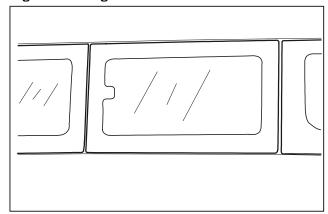
Trim the polyurethane sealant remained on grooves carefully, with polyurethane sealant in thickness of 1mm left on the body for side trimming.

# 3. Wipe the glass clean.

Trim the polyurethane sealant remained on window carefully, with polyurethane sealant in thickness of 1mm left on the glass for side trimming.

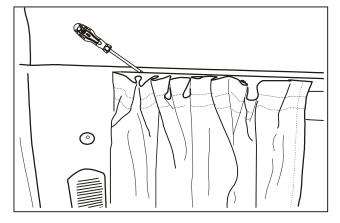
#### **Caution:**

Glass primer contains solvent that can make the primer hardened after volatilization but also can soften the surface coat of synthetic paint; therefore, "ZK" polypropylene surface paint mixed with hardener should be applied around the window.

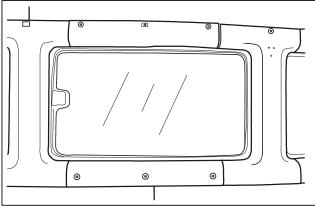

- 4. Install the glass.
- Mount the glass in place with center aligned.
- Adjust glass based on window groove height to ensure proper alignment. Adjust when necessary.
- Press the glass tightly into the sealant from center part gradually to both sides.

#### Note:

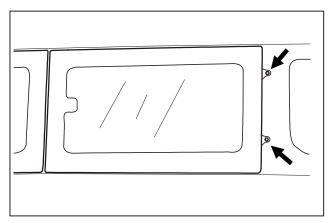
Park the vehicle in the place with ambient temperature of zero degree and don't drive it 24h before complete curing of carbamic acid ethyl ester adhesive. The curing time is determined by temperature and humidity, which shall be prolonged in case of low temperature and humidity.


5. Install remaining parts in reverse order of removal.

# Right side wall glass




#### Removal


1. Side wall glass.

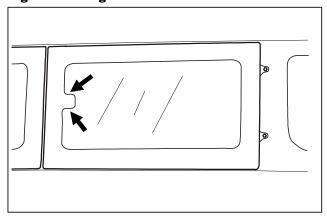


2. Remove the curtain.



3. Remove the side pillar trim panel.



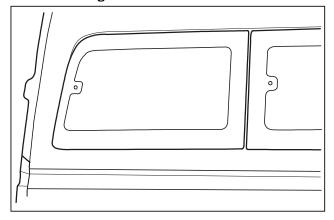

4. Remove two mounting bolts for glass.

# **Attention:**

Two service persons are necessary for the removal.

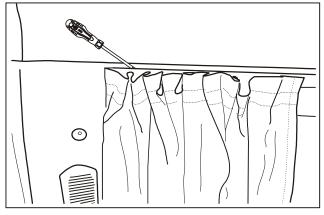
# Removal/Installation (Continued)

# Right side wall glass

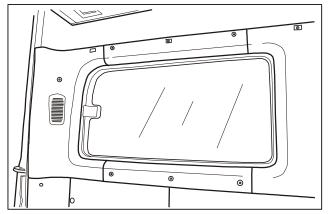



5. Remove the mounting bolts for glass and take the glass down.

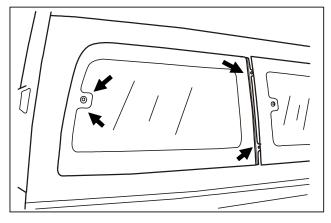
#### Installation


Install it in reverse order of removal.

# Rear side wall glass

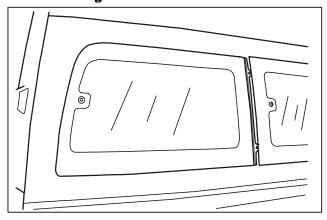



#### Removal


1. Rear side wall glass.



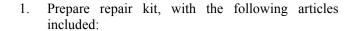
2. Remove the curtain.




3. Remove upper and lower trim panels and guard plates of pillar-D.



4. Remove the mounting bolts for glass and take the glass down carefully.


# Rear side wall glass



5. Remove the mounting bolts for glass and take the glass down carefully.

Installation
Install it in reverse order of removal.

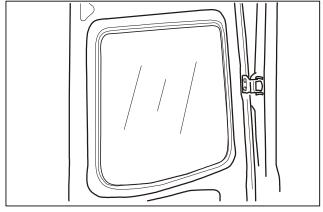
#### Double-open back door glass



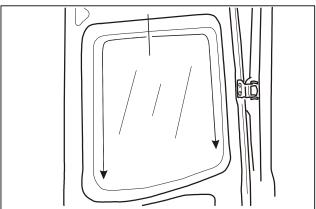
| Sealant (carbamic acid ethyl ester adhesive) | Cleaner |
|----------------------------------------------|---------|
| Primer                                       | Cloth   |
| Wool brush                                   | Felt    |
| Mat                                          | Nozzle  |

**Note:** An additional tube of sealant may be applied.

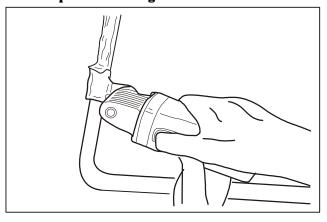
2. Install the precise cutting blade (24mm hook type blade) onto the cutter.


### Warning:

When using tools for cutting glasses, please wear gloves and goggles to avoid being injured by glass fragments generated during cutting.


#### **Attention:**

In case of the windshield to be reused, it is prohibited to use cutter or electric cutting tools.


3. Remove the double-open back door glass seal.



4. Cut the glass sealant in the direction shown in figure.



#### Double-open back door glass



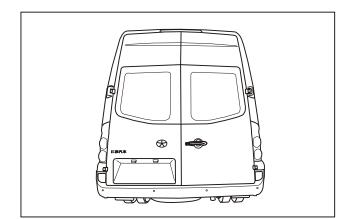


Don't contact the already trimmed surface; otherwise, bonding effect of new sealant may be influenced.

- 1. Trim the side grooves.
- Install the precise cutting blade.
   Trim the polyurethane sealant remained on grooves carefully, with polyurethane sealant in thickness of 1mm left on the body for side trimming.
- 2. Wipe the glass clean.

Trim the polyurethane sealant remained on window carefully, with polyurethane sealant in thickness of 1mm left on the glass for side trimming.

#### **Caution:**


Glass primer contains solvent that can make the primer hardened after volatilization but also can soften the surface coat of synthetic paint; therefore, "ZK" polypropylene surface paint mixed with hardener should be applied around the window.

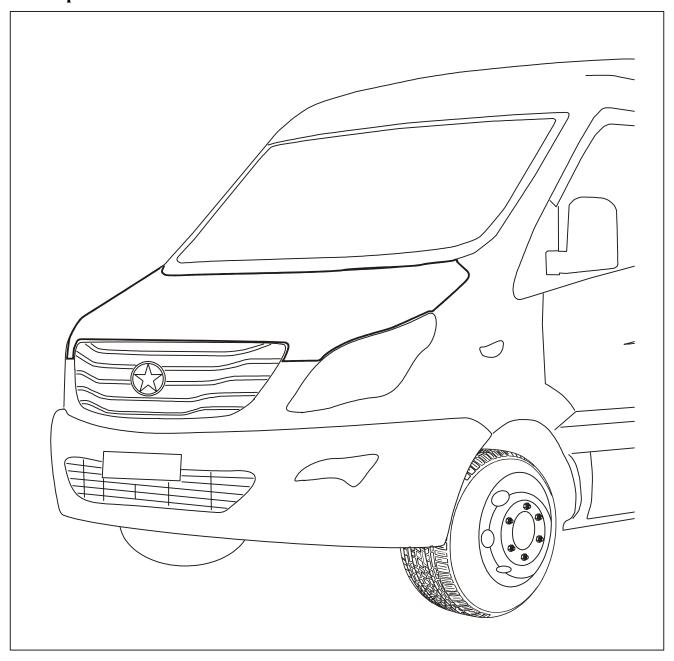
- 3. Install the glass.
- Mount the glass in place with center aligned.
- Adjust glass based on window groove height to ensure proper alignment. Adjust when necessary.
- Press the glass tightly into the sealant from center part gradually to both sides.

#### Note:

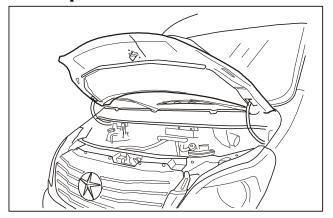
Park the vehicle in the place with ambient temperature of zero degree and don't drive it 24h before complete curing of carbamic acid ethyl ester adhesive. The curing time is determined by temperature and humidity, which is prolonged in case of low temperature and humidity.

4. Install remaining parts in reverse order of removal.

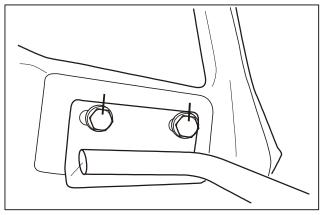



# Front/Rear Doors and Front Compartment Cover

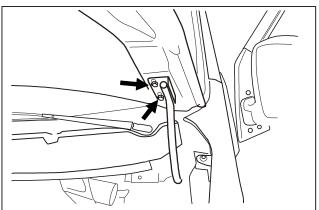
Applied models: SUNRAY products manufactured by JAC


| Subject                                  | Page |
|------------------------------------------|------|
| Instruction and Operation                |      |
| Front compartment cover                  | 24   |
| Removal/Installation                     |      |
| Front compartment cover                  | 25   |
| Radiator core bracket                    |      |
| Compartment cover release cable          | 29   |
| Right front door                         | 31   |
| Left front door                          | 34   |
| Door outer handle                        | 37   |
| Door lock cylinder                       | 39   |
| Left front door lock body                | 41   |
| Right front door lock body               |      |
| Door seal                                | 46   |
| Double-open back door                    | 47   |
| Double-open back door outer handle       |      |
| Double-open back door latch.             | 52   |
| Double-open back door lock and drive rod | 53   |
| Double-open back door lock               |      |
| Double-open back door seal               | 57   |

# **Instruction and Operation**


# Front compartment cover




### Front compartment cover



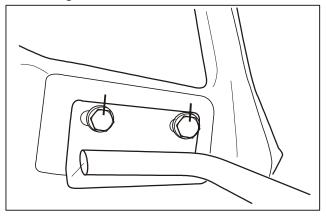
1. Open the front compartment cover.



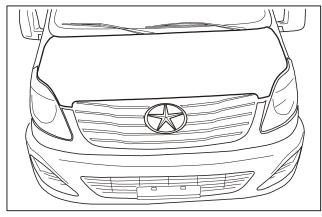
2. Mark below the mounting bolts of front fender.



3. Remove four mounting bolts on both left and right sides.



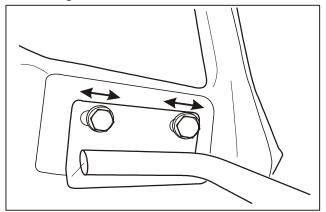

4. Two persons work together to lift the front compartment cover down.


# **BD Front/Rear Doors and Front Compartment Cover**

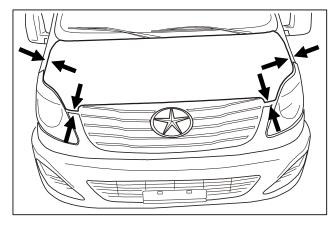
# **Removal/Installation (Continued)**

# Front compartment cover

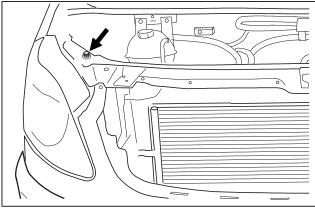



1. Install the cover with mounting marks properly aligned.



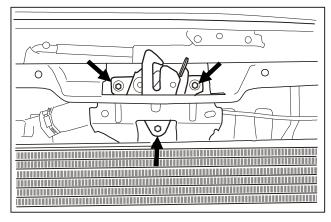

2. Two persons work together to install the front compartment cover.

# Inspection/Adjustment

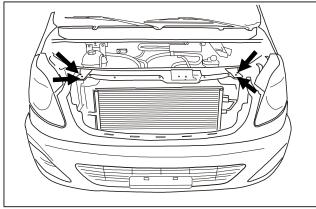

### Front compartment cover



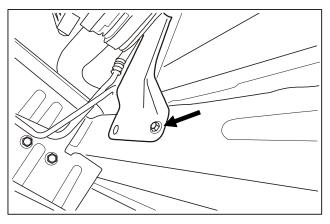
1. The adjustment direction of front compartment cover is shown in the figure.




2. As shown in the figure, clearance between left/right side of the cover and fender shall meet the requirements.



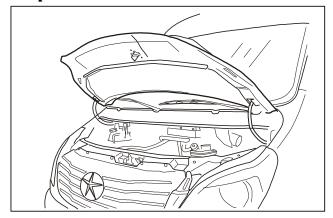

3. Adjust the height of pad and ensure the height of both fender and cover meet the requirements after the closing of front compartment cover.


#### Radiator core bracket

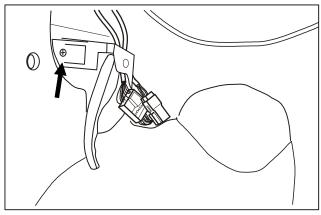


1. Remove the lock body of front compartment cover.

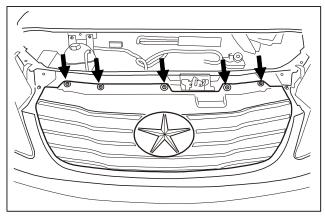



2. Remove mounting bolts for radiator core bracket.

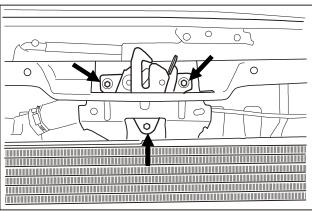



3. Remove mounting bolts for radiator core bracket.

Installation
Install it in reverse order of removal.


### Compartment cover release cable

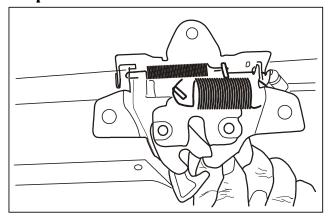



1. Open the front compartment cover.

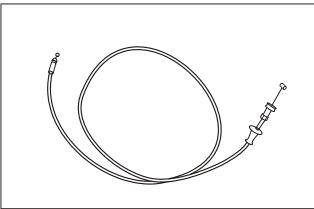


2. Remove the cable handle of front compartment cover and disconnect the cable.




3. Remove the front grille.

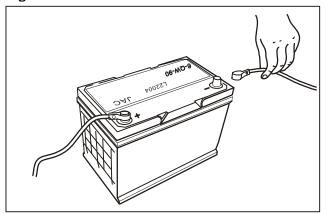



4. Remove mounting bolts for lock body.

# **Removal/Installation (Continued)**

# Compartment cover release cable

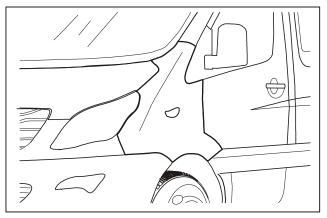



5. Disconnect the cable.



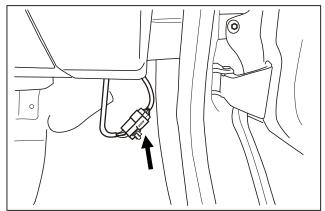
6. Remove the cable.

Installation
Install it in reverse order of removal.


# **Right front door**



1. Disconnect the negative cable of battery.

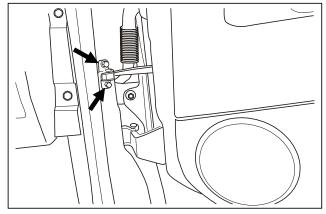



2. Remove the front bumper. (Refer to Removal of Front Bumper, Exterior Trim.)

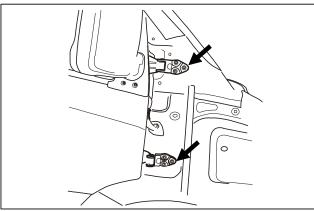


3. Remove the fender.

(Refer to Removal of Fender, Exterior Trim.)



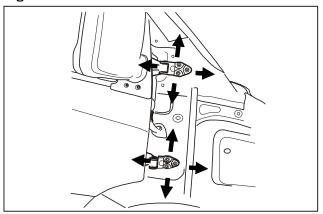

4. Disconnect the right door harness connector.


### **BD Front/Rear Doors and Front Compartment Cover**

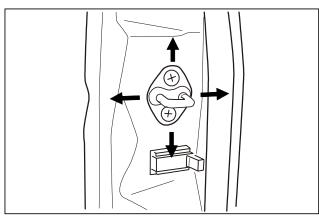
# **Removal/Installation (Continued)**

# Right front door



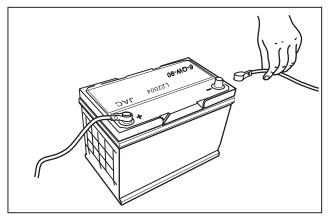

5. Remove mounting screws for right front door check.



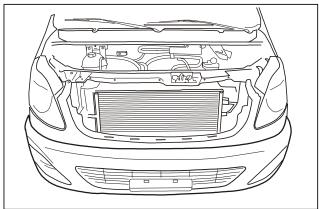

6. Remove mounting screws for hinges. Two persons shall work together to remove the door.

# Inspection/Adjustment

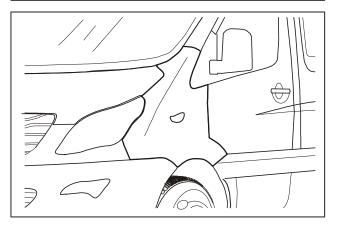
# Right front door



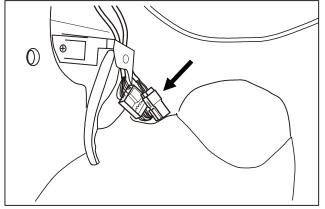

1. Adjust door hinges.




2. Adjust door latches in four directions shown in the figure.

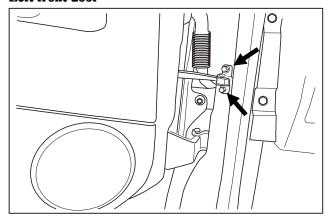

#### Left front door



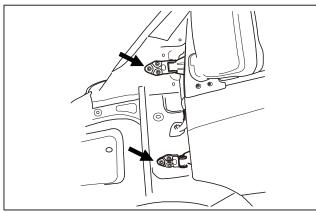

1. Disconnect the negative cable of battery.



2. Remove the front bumper. (Refer to Removal of Front Bumper, Exterior Trim.)




Remove the front fender.
 (Refer to Removal of Fender, Exterior Trim.)




4. Disconnect the door harness connector.

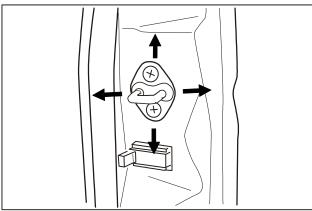
### Left front door



5. Remove mounting screws for left front door check.

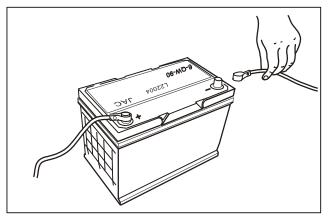


6. Remove mounting screws for hinges. Because the door is heavy, so two service persons are necessary for the removal of door.

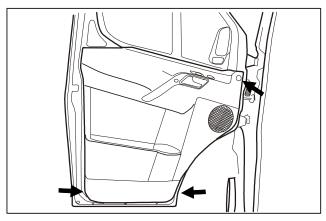

# **BD Front/Rear Doors and Front Compartment Cover**

# Inspection/Adjustment

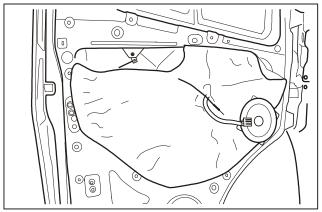
### Left front door



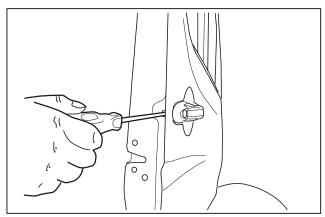

1. Adjust door hinges in four directions shown in the figure.




2. Adjust door latches in four directions shown in the figure.


### Left front door outer handle



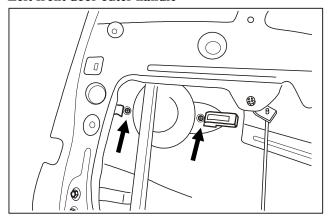

1. Disconnect the negative cable of battery.



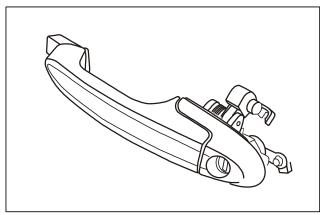
2. Remove door trim panel.



3. Remove door waterproof membrane.

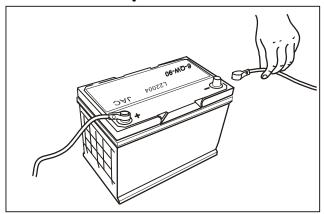



4. Unscrew mounting screws for door handle.

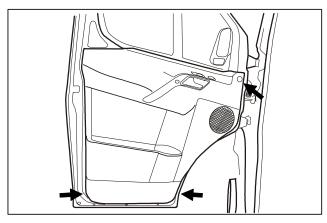

### **BD Front/Rear Doors and Front Compartment Cover**

# **Removal/Installation (Continued)**

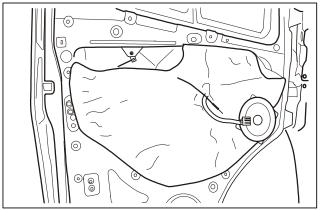
### Left front door outer handle



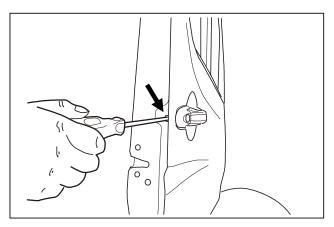

5. Disconnect the door handle linkage and remove mounting screws for door handle.




6. Take down the door handle.


# Left front door lock cylinder

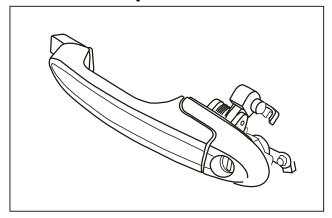



1. Disconnect the negative cable of battery.

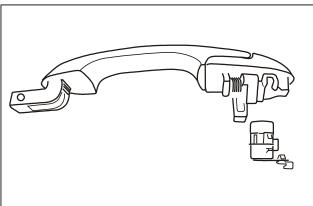


2. Remove the interior trim panel of door.



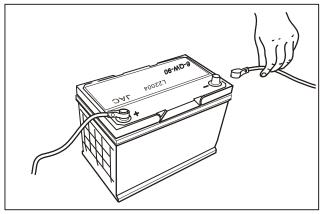

3. Remove waterproof membrane.




4. Remove mounting screws for door handle.

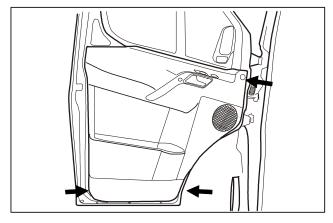
# **Removal/Installation (Continued)**

# Left front door lock cylinder

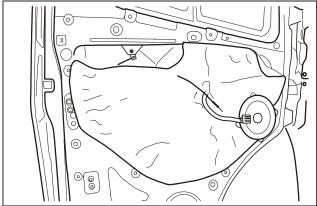



5. Remove door handle.

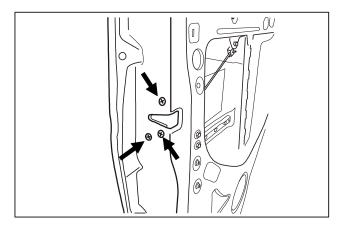



6. Remove door lock cylinder.

# Left front door lock body



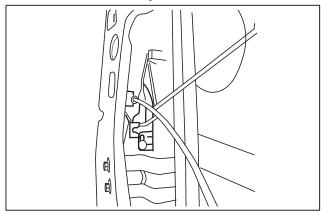

#### Removal


1. Disconnect the negative cable of battery.

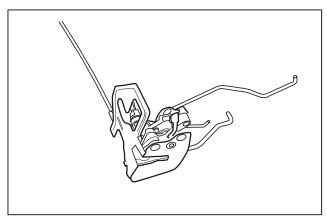


2. Remove the door trim panel.




3. Peel off the waterproof membrane.

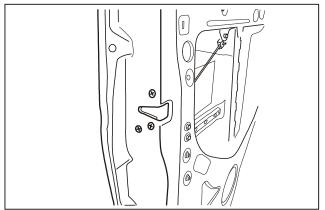



4. Remove three mounting screws for lock body.

# **Removal/Installation (Continued)**

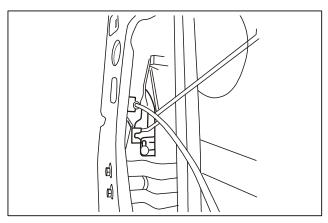
# Left front door lock body




5. Remove the linkage of lock body.

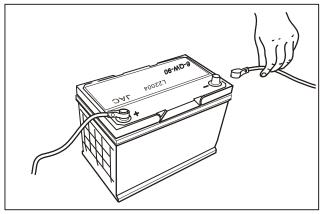


6. Take out the whole lock body.


# **Removal/Installation (Continued)**

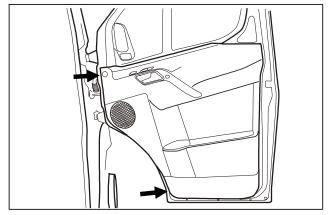
# Left front door lock body



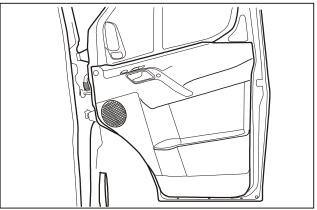

#### Installation

1. Install the lock body into door.

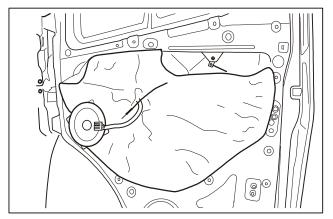



2. Connect each linkage properly. As for other parts, please install them in reverse order of removal.

# Right front door lock body



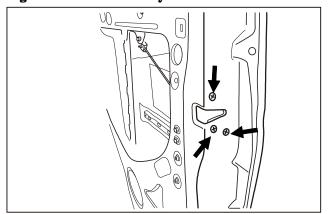

#### Removal


1. Disconnect the negative cable of battery.

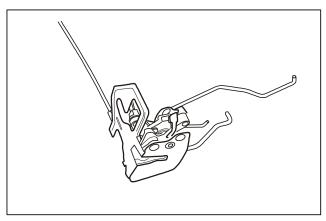


2. Remove mounting screws for door.




3. Remove door trim panel.




4. Peel off the waterproof membrane.

# **Removal/Installation (Continued)**

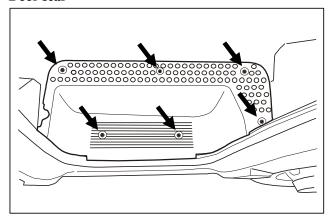
# Right front door lock body



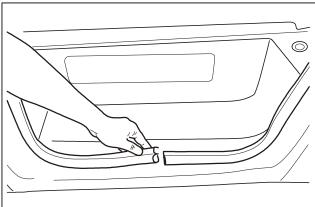
5. Remove three mounting bolts for door lock.



6. Disconnect the door linkage and then remove the lock assembly.


Installation

Install it in reverse order of removal.


### **BD Front/Rear Doors and Front Compartment Cover**

### Removal/Installation

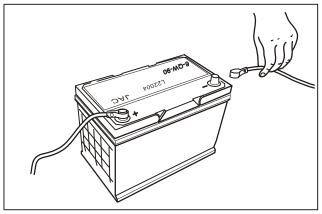
#### Door seal



1. Remove the step plate.

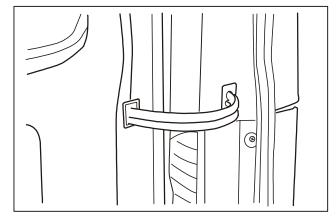


2. Peel off door seal from top to bottom.

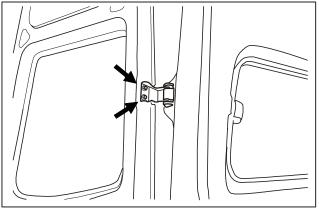

#### Attention:

After removal of door seal, please don't tension the seal forcibly.

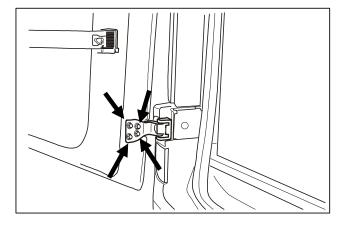
Installation


Install it in reverse order of removal.

### Double-open back door




#### Removal


1. Disconnect the negative cable of battery.



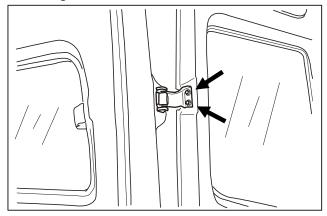
2. Disconnect the harness of left door.



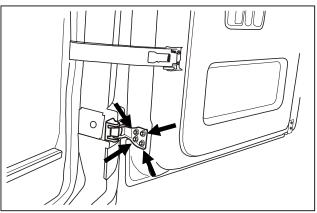
3. Remove bolts for door hinge.



4. Remove bolts for door hinge.


#### Attention:

Because the double-open back door is heavy, so jack may be applied when necessary to hold the door, during which, use some cloth wrapping the jacked part to avoid damage to paint surface.

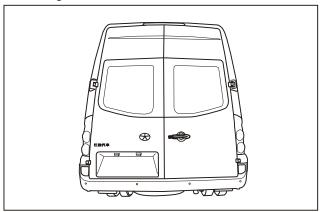

### **BD Front/Rear Doors and Front Compartment Cover**

### **Removal/Installation (Continued)**

### Double-open back door



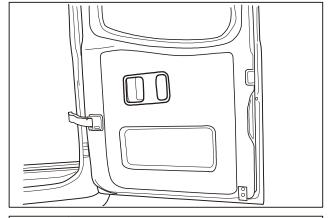
5. Remove bolts for right door hinge.




6. Remove bolts for right door hinge.

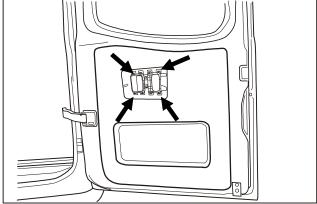
#### Attention:

Because the double-open back door is heavy, so jack may be applied when necessary to hold the door, during which, use some cloth wrapping the jacked part to avoid damage to paint surface.

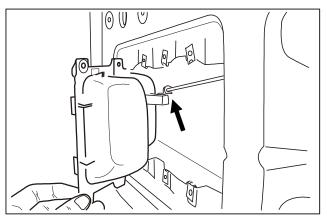

# Double-open back door



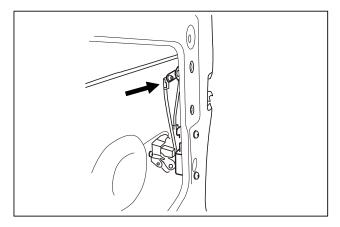
#### Installation


1. After the installation of back door, lower/upper clearance should be adjusted properly.

#### Back door outer handle



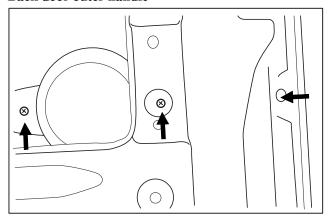

#### Removal


1. Remove inner handle shield of back door.

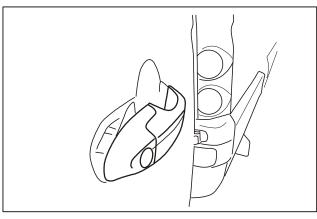


2. Remove mounting screws for back door inner handle assembly.




3. Disconnect the linkage.

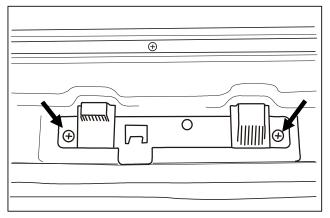



4. Disconnect the linkage with outer handle.

# Removal/Installation (Continued)

### **Back door outer handle**




5. Remove mounting screws for outer handle.



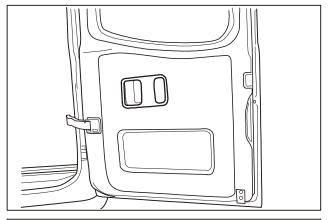
6. Remove outer handle.

Installation
Install it in reverse order of removal.

#### Back door latch

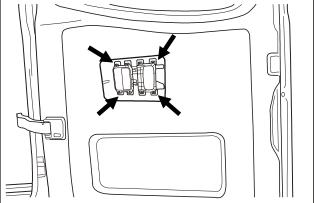


1. Remove mounting screws for back door latch.

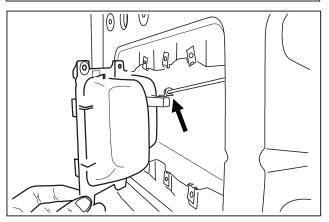



2. Remove the back door latch.

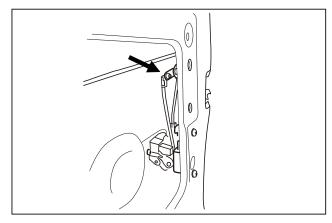
#### Installation


Install it in reverse order of removal.

### Outer lock of back door



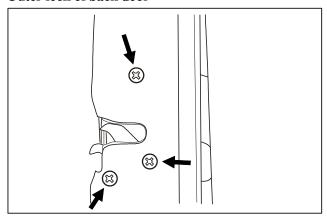

#### Removal


1. Remove inner handle shield.

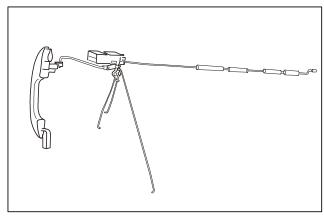


2. Remove mounting screws for inner handle.




3. Disconnect the linkage of inner handle.



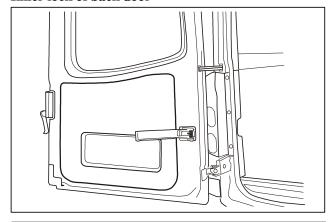

4. Disconnect the linkage with door lock.

# **Removal/Installation (Continued)**

### Outer lock of back door

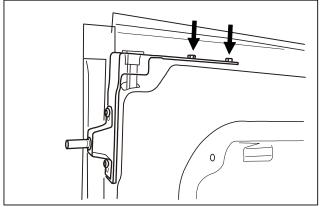


5. Remove three mounting bolts for door lock.

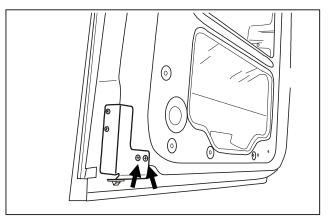



6. Remove the linkage assembly.

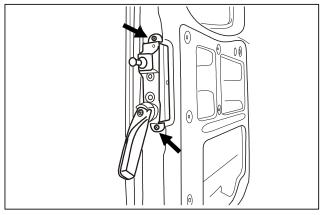
Installation


Install it in reverse order of removal.

### Inner lock of back door




#### Removal

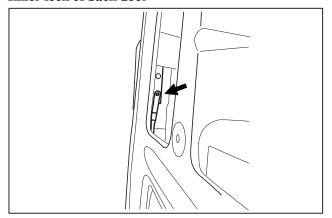

1. Remove interior trim panel of back door.



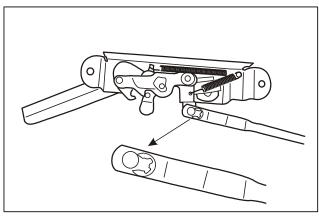
2. Remove the upper mounting bracket of door lock.



3. Remove the lower mounting bracket of door lock.



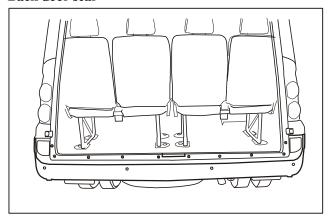

4. Remove mounting screws for door latch.


### **BD Front/Rear Doors and Front Compartment Cover**

# **Removal/Installation (Continued)**

### Inner lock of back door




5. Disconnect circlip between door latch and linkage.



6. The circlip is shown in the figure. Remove the lock linkage assembly.

Installation

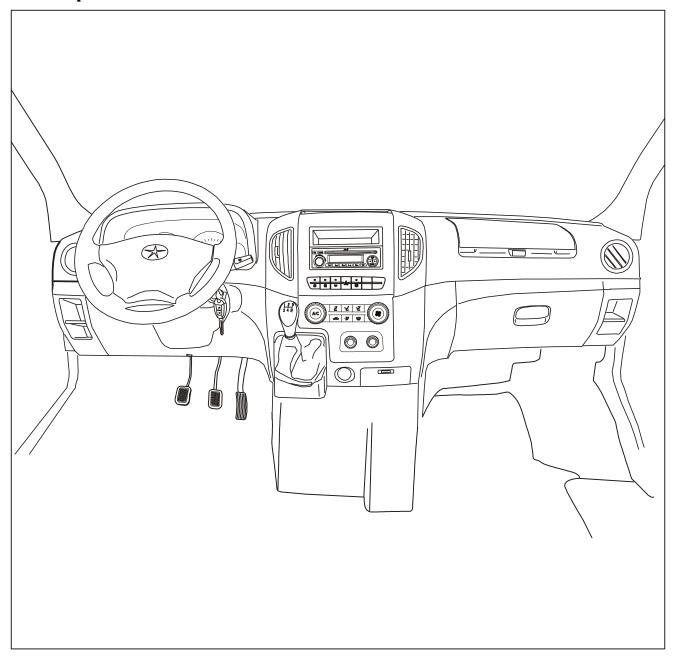
### **Back door seal**



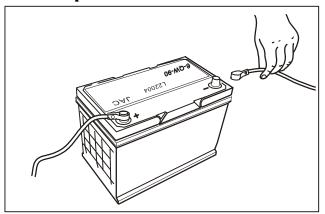
### Removal

1. Peel off the seal forcibly from top to bottom.

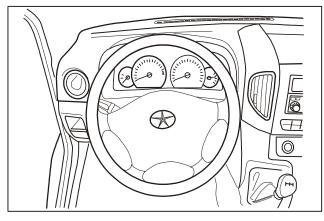
#### Installation


# **Interior/Exterior Trims**

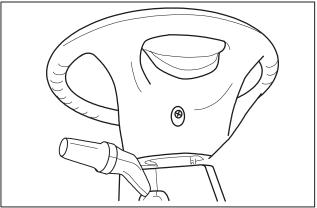
Applied models: SUNRAY products manufactured by JAC


| Subject                           | Page |
|-----------------------------------|------|
| Instruction and Operation         |      |
| Instrument panel                  | 60   |
| Removal/Installation              |      |
| Instrument panel                  | 61   |
| Roof lining.                      | 69   |
| Trim panel of A-pillar            |      |
| Trim panel of B-pillar.           |      |
| Trim panel of C-pillar.           |      |
| Side wall window trim panel       |      |
| Trim panel of D-pillar.           |      |
| Interior trim panel               |      |
| Front door trim panel             |      |
| Double-open back door trim panel  |      |
| Interior rear-view mirror.        |      |
| Sun visor                         |      |
| Curtains                          |      |
| Luggage rack                      |      |
| Step plate assembly               |      |
| Front bumper                      |      |
| Rear bumper                       |      |
| Front grille                      |      |
| Fender                            |      |
| Front door skirt trim panel       |      |
| Front side wall skirt trim panel  |      |
| Middle side wall skirt trim panel |      |
| Rear wheel skirt trim panel.      |      |
| Rear tire mud guard               | 110  |

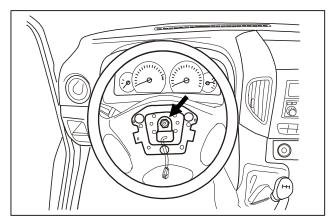
# **Instruction and Operation**


# **Instrument panel**




### **Instrument panel**



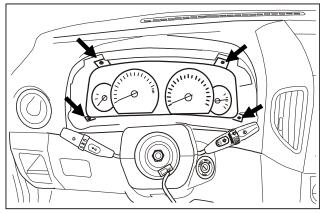

1. Remove the negative cable of battery.



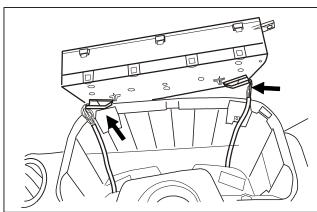
2. Remove the upper cover of steering wheel.



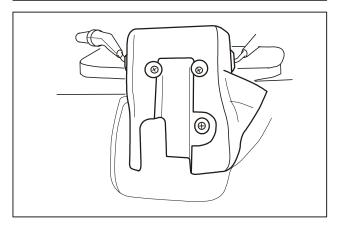
3. There are two mounting screws on the left and right sides of upper cover of steering wheel.




4. Unscrew the mounting nuts of steering wheel and take down the steering wheel.

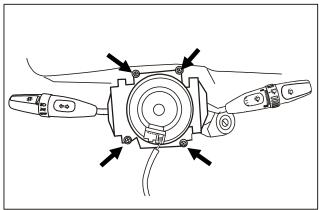

### **Instrument panel**



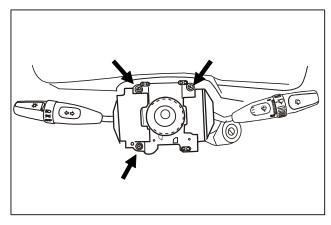

5. Remove the instrument cover.



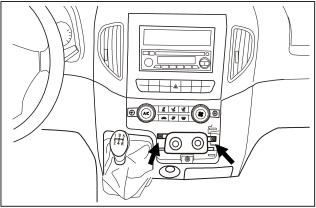
6. Remove four mounting screws of instrument.



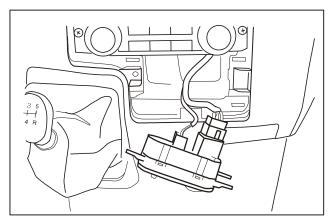

7. Remove the harness connectors of instruments.




8. Remove three mounting screws on the lower cover of steering wheel and take down the lower cover.

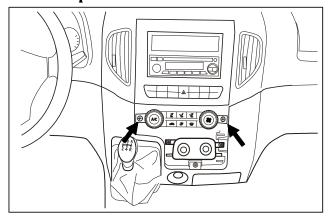

### **Instrument panel**



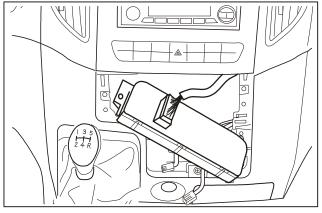

9. Remove four mounting screws of the clock spring and take down the clock spring.



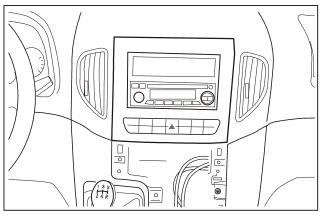
10. Remove three mounting screws of combined switch and take down the switch.



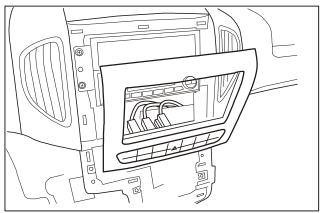

11. Remove two mounting screws of rear A/C control panel.




12. Disconnect the harness of rear A/C control panel.

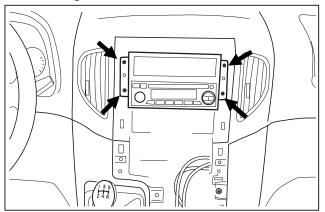

### **Instrument panel**



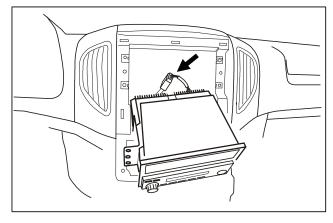

13. Remove two mounting screws of A/C control panel.



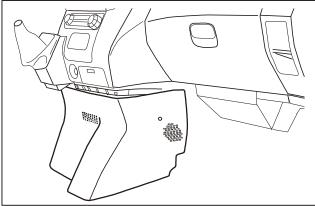
14. Disconnect the harness of A/C control panel.



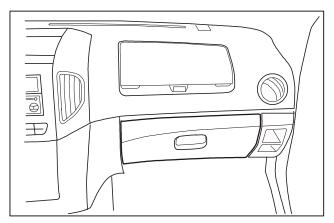

15. Remove audio cover with tool.




16. Disconnect the harness connector of audio cover.

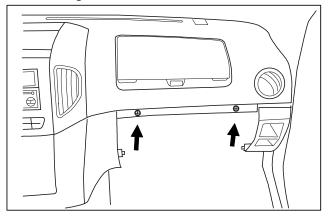

# **Instrument panel**



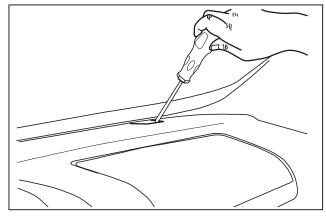

17. Remove four mounting screws of audio.



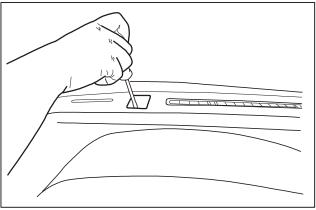
18. Disconnect the harness connector of audio.




19. Remove the lower cover of instrument panel.



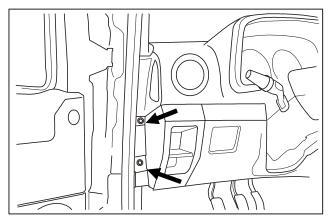

20. Remove the glove box.


### **Instrument panel**



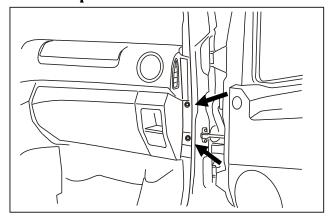
21. Loosen two mounting screws of instrument panel.



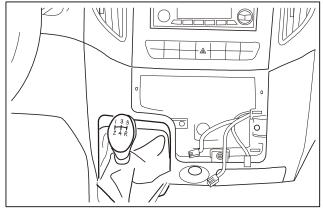

22. Remove the mounting bolt on the left side of instrument panel.



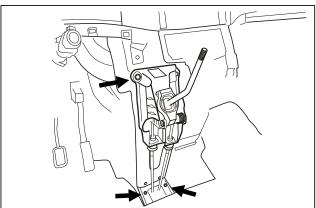
23. Remove the mounting bolt on the right side of instrument panel.


#### Note:

There are three mounting screws on instrument panel in total, respectively on the left, middle and right part.




24. Remove two mounting bolts on the left side of instrument panel.


### **Instrument panel**



25. Remove two mounting bolt on the right side of instrument panel.

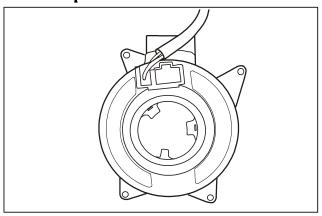


26. Remove the shift lever.



27. Remove the mounting bolts for shift lever assembly.

28. Remove the instrument panel carefully.

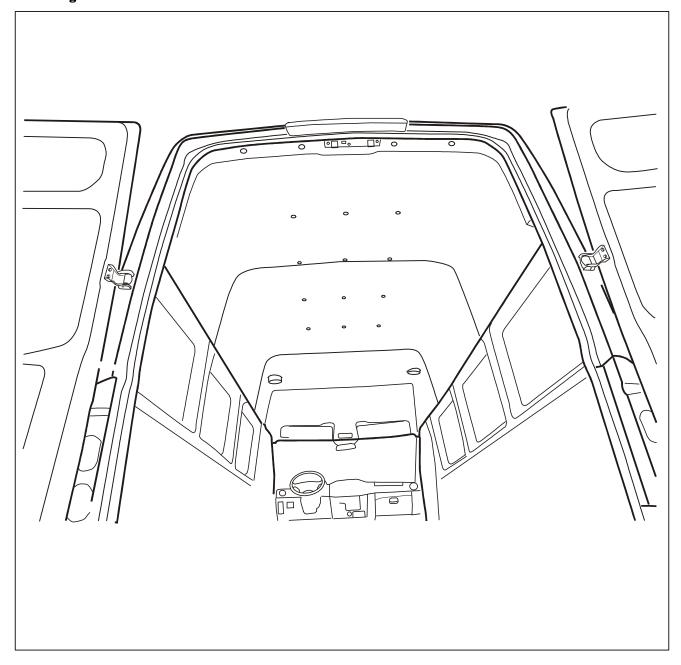

#### Note:

Two service persons are necessary for removal of instrument panel.

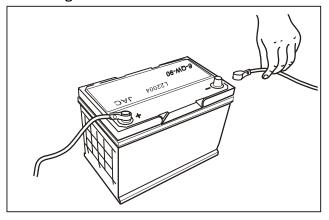
#### **BP Interior/Exterior Trims**

### Removal/Installation

#### **Instrument panel**

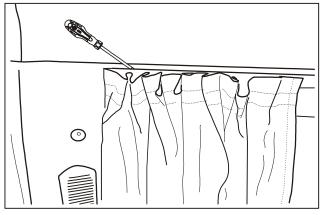



#### Installation

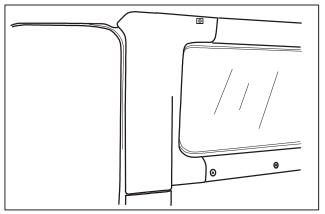

- 1. During the installation of instrument panel, the clock spring should be installed under the premise that the wheels face forward and it should be rotated clockwise until rotation disabled (rotating with proper force instead of using too much force), and then rotated counterclockwise by three circles with centering triangle marks aligned.
- 2. Install other parts in reverse order of removal.

# **Instruction and Operation**

# **Roof lining**




# **Roof lining**

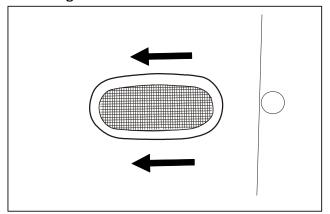



#### Removal

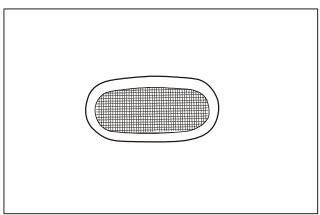
1. Remove the negative cable of battery.



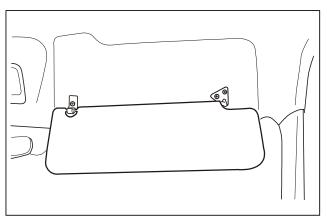
2. Remove curtains.



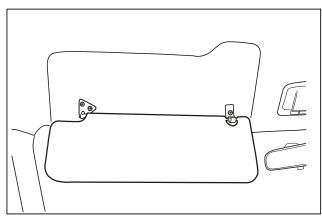

3. Remove upper and lower trim panels of B-pillar.




4. Remove luggage racks on bolt left and right sides.

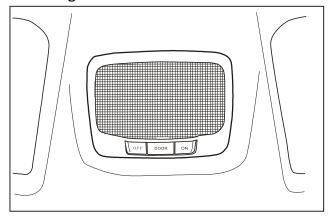

# **Roof lining**



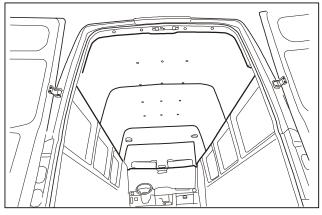

5. Remove interior ceiling lamp 1.



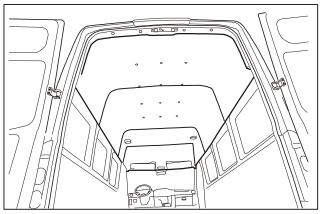
6. Remove interior ceiling lamp 2.



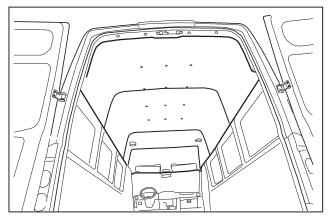

7. Remove right sun visor.




8. Remove left sun visor.

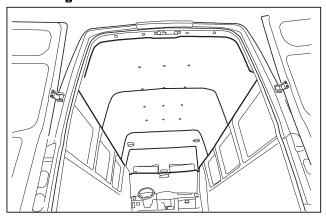

### **Roof lining**




9. Remove front interior ceiling lamp.



10. Remove clips of rear roof lining and take down the rear roof lining.



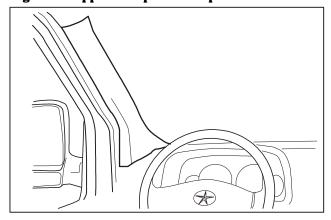

11. Remove clips of middle roof lining and take down the middle roof lining.



12. Remove clips of front roof lining and take down the front roof lining.

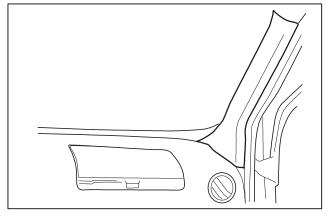
### **Roof lining**




### Installation

Two service persons are necessary for installation of roof lining, to avoid fracture of roof interior trim.

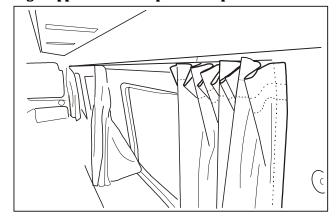
#### **BP Interior/Exterior Trims**


### Removal/Installation

# Right/Left upper trim panel of A-pillar

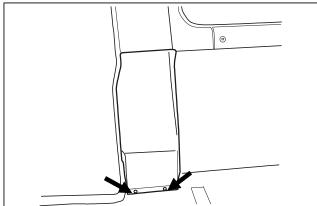


#### Removal

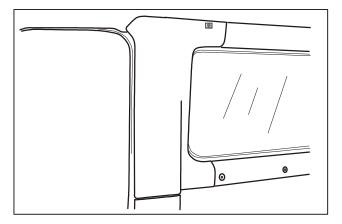

1. Remove left upper trim panel of A-pillar with tool.



2. Remove right upper trim panel of A-pillar with tool.


### Installation

### Right upper/lower trim panel of B-pillar

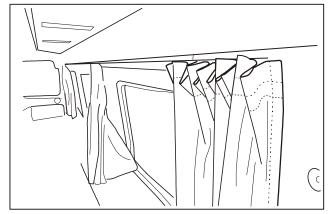



#### Removal

1. Remove curtains.

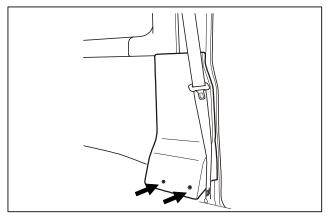


2. Remove two mounting screws for right lower trim panel of B-pillar and then remove the lower trim panel.

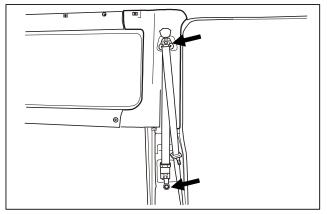



3. Remove a mounting screw for upper trim panel of B-pillar and then remove the upper trim panel.

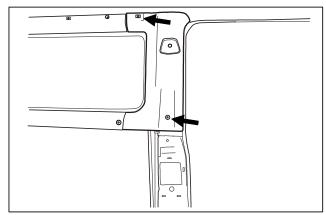
Installation
Install it in reverse order of removal.


### Removal/Installation for B-pillar Trim Panel

### Left upper/lower trim panel of B-pillar




#### Removal


1. Remove curtains.



2. Remove two mounting screws for left lower trim panel of B-pillar and then remove the lower trim panel.



3. Remove mounting bolts for seat belt.

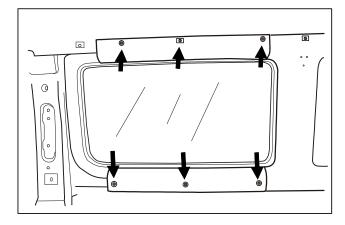


4. Remove mounting screws for right upper trim panel of B-pillar and then remove the upper trim panel.

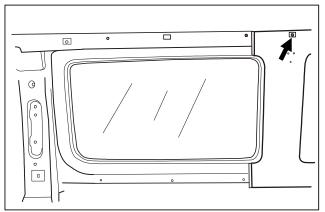
# Left upper/lower trim panel of B-pillar



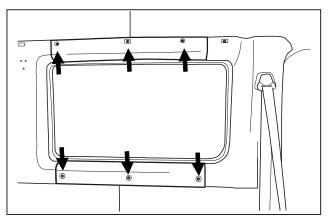
Installation
Install it in reverse order of removal.


### Removal/Installation for C-pillar Trim Panel

# Left/Right trim panel of C-pillar

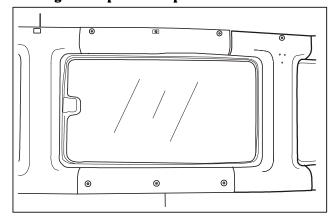



#### Removal

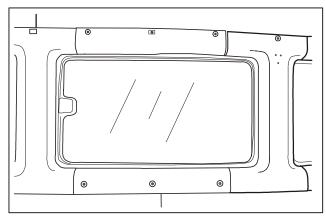

1. Remove curtains.



Remove right upper and lower trim panels of C-pillar.

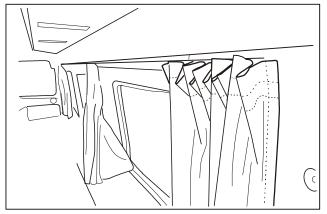



3. Remove right trim panel of C-pillar.



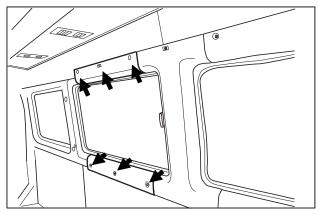

4. Remove left upper and lower trim panels of C-pillar.

# Left/Right trim panel of C-pillar

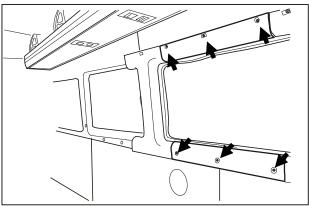



5. Remove left trim panel of C-pillar.

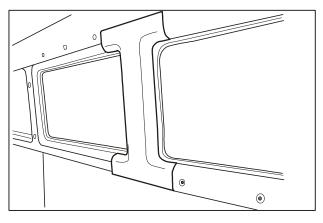



Installation
Install it in reverse order of removal.

### Right side wall window trim panel

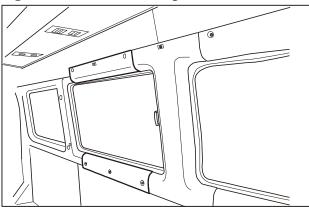



#### Removal


1. Remove curtains.

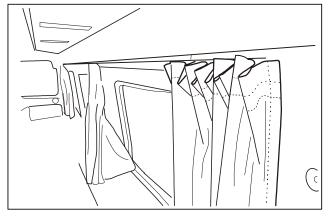


2. Remove upper trim panel 1 and lower trim panel 1 of right side wall window pillar.



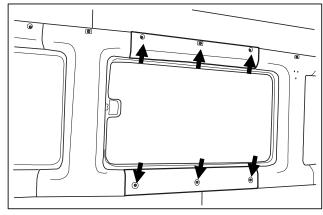

3. Remove upper trim panel 2 and lower trim panel 2 of right side wall window pillar.




4. Remove trim panel for right side wall window pillar.

# Right side wall window trim panel

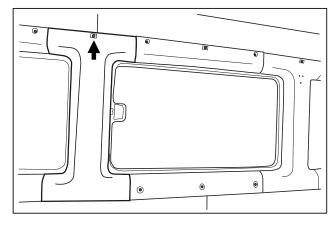



#### Installation

### Left side wall window trim panel

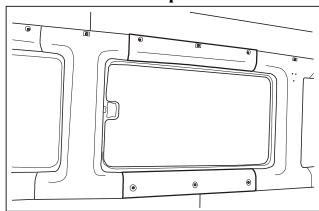


#### Removal


1. Remove curtains.

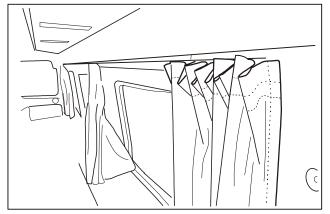


2. Remove upper trim panel 1 and lower trim panel 1 of left side wall window pillar.



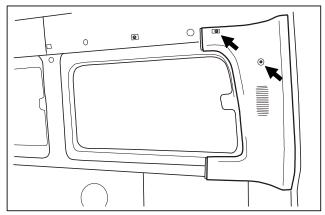

3. Remove upper trim panel 2 and lower trim panel 2 of left side wall window pillar.



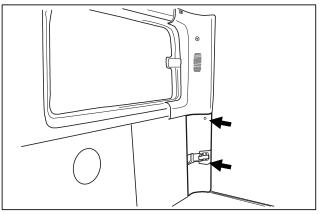

4. Remove left side wall window pillar.

# Left side wall window trim panel




Installation
Install it in reverse order of removal.

### Upper/lower trim panel of right D-pillar




#### Removal

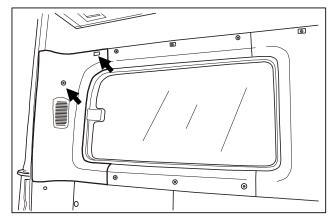
1. Remove curtains.



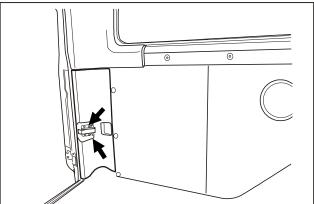

2. Remove mounting screws for upper trim panel of right D-pillar and take down the upper trim panel.



3. Remove mounting screws for lower trim panel of right D-pillar and take down the lower trim panel.


Installation

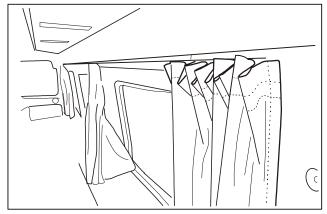
### Upper/lower trim panel of left D-pillar




#### Removal

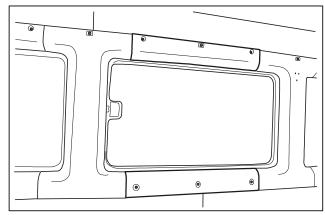
1. Remove curtains.



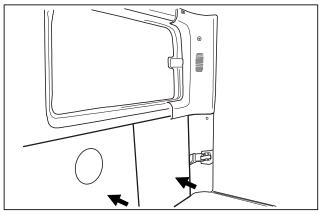

2. Remove mounting screws for upper trim panel of left D-pillar and take down the upper trim panel.



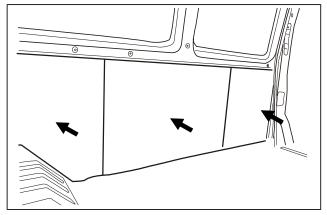
3. Remove mounting screws for lower trim panel of left D-pillar and take down the lower trim panel.


Installation

### Left trim panels 1, 2, 3 and 4 and right trim panels 1, 2 and 3

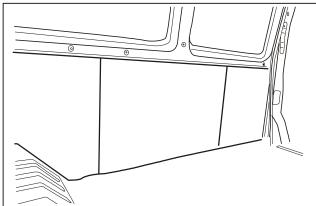



#### Removal


1. Remove curtains.

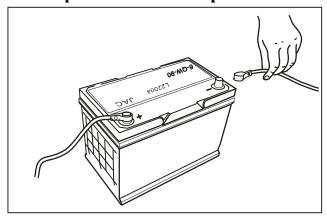


2. Remove upper and lower trim panels for right B-pillar, C-pillar, side pillar and D-pillar.



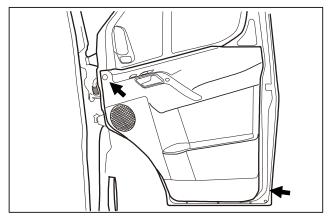

3. Remove right trim panels 1, 2 and 3.




4. Remove upper and lower trim panels for left B-pillar, C-pillar, side pillar and D-pillar. Remove left trim panels 1, 2, 3 and 4.

# Left trim panels 1, 2, 3 and 4 and right trim panels 1, 2 and 3

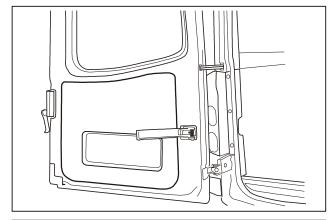



Installation
Install it in reverse order of removal.

# Left trim panel of front door trim panel

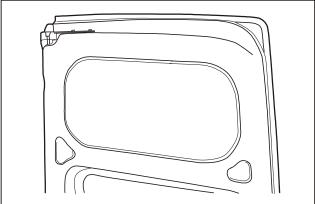


#### Removal


1. Remove the negative cable of battery.



2. Remove mounting screws of door trim panel and take down the trim panel.


#### Installation

### Left door

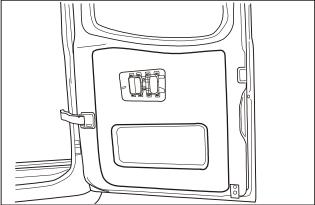


#### Removal

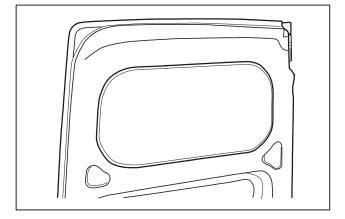
1. Pry up the left door lower trim panel with tool carefully.



2. Pry up the left door upper trim panel with tool carefully.


Installation

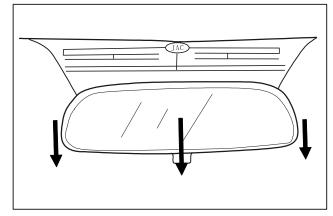
# Right door




#### Removal

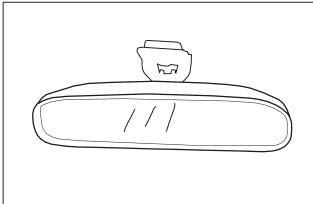
1. Remove inner handle cover of door.




2. Remove the right door lower trim panel with tool.



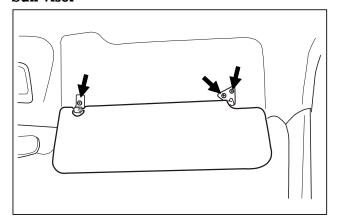
3. Remove right door upper trim panel with tool.


Installation

### Interior rear-view mirror

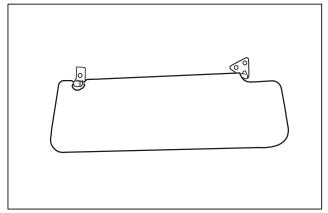


#### Removal

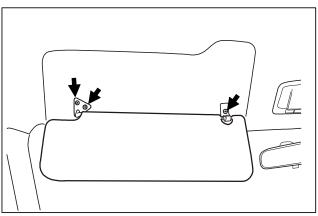

1. Pull the interior rear-view mirror downwards carefully in the direction shown in the figure.



2. Take out the interior rear-view mirror assembly.


Installation

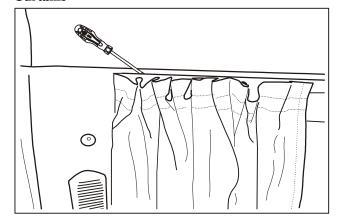
## **Sun visor**




#### Removal

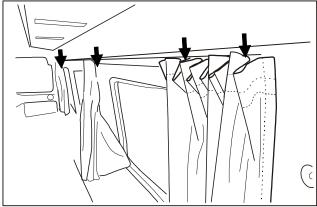
1. Remove mounting screws of right sun visor.



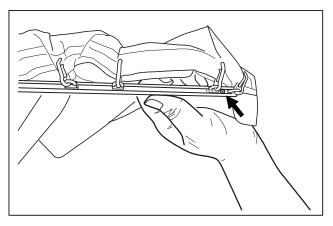

2. Take down the sun visor.



3. Remove mounting screws of left sun visor and take down the sun visor.


Installation

## Curtains

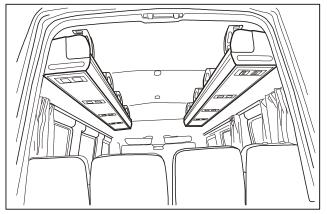



#### Removal

1. Pry out the curtain slide rail with screwdriver and make it separated from the clips mounted on the trim panel.

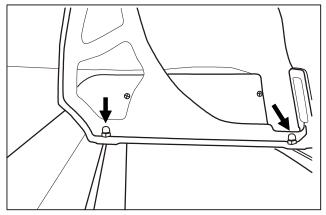


2. Clips are positioned at the middle of each pillar and at the middle of each side window glass.

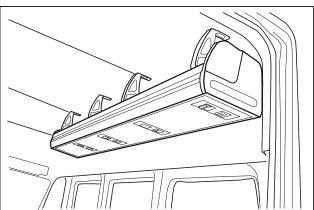



3. Remove the mounting screws of curtain plug and take down the curtain.

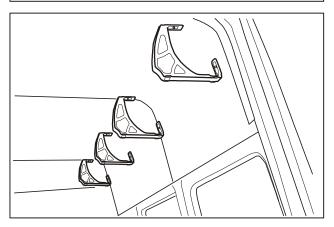
#### Installation


Install it in reverse order of removal. Install the slide rail in order from front to back.

## Luggage rack

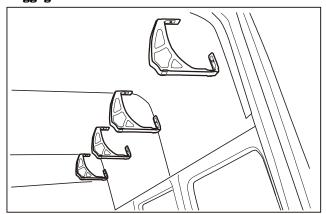



#### Removal


1. Two service persons are necessary for removal of luggage rack, in order to avoid personal injury and damage to luggage rack.



2. Remove mounting nuts for luggage rack.

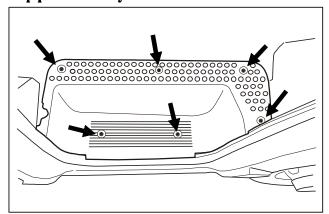



3. Hold the luggage rack during the removal.



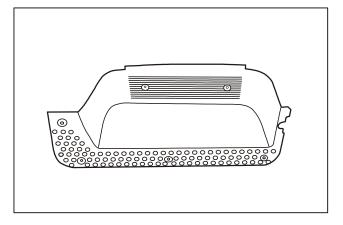
4. Remove brackets of luggage rack.

# Luggage rack




Installation
Install it in reverse order of removal.

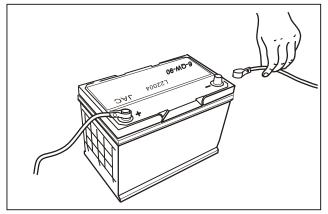
#### **BP Interior/Exterior Trims**


## Removal/Installation

# Step plate assembly

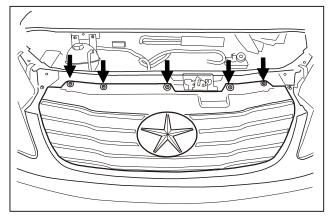


#### Removal

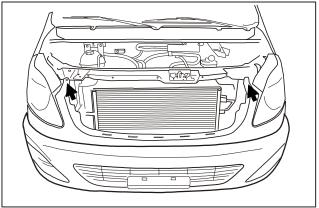

1. Remove mounting screws of step plate.



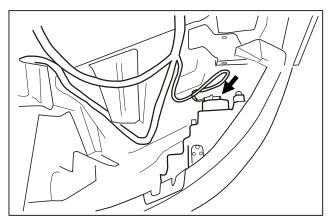
2. Take down the step plate assembly.


## Installation

## Front bumper

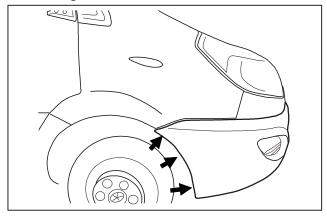



#### Removal

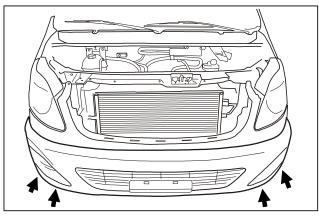

1. Remove the negative cable of battery.



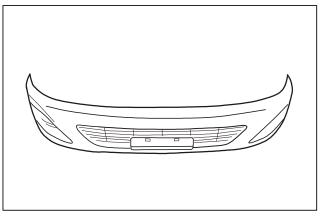
2. Remove screws of front grille and take down the front grille.




3. Remove the front trim panel.




4. Disconnect the harness connector of fog lamp.


## Front bumper

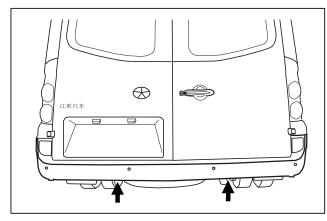


5. Remove mounting screws of bumper.

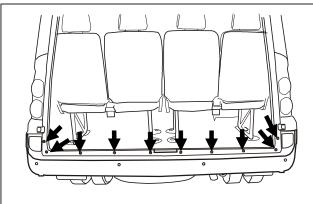


6. Remove four mounting screws of bumper.

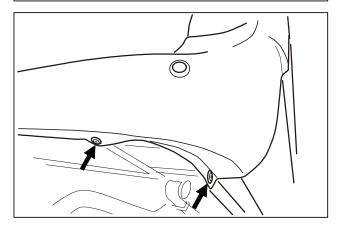



7. Take down front bumper.

Installation Install it in reverse order of removal.


# Rear bumper



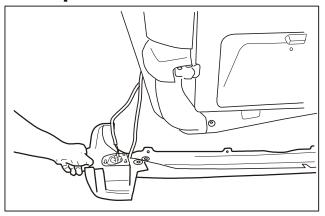

1. Remove the negative cable of battery.



2. Remove mounting screws below rear bumper.



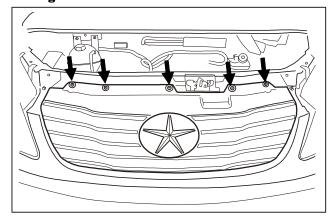
3. Remove mounting screws from rear bumper.




4. Remove side mounting screws from rear bumper.

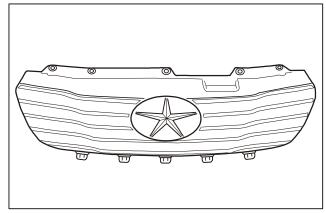
## **BP Interior/Exterior Trims**

# **Removal/Installation (Continued)**


## Rear bumper



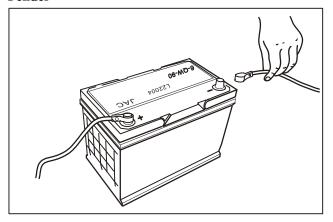
5. Disconnect the harness connector of rear bumper and take down the rear bumper.


Installation
Install it in reverse order of removal.

# Front grille

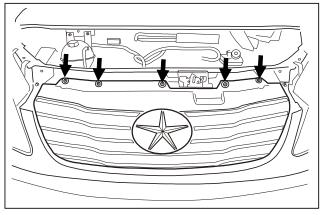


#### Removal

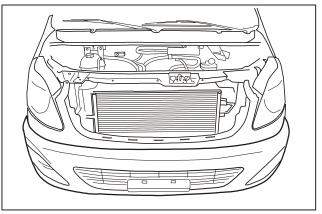

1. Remove mounting screws for front grille.



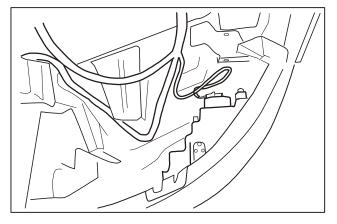
2. Take down the front grille.


## Installation

## Fender

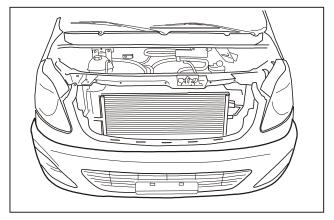



#### Removal

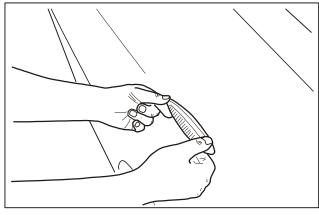

1. Remove the negative cable of battery.



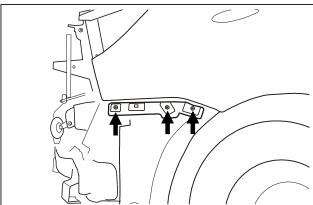
2. Remove the front grille.



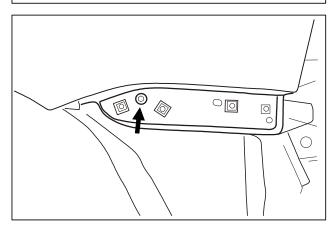

3. Remove front trim panel and headlamps.




4. Disconnect harness connector of fog lamp.

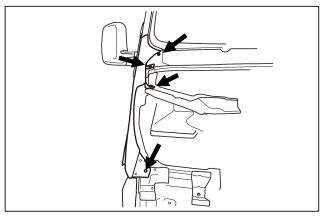

## Fender



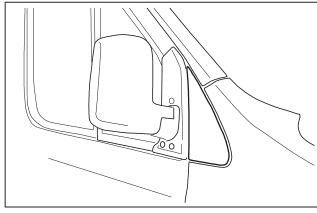

5. Remove front bumper.



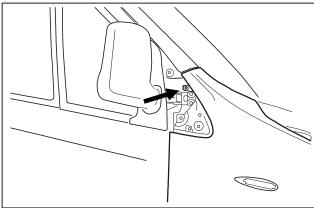
6. Remove clearance lamps.



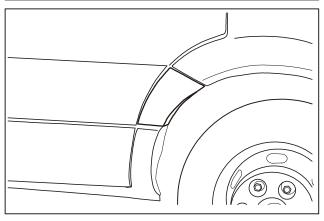

7. Remove pads for front bumper.




8. Remove mounting bolts for fender.

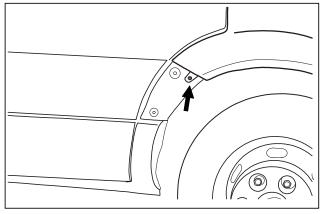

## Fender



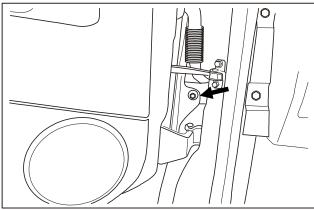

9. Remove mounting bolts for fender.



10. Remove rear-view mirror trim panel.




11. Remove mounting bolts for fender.




12. Remove front wheel trim panel.

## Fender



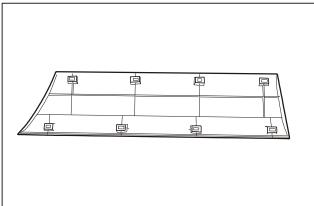
13. Remove mounting screws for fender.




14. Remove mounting screws for fender and take down the fender.

Installation
Install it in reverse order of removal.

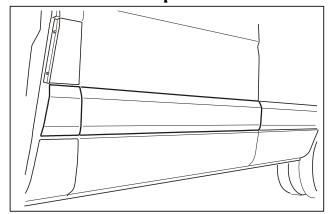
#### **BP Interior/Exterior Trims**


## Removal/Installation

## Front door skirt trim panel

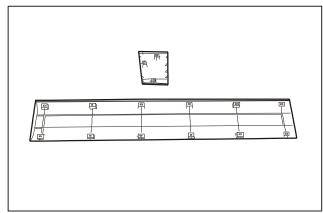


#### Removal


1. Remove front door skirt trim panel with tool.



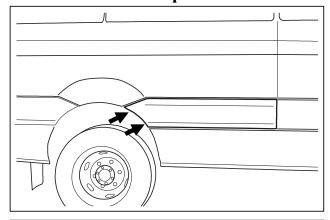
2. Clip position of front door skirt trim panel.


Installation

## Front side wall skirt trim panel

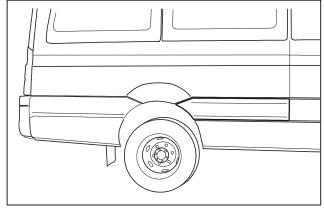


#### Removal


1. Remove front side wall skirt trim panel with tool.



2. Clip position of front side wall skirt trim panel.


Installation

## Middle side wall skirt trim panel



#### Removal

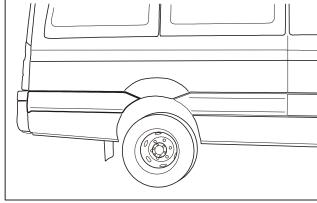
1. Remove mounting screws for middle side wall skirt trim panel.



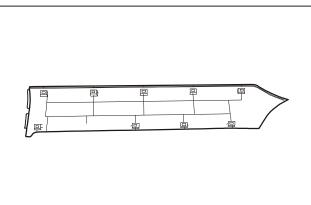
2. Remove middle side wall skirt trim panel with tool.



3. Clip position of middle side wall skirt trim panel.


Installation

## Rear wheel skirt trim panel



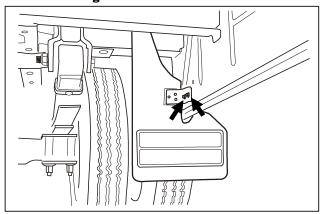

#### Removal

1. Remove mounting screws.



2. Remove rear wheel skirt trim panel with tool.




3. Clip position of rear wheel skirt trim panel.

Installation

## **BP Interior/Exterior Trims**

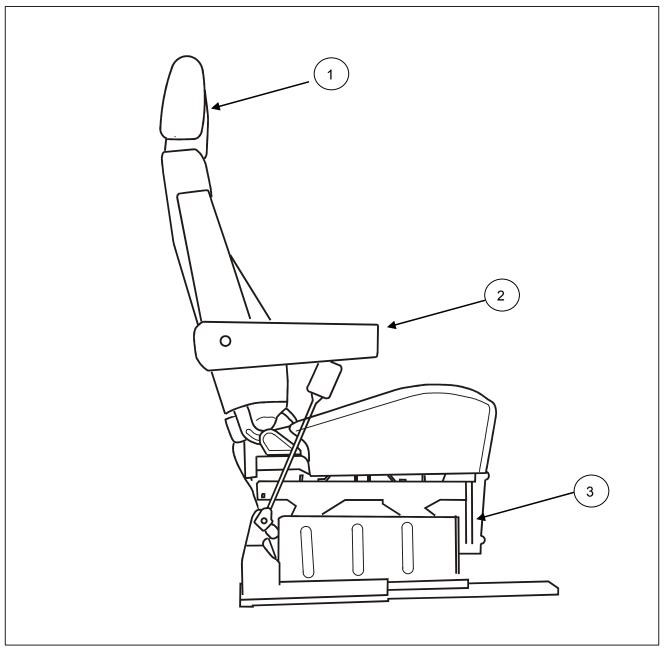
## Removal/Installation

# Rear tire mud guard



#### Removal

1. Remove mounting screws for rear tire mud guard and take down the mud guard.


#### Installation

# **Seats**

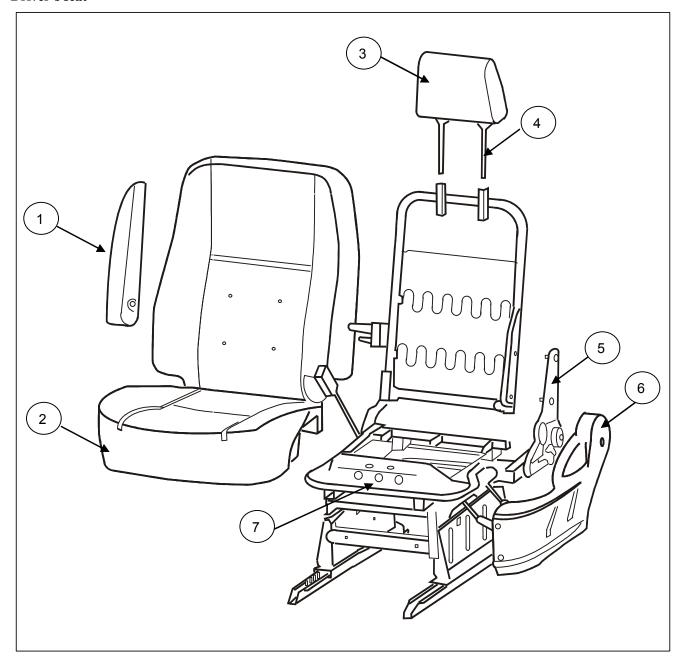
| Applied models: | <b>SUNRAY</b> | products | manufactured | by | JA | ( |
|-----------------|---------------|----------|--------------|----|----|---|
|                 |               |          |              |    |    |   |

| Subject                         | Page |
|---------------------------------|------|
| Instruction and Operation       |      |
| Driver's seat                   |      |
| Front row twin bench-type seat. | 114  |
| Front row individual seat       | 115  |
| Removal/Installation            |      |
| Driver's seat                   |      |
| Front row twin bench-type seat. | 119  |
| Front row individual seat       |      |
| back row seats                  |      |

## Components of driver's seat

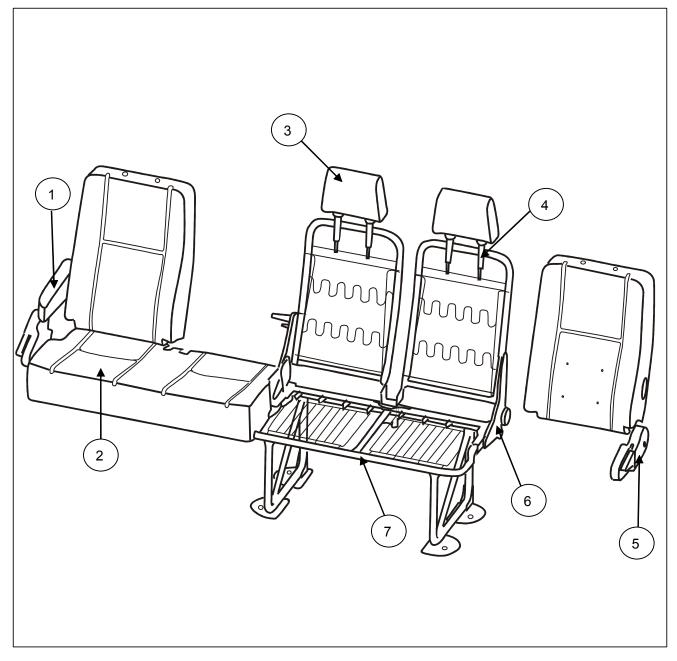


1. Vertical adjustable headrest


2. Angle adjustable armrest

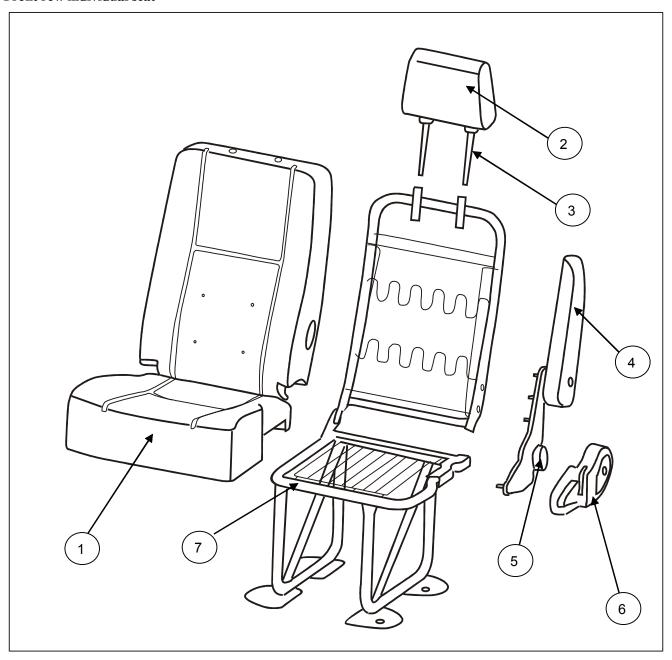
3. Front and rear height adjustable seat

Eight adjusting ways for driver's seat can be achieved, viz. forward/rearward and upward/downward adjustment of seat, angle forward/rearward adjustment


of backrest, upward/downward adjustment of headrest, which can provide the driver with comfortable driving environment.

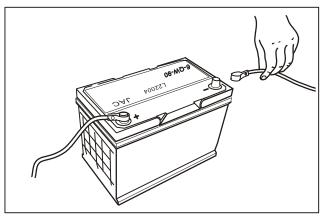
## Driver's seat



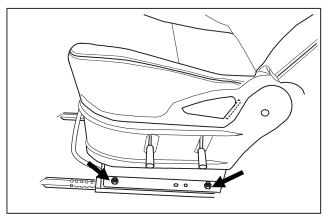

- 1. Armrest
- 2. Backrest cushion
- 5. Angle adjuster
- 6. Plastic cover
- 3. Headrest assembly
- 7. Backrest frame
- 4. Headrest latch

## Front row twin bench-type seat

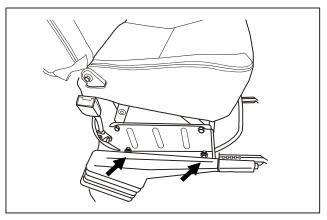



- 1. Armrest
- 5. Plastic cover
- 2. Backrest cushion
- 6. Angle adjuster
- 3. Headrest assembly
- 7. Backrest frame
- 4. Headrest latch

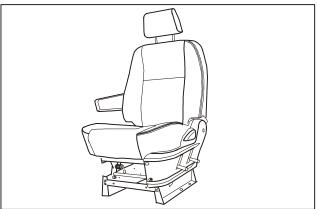
## Front row individual seat




- 1. Backrest cushion
- 2. Headrest assembly
- 5. Angle adjuster
- 6. Plastic cover
- 3. Headrest latch
- 7. Backrest frame
- 4. Armrest

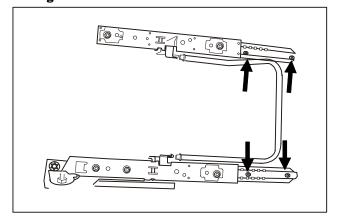

#### Driver's seat



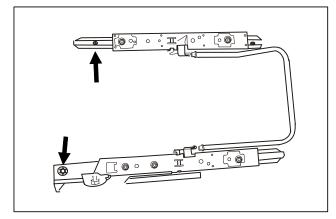

1. Disconnect the negative cable of battery.



2. Remove two mounting nuts on the left side of seat.




3. Remove two nuts on the right side of seat and disconnect the harness.

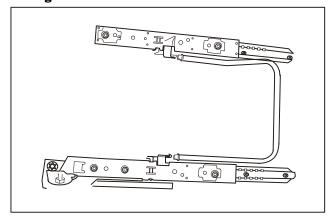



4. Take down the driver's seat from sliding rail.

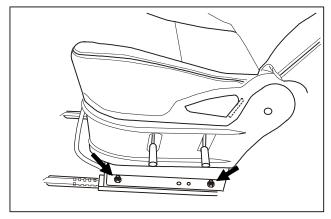
## Sliding rail and seat



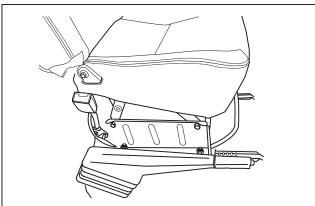
1. Push the sliding rail rearwards and remove four mounting bolts.




2. Pull the sliding rail forwards and remove three mounting bolts on the rear part.



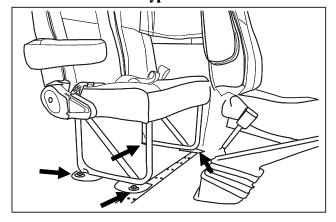

3. Take down the sliding rail assembly.


## Sliding rail and seat



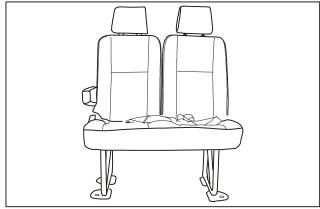
1. Install the sliding rail onto the vehicle and install seven mounting bolts in reverse order of removal.




2. Install the seat onto sliding rail and tighten two mounting nuts on the left side.



3. Tighten two mounting nuts on the right side in the same way and tighten nuts on both sides to the specified torque.


Tightening torque: 45∼55N.m

# Front row twin bench-type seat



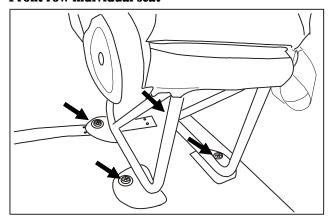
#### Removal

1. Remove four mounting bolts below front row seat.



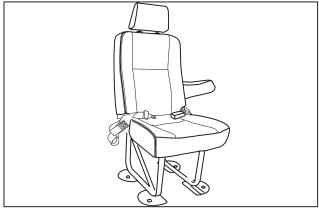
2. Remove the front row twin bench-type seat from vehicle.

#### Installation


1. Install the front row seat in reverse order of removal.

#### Note:

Bolts should be tightened to the specified torque.


Tightening torque: 45~55N.m

#### Front row individual seat



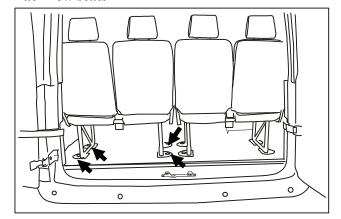
#### Removal

1. Remove four mounting bolts below front row seat.



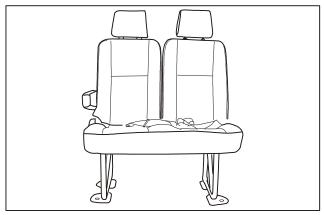
2. Remove the front row individual seat from vehicle.

#### Installation


1. Install the front row individual seat in reverse order of removal.

#### Note:

Bolts should be tightened to the specified torque.


Tightening torque: 45~55N.m

## **Back row seats**



#### Removal

1. Remove four mounting bolts below back row seats.



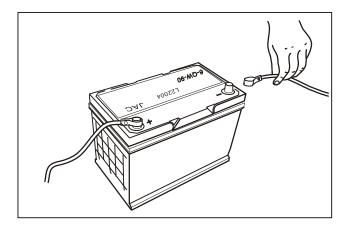
2. Remove the back row twin bench-type seat from vehicle.

#### Installation

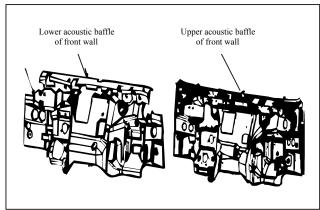
1. Install the back row twin bench-type seat in reverse order of removal.

Note:

Bolts should be tightened to the specified torque.

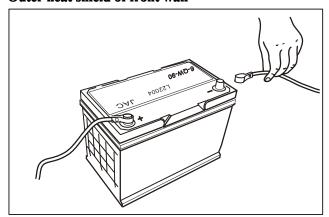

Tightening torque: 45~55N.m

# **Sealing Elements**

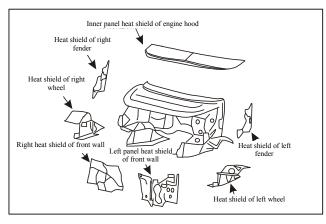

Applied models: SUNRAY products manufactured by JAC

| Subject                              | Page |
|--------------------------------------|------|
| Removal/Installation                 |      |
| Inner acoustic baffle of front wall. | 124  |
| Outer heat shield of front wall.     |      |
| Front door seal                      |      |
| Rear door seal                       | 126  |
| Fender seal.                         | 126  |
| Front compartment seal.              |      |
| Waterproof membrane                  |      |

## Inner acoustic baffle of front wall



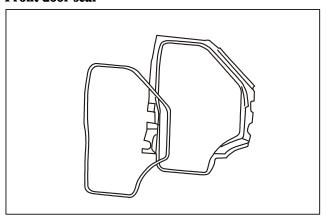

1. Disconnect the negative cable of battery.




- 2. Remove upper acoustic baffle of front wall.
- 3. Clip
- 4. Remove lower acoustic baffle of front wall.

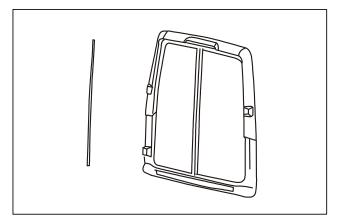
#### Outer heat shield of front wall



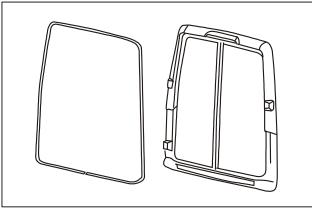

1. Disconnect the negative cable of battery.



- 2. Remove clips.
- 3. Remove inner panel heat shield of engine hood.
- 4. Remove heat shields of left and right fenders.
- 5. Remove heat shields of left and right wheels.
- 6. Remove front and right acoustic baffles of front wall.


## Removal/Installation

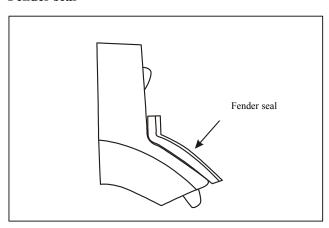
#### Front door seal




1. Remove the front door seal.

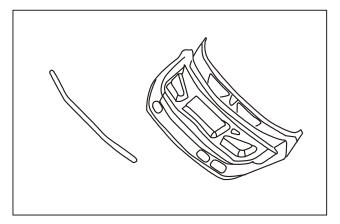
## Rear door seal



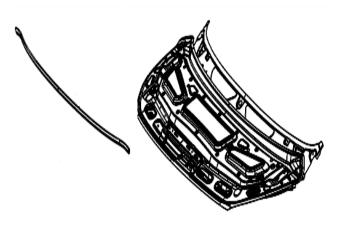

1. Remove middle seal of rear door frame.



2. Remove seal of rear door frame.

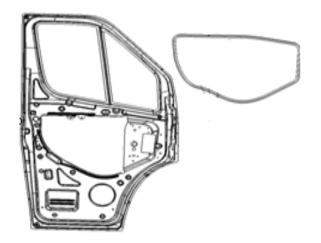

## Removal/Installation

## Fender seal




1. Remove fender seal.

## Front compartment seal



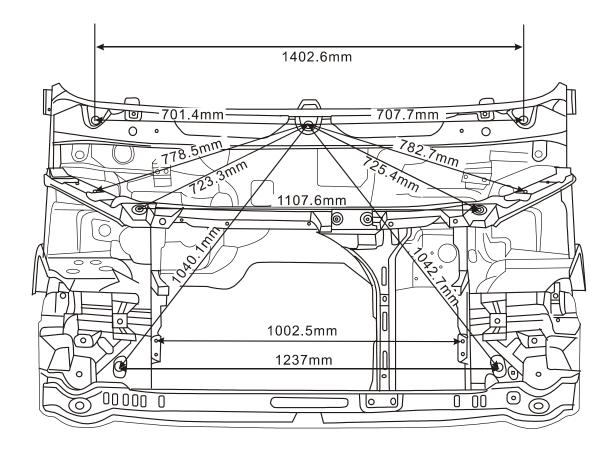

1. Remove the rear end seal of front compartment.



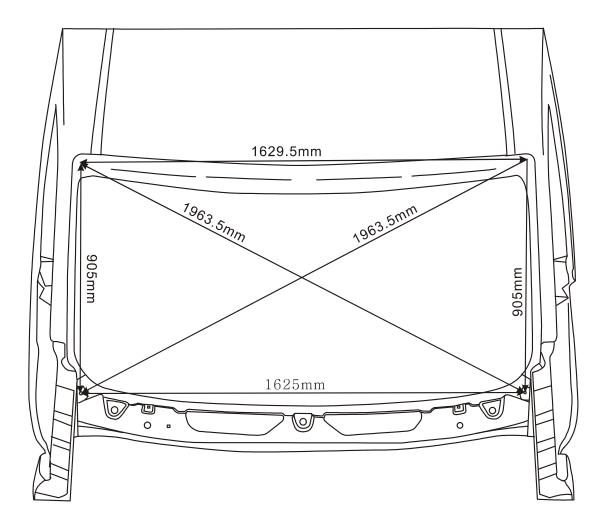
2. Remove the front section seal assembly of front compartment.

# Removal/Installation Waterproof membrane

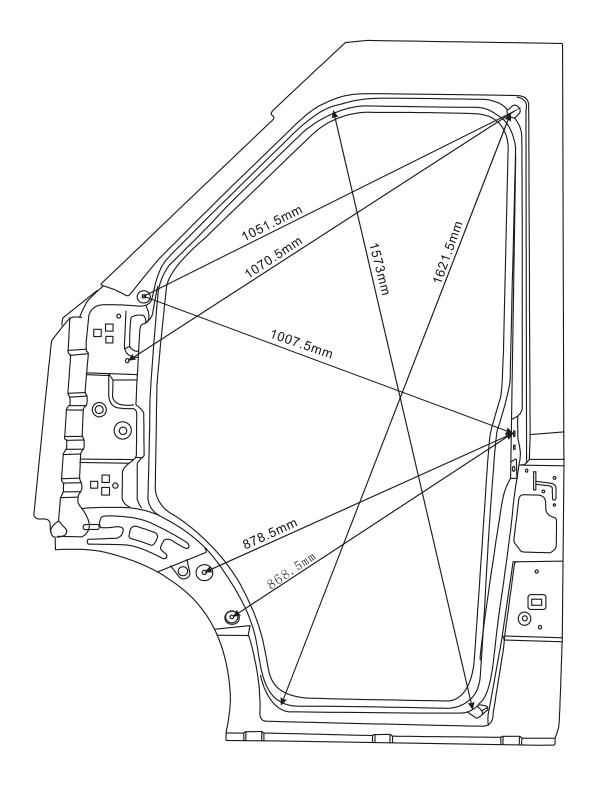



1. Remove the rear end seal of front compartment.

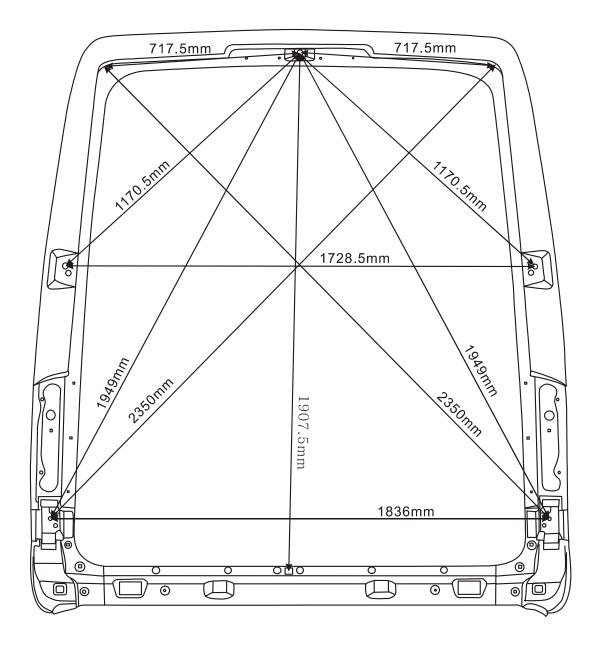
# **Body Repair Parameters**


Applied models: SUNRAY products manufactured by JAC

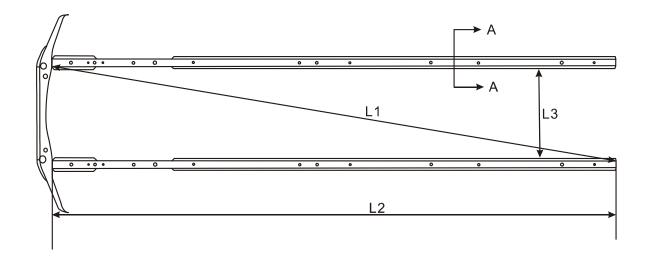
| Subject                              | Page |
|--------------------------------------|------|
| Engine Compartment Repair Parameters | 130  |
| Windshield Repair Parameters         |      |
| Front Door Repair Parameters         |      |
| Rear Double-Door Repair Parameters.  |      |
| Girder Repair Parameters.            |      |


# **Engine Compartment Repair Parameters**

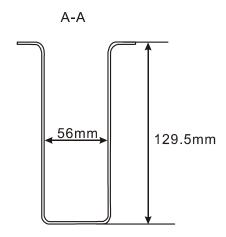



# **Windshield Repair Parameters**




# **Front Door Repair Parameters**




# **Rear Double-Door Repair Parameters**



# **Girder Repair Parameters**



Side member repair parameters: Diagonal L1=5068mm Side member length L2=4998mm Side member ledge L3=840mm



# **Attached List—SUNRAY Special Service Tools**

Applied models: SUNRAY products manufactured by JAC

| Tool Number Tool Name |                                       | Illustration | Function/Applied Part                                                            |  |  |  |
|-----------------------|---------------------------------------|--------------|----------------------------------------------------------------------------------|--|--|--|
| JAC-T8F001            | F001 Piston pin puller                |              | For removal/installation of engine piston pin (engine)                           |  |  |  |
| JAC-T8F002            | Handle                                | $\beta$      | For installing bearing together with relevant installer (transmission)           |  |  |  |
| JAC-T8F003            | Flywheel stopper                      | E P          | For fixing flywheel to facilitate removal (engine)                               |  |  |  |
| JAC-T8F004            | Cooling system detector               |              | For checking engine cooling system for leakage (engine)                          |  |  |  |
| JAC-T8F005            | Oil filter wrench                     |              | For removal/installation of oil filter (engine)                                  |  |  |  |
| JAC-T8F006            | Valve oil seal<br>installer           |              | For installation of valve oil seal (engine)                                      |  |  |  |
| JAC-T8F007            | Fuel pressure gauge                   |              | For measuring fuel pressure (engine)                                             |  |  |  |
| JAC-T8F008            | Compression pressure gauge            | 0.0          | For measuring engine cylinder pressure (engine                                   |  |  |  |
| JAC-T8F009            | Pressure gauge connector              |              | For connection when measuring cylinder pressure (engine)                         |  |  |  |
| JAC-T8F010            | Valve spring compressor               |              | For compressing valve spring, removing engine valves and relevant parts (engine) |  |  |  |
| JAC-T8F011            | Camshaft gear puller                  | A            | For removing camshaft gear (engine)                                              |  |  |  |
| JAC-T8F012            | Cylinder liner installer (incl. jack) |              | For installing cylinder liner (engine)                                           |  |  |  |

**SUNRAY Special Service Tools** 

| Tool Number | ool Number Tool Name Illustration    |             | Function/Applied Part                                                                                                                   |  |  |
|-------------|--------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| JAC-T8F013  | 3 Cylinder liner puller              |             | For removing cylinder liner (engine)                                                                                                    |  |  |
| JAC-T8F014  | Piston installer                     | <b>8</b> [] | For installing piston (engine)                                                                                                          |  |  |
| JAC-T8F015  | Crankshaft front oil seal installer  | <b>e</b>    | For installing crankshaft front oil seal (engine)                                                                                       |  |  |
| JAC-T8F016  | Camshaft bushing puller              |             | For removal/installation of camshaft bushing (engine)                                                                                   |  |  |
| JAC-T8F017  | V-block for camshaft measurement     |             | For measuring damage of camshaft (engine)                                                                                               |  |  |
| JAC-T8F018  | Hose clamp pliers                    | X           | For removing hose clamp                                                                                                                 |  |  |
| JAC-T8F019  | Piston ring extractor                |             | For removal/installation of piston circlip (engine)                                                                                     |  |  |
| JAC-T8F020  | Valve oil seal<br>extractor          |             | For removing valve oil seal (engine)                                                                                                    |  |  |
| JAC-T8F021  | End fork clip                        |             | For fixing flywheel (engine)                                                                                                            |  |  |
| JAC-T8F022  | Crankshaft rear<br>bearing puller    |             | For removing crankshaft rear bearing                                                                                                    |  |  |
| JAC-T8F023  | Crankshaft rear<br>bearing installer |             | For installing crankshaft rear bearing                                                                                                  |  |  |
| JAC-T8F024  | Diesel common rail<br>tool kit       |             | Diesel common rail detector can diagnose accurately and efficiently the diesel engine injection by performed diesel common rail system. |  |  |
| JAC-T8B001  | Fork lock pin puller                 |             | For removing shift fork spring pin (transmission)                                                                                       |  |  |

## 星锐专用工具

| Tool Number |                                                      |       | Function/Applied Part                                                                  |  |
|-------------|------------------------------------------------------|-------|----------------------------------------------------------------------------------------|--|
| JAC-T8B002  |                                                      |       | For removing oil seal (transmission)                                                   |  |
| JAC-T8B003  | Clutch guider                                        | 611   | For center alignment of clutch disc (transmission)                                     |  |
| JAC-T8B004  | Input shaft bearing installer                        |       | For installing input shaft bearing (transmission)                                      |  |
| JAC-T8B005  | Output shaft bearing installer                       |       | For installing output shaft bearing (transmission)                                     |  |
| JAC-T8B006  | Countershaft front bearing installer                 |       | For installing countershaft front bearing (transmission)                               |  |
| JAC-T8B007  | Input shaft protective sleeve                        |       | For protecting input shaft front end teeth (transmission)                              |  |
| JAC-T8B008  | Output shaft protective sleeve                       |       | For protecting output shaft front end teeth (transmission)                             |  |
| JAC-T8B009  | Transmission bearing removal tool kit                | 666   | For removing transmission bearing (transmission)                                       |  |
| JAC-T8B010  | Input shaft oil seal installer                       |       | For installing input shaft oil seal (transmission)                                     |  |
| JAC-T8B011  | Oil seal puller of<br>transmission rear end<br>cover |       | For removing oil seal of rear end cover (transmission)                                 |  |
| JAC-T8B012  | Oil seal installer of rear end cover                 |       | For installing oil seal of rear end cover (transmission)                               |  |
| JAC-T8D001  | Steering linkage drawing die                         |       | For disengaging front wheel end control arm ball joint from steering knuckle (chassis) |  |
| JAC-T8D002  | Interior trim crow plate                             | 1/1/1 | For prying up interior trim of vehicle                                                 |  |

| NRAY Special Serv | ice 100is |  |  |  |
|-------------------|-----------|--|--|--|
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |
|                   |           |  |  |  |